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Abstract

In this paper, we propose a mew architecture to
study artificial stock markets. This architecture
rests on o mechanism called “school” which is
a procedure to map the phenotype to the geno-
type or, in plain English, to uncover the secret
of success. We propose an agent-based model of
“school”, and consider school as an evolving popu-
lation driven by single-population GP (SGP). The
architecture also takes into consideration traders’
search behavior. By simulated annealing, traders’
search density can be connected to psychological
factors, such as peer pressure or economic fac-
tors such as the standard of living. This market
architecture was then implemented in o stendard
artificial stock market. Our econometric study
of the resultant artificial time .series evidences
that the return series is independently and iden-
tically distributed (iid), and hence supports the ef-
ficient market hypothesis (EMH). What is inter-
esting though is that this iid series was generated
by ‘“traders, who do not believe in the EMH at
all. In fact, our study indicates that many of our
traders were able to find useful signals quite of-
ten from business school, even though these signals
were shori-lived.

Key Words: Agent-Based Computational
Economics, Social Learning, Genetic Pro-
gramming, Business School, Artificial Stock
Markets, Simulated Annealing, Peer Pres-
sure.

1 Background and Motiva-
tion

Over the past few years, genetic algorithms (GAs)
as well as genetic programming have gradually
become a major tool in agent-based computa-
tional economics (ABCE). There are two styles of
GAs or GP in ABCE, namely, single-population
GAs/GP (SGA/SGP) and multi-population GAs
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(GP) (MGA/MGP). SGA/SGP represents each
agent as a chromosome or a tree, and the whole
population of chromosomes and trees are treated
as a society of market participants or game play-
ers. The evolution of this society can then
be implemented by running canonical GAs/GP.
MGA/MGP, in contrast, represents each agent as
a society of minds. Therefore, GAs or GP is ac-
tually run inside each agent. Since, in most appli-
cations, direct conversations (imitations) among
agents do not exist, this version of applications
should not be mistaken as the applications of par-
allel and distributed GAs/GP, where communi-
cations among “islands” do exist. At the cur-
rent state, the SGA/SGP architecture is much
more popular than the MGA/MGP architecture
in ABCE.

In addition to its easy implementation, the rea-
son for the dominance of SGA/SGP in ABCE is
that economists would like to see their genetic op-
erators (reproduction, crossover, and mutation)
implemented within a framework of social learn-
ing so that the population dynamics delivered by
these genetic operators can be directly interpreted
as market dynamics. In particular, some inter-
esting processes, such as imitation, “following the
herd”, rumors dissemination, can be more effec-
tively encapsulated into the SGA/SGP architec-
ture.

However, it has been recently questioned by
many economists whether SGA/SGP can repre-
sent a sensible learning process at all. One of the
main criticisms is given by Harrald (1998), who
pointed out the traditional distinction between the
phenotype and genotype in biology and doubted
whether the adaptation can be directly operated
on the genotype via the phenotype in social pro-
cesses. If we assume that agents only imitate oth-
ers’ actions (phenotype) without adopting their
strategies (genotype), then SGA/SGP may be im-
mune from Harrald’s criticism. However, imitat-
ing other agents’ actions are a very minor part of
agents’ interactions. In many situations, such as
financial markets and prisoners’ dilemma games, it



would be hopeless to evolve any interesting agents
if they are assumed to be able to learn only to “buy
and hold” or “cooperate and defect”.

Although  Harrald’s criticism is  well-
acknowledged, we have seen no solution proposed
to tackle this issue yet. In this paper, we plan to
propose a new architecture and hence a solution
to Harrald’s criticism. This architecture rests on
a mussing mechanism, which we think is a key
to Harrald’s criticism. The missing mechanism
is what we call “school’”. - Why “school”? To
answer Harrald’s criticism, one must resolve the
issue “how can unobservable strategies be actually
imitable”? The point is how. Therefore, by
the question, what is missing in SGA/SGP is a
Junction to show how, and that function is what
we call “school”. Here, “school” is treated as a
procedure, a procedure to map the phenotype to
the genotype, or in plain English, to uncover the
secret of success. This notion of “school” goes
well with what school usually means in our mind.
However, it covers more. It can be mass media,
national library, information suppliers, and so
on. Therefore, if we supplement SGA/GP with
a function “school”, then Harrald’s criticism can,
in principle, be solved.

