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Abstract
This paper proposes a novel .genetic algorithm -based
systematic reasoning approach using an orthogonal
array-based crossover (OABX) for solving the
traveling salesman problem (TSP). OABX makes use
of the systematic reasoning ability of orthogonal
arrays that can effectively preserve superior sub-paths
from parents and guide the soluti on towards better
quality. It isshown empirically that OAB
outperforms various superior crossovers of canonical
approach in both accuracy and speed.
Keywords: Algorithms; traveling salesman problem;
genetic algorithms; systematic reasoning; orthogonal

array-based crossove .
1. Introduction

The traveling salesman problem (TSP) is one of the

most widely discussed combinatorial optimization
problems that belong to the class of NP-complete
problems [1][8]. The definition of the TSP is thata
salesman, starting from his home cityand traveling
each city exacily once before returning home, is to
seek the shortest tour through n cities. The TSP
mainly finds the visitation order which minimizes the
total traveled distance. Mathematicaly, givena

sequence of cities, ¢, ¢z, ..., and Cp, and inter-cit
distances d(cic), find a permutation 7 of the cities

that minimizes the sum of distances C( 7 ) {41[8].

n—1

C(ﬂ) = Ed(cmi) ’ Cn’(H—l) ) -I-d(Cmv,,) ’ Cﬂ(l) ) )

i=]

Due to the complexity of the large TSP, the
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TSP has received considerable attentions recently in
developing efficient approaches for solving the lager
and larger TSP [1][8]. Genetic Algoritim (GA),
developed b Hollan , has been proved as a powerful
tool for solving various optimization problems [3]{4].
Several approaches based on GA have been proposed
for solving the TSP [1][2])[7][12]. Since genetic

crossover is the main operator of GA. Therefore, good

genetic crossover is essential to make a GA-based

. search effective and obtain a better solution. However,

traditional crossovers use either random combination
of parents * sub-path or greedy mechanism with
additional information.

In this paper, we present an intelligent
orthogonal array-based crossover (OABX) with the

permutation representation which is the most natural

-representation of a TSP tour. OABX is a systematic

reasoning crossover that easily obtains and preserves
the superior sub-paths of a chromosome without using
any greedy approach. Encouraging computational
results demonstrate  that 'OABX outperforms the
existing superior crossovers of canonical approach.
The remainder of this work is organized as
follows. S ection 2 presents preliminary analysis of
GA crossovers for solving the TSP. The use of
orthogonal arrays (OAs) to achieve OABX and the
GA-based algorithm using OABX are given in
Section 3. Computational experiments and statistical

analysis of resulis are presented in Section 4.

summary of the stud is made in Section 5.
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2. Preliminary Analysis

In this section, we discuss about the role of the GA
crossover and examine various GA crossovers for the

TSP in literature.
2.1 Role of Crossover

Crossover is the main genetic operator of GA, mainly
because crossover tends to perform widespread search
for exploiting all solution space and provides

exploration in the neighborhood [3][4]. Therefore, a
good crossover that leads to better solutions within

short computation time is indispensable. Generally
speaking, the role of the crossover is to recombine
information from good parent solutions into offspring
solutions what we hope are even better v [31[7). In
summary, the performance of crossovers can be
and the

evaluated using the solution qualit

computation time that crossover spends.
2.2 Various Crossovers for the TSP

- During the past decade, in order to solve the TSP

effectively, various crossovers have been suggested in

literature. These crossovers can be classified into two

approaches [4]:

(1) Canonical approach: the essence of the canonical
approach is the blind random mechanism. These
crossovers need no additional information and do
not cost extremely long time, but there is no
guarantee that an offspring is better than their
parents. Nevertheless, these crossovers are
general purposed for solving some ordering
problems. These crossovers include PMX, OX,
0X2, PBX, CX, IX, UX, UX2, EER, and MX,
etc. [4][71(10]. Among the above-mentione
crossovers for the TSP, OX, EER and UX2 have
demonstrated that their overall performance
outperforms other crossovers [7]{10].

(2) Heuristic approach: the essence of the heuristic

approach is that these crossovers incorporate

heuristic information or the greedy mechanism.
Although this approa ch intends to generate an
improved offspring, it needs additional
information or costs extremely long time to make
the improvernent.r Among the conventional
heuristics for the TSP, there are two basic
construction methods the nearest neighbor and
the best insertion heuristics [4]. These crossovers
includes EAX [13], heuristic crossover [4]. These
crossovers are special purposed for solving TSP.
OABX makes use of the systemaiic reasoning
ability of orthogonal arrays that can effectively
analyze the impact factor of each sub -path in parents
and efficiently guide the solution towards beiter
quality without using any greedy mechanism or
additional information. ~ Therefore, the proposed
OABX, which belongs to neither canonical approach
nor heuristic approach, can be categorized into the
third approach: a novel systematic reasoning approach.
Moreover, OABX can be incorporated with other
GA-based algorithms with heuristics, such as best
insertion or k nearest neighbors heuristics. It follow
that OABX combines the advantages of two
traditional approaches in both accuracy and speed In
this study, OABX is compared with the superior
crossovers of canonical approach, OX, EER and UX2

[7][10].
3. Genetic Algorithm using OABX

The principle of OABX relies on OAs which are
described in Section 3.1. The use of OAs to achieve
an intelligent OABX with an illustration for solving
the TSP are described in Section 3.2. The simple GA

we applied is provided in Section 3.3.
3.1 Orthogonal Array and Factor Analysis

Orthogonal Array (OA) and factor analysis, which are
representative methods of quality control [11], also

work to improve the crossover -efficiently. The



superiority of O in obtaining better results for large

parameter  optimization problems has  bee
demonstrated [5][6]. The definition of OA is as
follows. Let there be N factors of two levels. The
number of total combinations is 2" . Columns of two
factors are orthogonal when 4 pairs, (1,1), (1,2), (2,1),
and (2,2), occur equally in all experiments. When any
two factors in an experimental set are orthogonal, the
set is called an OA. To establish an OA for use of N
factors of two levels, we obtain an integer
=201 bl an orthogonal ama L, (2"")
with n rows and (n-1) columns, and select N columns.
Factor analysis can evaluate the effects of
factors on the evaluation function, rank the most
effective factors, and determine the best level for each
factor such that the evaluation function is optimized.
Orthogonal experiment design can reduce the number
of experiments for the factor analysis. The number of
OA experiments for single factor analysis is only n.
For instance, Table 1 illustrates an orthogonal array
L,(2")-
Table 1. Orthogonal ama L, (27)

Factors
Exp. Functi(?n
1 2 3 4 5§ 7 | Evaluation
no.
value
1 1 1 1 1 1 1 1 N
2 1 1 1 2 2 2 2 V2
3 1 2 2 1 1 2 2 V3
4 1 2 2 2 2 1 1 Va
5 2 1 2 1 2 1 2 ¥s
6 2 1 2 2 1 2 1 V6
7 2 2 1 1 2 2 1 V7
8 2 2 1 2 1 1 2 Vs

Let y, be the positive function evaluation value of

experiment no. t. Define the main effect of factor j

with level k Sjk s

Sjk=2}fz><[the level of Exp na t of factor j is k]
=1 (2)

where

the condition is true

[condition ]= {1 U

0 oterwise,

and

if the functionis to be mimmized

{y{ if the functionis to be maxmized
Y=

W

Note that the main effect reveals the individual effect

of a factor. The most effective factor j has the largest
main effect difference (MED) |Sj1 - S,- 2|' I

Sy>S,, the level 1 of factor j is better than the

level 2 on the contribution for the optimization

function. Otherwise, level 2 is betier
3.2 Orthogonal Array-Based Crossover

The representation of a chromosome for OABX
approach adopts the permutation representation. That
two parents breed two children using OABX consists
of the following two procedures: OA procedure and

repairing procedure.
3.2.1 QA procedure

The OA procedure of OABX is as follows
Step 1: Select the first N columns of OA L, (2"")

Mg+l Note that let the

where n=
chromosome be uniformly separated into N
sub-paths and each sub-path of a chromosome
be regarded as a factor in OA.

Step 2: Let level 1 and level 2 of factor j represent the
jLh sub-path of a chromosome coming from the
parent 1 and parent 2, respectively.

function values for

Step 3: Evaluate the

i
experiment no. ¢ where ¢ = 1, 2, ..., n. Note
that y, is the tour length and is equal to the
C( ) in equation (1)/‘

Step 4: Compute the main effect S where j =1
2,..,Nandk=1,2.

Step 5: Rank the most effective factors from rank 1 to
rank N by comparing Sjk

Step 6: The better factors, from rank 1 to rank
I—N / 21 are preserved in their correspondin
positions to form the chromosome of children.
Notably, pre-computed function evaluation

value of each sub -path can be recorded to accelerate



the computation time in Step 3. Hereafter, the function
values y can be fast obtained by summarizing the

evaluation values of the pre-computed sub-paths and
the distances betwee all neighboring sub-path pairs
using a table-looking method. Moreover, the size of
OA L, (2”“) can be adjusted according to the
problem size to analyze different factors. The larger N
used, the smaller sub-path representing a factor in a
chromosome will be analyzedl Generally, considering
the computation time of one generation and the effect
of OAs, let the number of N varies from 3 to 31

depending on the problem size.