Nevertheless, to add “school” to an evolving
population is not that obvious. Based on our ear-
lier description, “school” is expected to be a col-
lection of most updated studies about the evolv-
ing population (evolving market participants). So,
to achieve this goal, “school” itself has to evolve.
The question is how? In this paper, we pro-
pose an agent-based model of “school”. More pre-
cisely, we consider school as an evolving popu-
lation driven by single-population GP (SGP). In
other words, “school” mainly consists of faculty
members (agents) who are competing with each
other to survive (get tenure or research grants),
and hence the survival-of-the-fittest principle is
employed to drive the evolution of faculty the way
it drives the evolution of market participants.

Once “school” is constructed with the agent-
based market, the SGP used to evolve the market
is now also run in the context of school. The ad-
vantage of this setup is that, while the SGP used
to evolve the market suffers from Harrald’s criti-
cism, the SGP used to evolve “school” does not.
The reason is simple. To be a successful mem-
ber, one must publish as much as she knows and
cannot keep anything secret. In this case, observ-
ability and imitability (replicatability) is not an
assumption but a rule. Hence, Harrald’s criticism
does not apply and SGP can be “safely” used to
evolve “school”.

Now, what happens to the original SGP used
to evolve the market? This brings up the second
advantage of our approach. Since the function of
school is to keep track of strategies (genotypes)
of market participants and to continuously gener-
ate new and promising ones, any agent who has
pressure to imitate other agents’ strategies or to
look for even better strategies can now just consult
“school”. So, the original operation of SGP in the
market can now be replaced by SGP in “school”
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and a search procedure driven by the survival pres-
sure of agents.

The rest of the paper is organized as follows. In
Section 2, we shall present the analytical model on
which our artificial market is constructed. A con-
crete application of genetic programming to the
artificial stock market is also detailed. Experiment
results and econometric analyses of these results
are given in Section 3 followed by concluding re-
marks in Section 4.

2 The Analytical Model

The basic framework of the artificial stock mar-
ket considered in this paper is the standard asset
pricing model ( Arthur et al., 1997). The mar-
ket dynamics can be described as an interaction of
many heterogeneous agents, each of them, based
on her forecast of the future, having the goal to
maximize her expected utility. Technically, there
are two major components of this market, namely,
traders and their interactions.

2.1 Model of Traders

We.shall start from traders’ motives by introduc-
ing their wtility functions. For simplicity, we as-
sume that all traders share the same utility func-
tion. More specifically, this function is assumed
to be a constant absolute risk aversion (CARA)
utility function,

U(Wi,t) = —e:cp(—)\Wi,t) (].)

where W;; is the wealth of trader i at time pe-
riod ¢, and A is the degree of relative risk aver-
sion. There are two assets available for traders
to invest. One is the riskless interest-bearing as-
set called money, and the other is the risky as-
set known as the stock. In other words, at each
point in time, each trader has two ways to keep
her wealth, i.e., ’

Wi = My + Pihiy (2)

where M;; and h;; denotes the money and shares
of the stock held by trader ¢ at time ¢. Given this
portfolio (A, h; ), a trader’s total wealth Wi i+1
is thus

Wiger = (L+7) Mg + hig(Pigr + Dia)  (3)

where P; is the price of the stock at time period
¢t and Dy is per-share cash dividends paid by the
companies issuing the stocks. D, can follow a
stochastic process not known to traders. Given
this wealth dynamics, the goal of each trader is
to myopically maximize the one-period expected
utility function,

Ei e (U(Wit41)) = E(—ezp(—A\Wy) | Iiz) (4)
subject to

I/Vi,t-l-l = (1 + T)]V[i,t + hi,t(Pt+1 + D;g_,_l)7 (5)



where E;4+(.) is trader ’s conditional expectations
of W41 given her information up to ¢ (the infor-
mation set I;;), and 7 is the riskless interest rate.

Tt is well known that under CARA utility and
Gaussian distribution for forecasts, trader i’s de-
sire demand, h}, for holding shares of risky asset
is linear in the expected ezcess return:

* Ei,t(Pt+1 + Dt-l—l) - (]. + T)Pt
wt Ao?, ’

(6)

where 0?2, is the conditional variance of (P41 +
Dyy1) given I;;. One of the essential elements of
agent-based artificial stock markets is the forma-
tion of E; ;(.), which will be given in detail in the
next section.