OA procedure preserves tﬁe more contributive
sub-path (factor) in the parents’ chromosomes rather
than the random preservation of the parents’ sub-paths,
such as, OX. After OA procedure, two proto-childre
are generated, however, theyare not feasible
representation of a tour. It follows that a repairing
procedure is essential to embed in this crossover, in
order to obtain a feasible representation of a tour. In
this study, we propose a general repairing procedure

for repairing the offspring.
3.2.2 General Repairing Procedure

The general repairing procedure is used for general
case without using additional heuristic information.
The repairing procedure is described as the following

steps:

Step 1:(deletion step) Deleie the cities which are
already inthe proto -child from the second
parent. The resulted sequence of cities
contains vthe cities that proto-child needs.

Step 2: (fill step) Place the cities into the unfixed
positions of the proto-child from left to right
according to the order of the sequence to
produce an offspring.

Finally, a good feasible offspring can be obtained

through the repairing procedure based on the

systematic analysis of OAs.
3.2.3 Tliustration by an Example

In this section, OABX is illustrated by a conci se
example, as shown in Table 2 and Table 3. Let P1 and
P2 be parenis, C1’ and C2’ be the proto-children after
OA procedure, and C1 and C2 be the offspring after
the entire OABX operation. Let the problem size be
28 and N = 7. Therefore, the length of sub-path is 28/7
= 4, and the preserved sub-paths by OA procedure
will be from rank 1 to rank l_ N/ 2-| (=4). Let
P1:(2,11,12,5,1,15,10,13,8,3,19,20,0,16,9,25,18,23,
17,4,7,6,22,24,26,14,27,21).
P2:(8,17,26,19,13,6,21,20,23,18,10,25,0,27,2,14, 15,
5,11,7,22,1,24,4,16,12,9,3).

Table 2. Results of various procedure. Notably, —1 denotes the position which is left unfixed.

Corresponding
sub-paths 1 2 3 4 5 6 7

P1 2,11,12,5 ]1,15,10,13 [8,3,19,20 ]0,16,9,25  |18,23,17,4 [7.6,22,24 [26,14,27,21
P2 8,17,26,19 113,6,21,20 [23,18,10,25 0,27,2,14  [15,5,11,7 22,1244 116,12,9,3
cr’ -1,-1,-1-1  [1,15,10,13 18,3,1920  |-1,-1,-1,-1 [18,23,17.4 [7,6,22.24 |-1,-1,-1,-1
Cc2 8,17,26,19 |-1-1-1,-1 |-1-1,-1,-1 10,27,2,14  [15,5,11,7 |-1,-1,-1,-1 [16,12,9,3
Cl 26,21,25,0 |1,15,10,13 18,3,19,20 [27,2,14,5 [1823,174 17.6,22.24 [11,16,12,9
C2 8,17,26,19 [1,10,13,20 |25,18,234 10,27,2,14 {15,5,11,7 [6,22,2421 [16,12,9,3




Table 3. OA L, (27) and factor analysis.

|Fact0r i

o 1 2 3 4 5 6 7 Y
1 1 1 1 1 1 1 1 2702
2 1 1 1 2 2 2 2 2568
3 1 2 2 1 1 2 2 2748
4 1 2 2 2 2 1 1 2953
5 2 1 2 1 2 1 2 2498
6 2 1 2 2 1 2 1 2868
7 2 2 1 1 2 2 1 2953

-3 2 2 1 2 1 1 2 2501
Ssi

*10% | 5357 6316 54433 [55.083) [57.178] 48.790

Rank 6 2 3 5 4 1 7
S.

(*1’&8) 5638 52.165 52.893 52.031 [60.419

Rank 2 6 5 3 4 7 1

First, OA L8(27) is used. The values of all variables
for factor analysis are shown in Table 3. For instance,
in the 2™ experiment, the function evaluation value y;
can be obtained from the cities in the 1%, 2™ and 3"
sub-paths of P1, and the 4% 5% 6" and 7" sub-paths
of P2. The main effect S; can be obtained from eqn.
@5, =y Ay Y Y

. The child C1’ can be derived from preserving the 2™
39 5" and 6™ sub-paths of P1, and the child C2’ can
be derived from preserving the 1%, 4%, 5" and 7"
sub-paths of P2. Second, perform the repairing
procedure. For instance, in the deletion step, the
resulted gequence of cities that C1 needs is (P2 - C17),
(26,21,25,0,27,2,14,5,11,16,12,9). In the fill step, the
resulted sequence of cities are filled in the unﬁxe;i
positions of C1” in the same order. The results for

various procedures are shown in Table 2 in

corresponding sub-path order.
3.3. Simple Genetic Algorithm

The simple genetic algorithm (SGA) [3] applied in the

performance comparison for various superior
crossovers is as follows
Step 1: Initialize a population of chromosomes.