2.2 Model of Price Determination

Given h},, the market mechanism is described as
follows. Let b;; be the number of shares trader ¢
would like to submit a bid to buy at period ¢, and
let 0;; be the number trader ¢ would like to offer
to sell at period t. It is clear that

_f hii—hig—1, Ry 2 higen,
bi = { 0, otherwise. (7)
and
_f hig—1 —Riy, Riy < hige,
Out = { 0, otherwise. (8)

Furthermore, let

N N
Bi=) bis, Or=) oi (9)
=1

=1

be the totals of the bids and offers for the stock at
time ¢. Following Palmer et al (1994), we use the
following simple rationing scheme:

hig—1+bis — 05, if Bi= 04,

hig =< hig—1+ %:bi,t —0i4, if By> Oy,
hig—1+biz— 'g—foi,t, if B; < O;.
(10)
All these cases can be subsumed into
Vi Vi
hit =hjp1 + —=bis — —0; 11
it it—1+ B, Wt T, Oit (11)

where V; = min(B;,Or) is the volume of trade
in the stock. Based on Palmer et al’s rationing
scheme, we can have a very simple price adjust-
ment scheme, based solely on the excess demand
Bt - Oti )

P = B(1+ (B — Oy)) (12)

where 3 is a function of the difference between B;
and O;. B can be interpreted as speed of adjust-
ment of prices. One of the 3 functions we consider
is:

[ tanh(Bi(B: - 01) if B> Oy,
B(Bi—0s) —{ tanh(w(By — 01)) it B, < O,
(13)

where tanh is the hyperbolic tangent function:

T =T

e
tanh(z) = prpe (14)
Since P, cannot be negative, we allow the speed
of adjustment to be asymmetric to excess demand
and excess supply.

The price adjustment process introduced above
implicitly assumes that the total number of shares
of the stock circulated in the market is fixed, i.e.,

Hy=) hi=H (15)

In addition, we assume that dividends and in-
terests are all paid by cash, so

Mt+1 = Z Ali7t+1 = ]\/ft(l + 7‘) + fIt.Dt+1. (16)

2.3 Model of Adaptive Traders

Motivated by the martingale hypothesis in finance,
we shall assume the following function form for

E;4(.)-
Ei,t(Pt_g.l + Dt+1) = (Pt + Dt)(l + Bltanh(ez . f(z,lt%)

The virtue of this function form is that, if
fiz = 0, then the trader actually validates the
martingale hypothesis. Therefore, from the cardi-
nality of set {i | fix = 0}, denoted by Ni;, we
can know how well the efficient market hypothe-
sis is accepted among traders. The population of
functions f;; (¢ = 1,...,N) is determined by the
genetic programming procedure Business School
and Search in Business School given in the fol*
lowing two subsections.

As to the subjective risk equation, originally we
followed Arthur et al. (1997) to use the following

updating scheme .

0%y = (1-03)0%, 1 +05[(Pit Di—Eip—1 (Pe+Dy))?].

(18)
Without further restrictions, this update makes
the subjective measure risk range between 0 and
infinity. Since

. _ Eir(Pr+Dyy1) —(1+1)Py

* = 1
4t )\O,Zt ’ ( 9)
it is clear that
. _[0 if o7, =00,
it { +oo0, if o7, =0. (20)

As a consequence, all traders will tend to “leave”
the market (h7, = 0,Vi) due to incredible large
subjective risks. However, the phenomenon char-
acterized by

his — 0, and o7, — 00 (21)

is not self-fulfilling, because the increasing se-
quence of a?’t implies a decreasing sequence of F;.
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If P, is continuously decreasing, there is not much
volatility and uncertainty, and traders have no rea-
son to be subject to increasing subjective risks.
Therefore, Equation (18) is not directly applica-
ble to our model, and we have modified it into the
following form,

U?t = (1"93)‘7?—

iy 1in,
(22)
where
n1—1 ) 2
o TP =Pl
tlnl ny — 1
and )
PP

AR e

1

In other words, Ut2—1!n1 is simply the historical
volatility based on the past ni observations.