Step 2: Evaluate each chromosome in the population.

)

Step 3: Generaie offspring by selecting parents and
applying crossover and inverse mutation.

Step 4: Evaluate the new chromosomes and insert
them into the population.

Step 5:If stopping criteria are met, return the best.

Otherwise, go to Step 3.
4. Comparisons of Performance Evaluations

In order to demonstrate the superiority of OA X, we
compare OABX’s performance with those of the most
outstanding crossovers, EER,O  and UX2, which
had already been examined by literature [7]{10]. Wit
regard to examine the performance of those
crossovers in justice, we implement themby the
following rules:

(1) Implement all the crossovers using SGA;

(2) In order to observer vfarious crossove s ability
and efficiency, we use the population size 10to
eliminate the influence of population size [3].
The parameters of SGA are Py = 0.3, P, = 0.7 and
P, =0.3; and

(3) Examine all crossovers in solving the large TS

for the purpose of observing their ability and

efficiency.

All the tested benchmarks are obtained from



TSPLIB [9] and the optimum solution s have already

been presenied in literature. The comparison resulis

by averaging crossover computation time are obtained
using Pentium 166 CPU computer with instance
pr2392 which consists of 2392 cities, as shown in

Table 5. All the simulation results using t wenty

independent runs for each instance are summarized in

Table 4. Fig. 1 illustrates the comparisons of

convergence speed and accura.cy where OABX(num)

means that OABX with an OA £, (21 is used.

From the experimental results, it can be obviously

seen that

(1)  The quality of solutions obtained by OABX is
superior to that of other outstanding crossovers,
especially when the problem sizes become
larger and larger;

(2) OABX outperforms the investigated crossovers
in convergence speed and accuracy, especially
when the heuristic method is used, as shown in
Fig. 1; and

(3) The computation time of OABX is within

reasonable time.
5. Conclusions

In this paper, we have proposed a novel genetic
algorithm-based systematic reasoning approach using
an orthogonal arra -based crossover (OABX) for
solving the traveling salesman probl em (TSP). And it
can be easily seen that OABX proceeds almost the
same as OX, however, OABX preserves the better
sub-paths rather than OX preservessub -paths
randomly. The encouraging results demonstrate that
OABX combines the two traditional approaches’
advantages, listed as follows
(1) OABX makes use of the systematic reasoning
ability of orthogonal arrays can effectively
preserve superior order information from
parents and guide the solution towards better

quality within reasonable computation time.

(2) OABX obtains better solutions without using

any greedy mechanism or additional
information.

(3) OABX is an efficient and general -purposed
crossover, and OABX can easily incorporate
with other heuristic methodssuch as  best
insertion or k nearest neighborhood.

It has been shown empirically that OABX

outperforms various crossovers in both accuracy and

convergence speed.
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Data Sets Crossover Gen. Average Best/Worst Rank
Lin105 OABX(15) 10000 15463.266 14683/16372 1
(optimum - EER 10000 15995.667 14885/16971 2
=14379) ox 10000 16029.400 15136/17171 3
UXx2 10000 16212.800 15462/16923 4
Lin318 OABX(15) 30000 56718.233 54617/59726 1
(optimum EER 30000 59428.168 56368/64023 3
=42029) 00X 30000 58943.332 55890/62068 2
UX2 30000 61411.435 57828/64613 4
Pr439 OABX(15) 30000 186311.127 171573/196527 1
(optimum EER 30000 197833.563 187646/213718 3
=107217) oX 30000 194584.297 186008/204981 2
UX2 30000 203932.297 193375/221766 4
Pr1002 OABX(15) 30000 913648.712 876632/945239 1
(optimum EER 30000 924192.813 890737/963171 2
=259045) 0X 30000 936139.313 911860/967911 3
Ux2 30000 990777.438 955897/1019295 4
Pr2392 OABX(15) 30000 3381711.450 3287341/3488939 1
(optimum EER 30000 3543006.500 3382992/3640556 3
=378032) 0X 30000 3449067.000 3372940/3548791 2
UX2 30000 3690463.000 3602666/3786763 4
Table 5. The average computation time of various crossovers
Crossover OoX Ux2 EER OABX(3) QABX(7) OABX(15)
Computation time (sec) 0.0101 0.0125 0.0507 0.0110 0.0125 0.0159
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Fig, 1. The comparisons of convergence speed and accuracy for various crossovers in different instances. X axis

is the GA generations and Y axis is the distance C( 7).