2.4 DBusiness School and Single-
Population GP

The business school in our model functions as
usual business schools in the real world. It mainly
consists of faculty, and their different kinds of
models (schools of thoughts). Let F be the
number of faculty members (forecasting models).
These models are propagated via a competition
process driven by the faculty through publications.
In this academic world, a scholar can ill afford to
keep something serious to herself if she wants to be
well-acknowledged. If we consider business school
a collection of forecasting models, then we may
well use single-population GP to model its adap-
tation.

Nonetheless, scholars and traders may care
about different things. Therefore, in this paper,
different fitness functions are chosen to take care
of such a distinction. For scholars, the fitness func-
tion is chosen purely from a scientific viewpoint,
say, forecasting accuracy. For example, one may
choose mean absolute percentage error (MAPE) as
the fitness function (Table 1). Single-population
GP is then conducted in a standard way. Each
faculty member (forecasting model) is represented
by a tree. The faculty will be evaluated with a pre-
specified schedule, say once for every m; trading
days. The review procedure proceeds as follows.

At the evaluation date, say t, each forecasting
model (faculty member) will be reviewed by a vis-
itor. The visitor is another model which is gener-
ated randomly from the collection of the existing
models in the business school at ¢ — 1, denoted
by GP;;-1, by one of the following three genetic
operators, reproduction, crossover and mutation,
each with probability p,, p., and p,, (Table 1).
In the case of reproduction or mutation, we first
randomly select two GP trees, say, gp;;—1 and
gPk,i—1- The MAPE of these two trees over the last
meo days’ forecasts are calculated. A tournament
selection is then applied to these two trees. The
one with lower MAPE, say gp; :—1, is selected. We
then apply Schwefel’s 1+1 strategy over the host

+03((P,+D;~E; 31 (Pi+Dy))?].

9p;¢—1 and the visitor gp;;—1 (in the case of repro-
duction) or gp} ;_; (in the case of mutation) based
on the criterion MAPE, and gp;; is the outcome
of this 1+1 competition.

In the case of crossover, we first randomly se-
lect two pairs of trees, say (9pj;,1—1,9Pjs,t—1) and
(9Pk1,t~1, 9Pks,t—1). The tournament selection is
applied separately to each pair, and the win-
ners are chosen to be parents. The children, say
(gp1, gp2), are born. One of them is randomly se-
lected to compete with gp;;—1, and the winner is
9Pi-

2.5 Traders and Business School

Given the adaptive process of the business school,
the adaptive process of traders can be described
as a sequence of two decisions. First, should she
go back to the business school to take classes?
Second, should she follow the lessons learned at
school? In the real world, the first decision some-
how can be more psychological and has something
to do with peer pressure. One way to model the
influence of peer pressure is to suppose that each
trader will examine how well she has performed
over the last ns trading days, when compared with
other traders. Suppose that traders are ranked by
the net change of wealth over the last ns trading
days. Let AW} be this net change of wealth of

trader ¢ at time period ¢, i.e.,
AWZ}E = I’Vi,t - W/i,t—ﬂ27 (25)

and, let R;; be her rank. Then, the probability
that trader ¢ will go to business school at the end
of period ¢ is assumed to be determined by
i = Tt

2,0 N .

The choice of the function p; ; is quite intuitive. It
simply means that

(26)

Pig < pjg, if Rig < Rjy. (27)

In words, the traders who come out top shall suffer
less peer pressure, and hence have less motivation
to go back to school than those who are ranked at
the bottom.

In addition to peer pressure, a trader may also
decide to go back to school out of a sense of self-
realization. Let the growth rate of wealth over the
last no days be

Wit —Witen,
W’i,t—nz '
and let g;; be the probability that trader ¢ will

go back to business school at the end of the tth
trading day, then it is assumed that

_ 1
14 ea:pézf ’

(28)

e _
6% =

it (29)

The choice of this density function is also straight-

forward. Notice that
lim qit = 1. (30)
o

éi';-+oo 5;,{‘"“
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Therefore, the traders who have made great
progress will naturally be more confident and
hence have little need for schooling, whereas
those who suffer devastating regression will have a
strong desire for schooling.

Once a trader decides to go to school, she has to
make a decision on what kinds of classes to take.
Since we assume that business school, at period ¢,
consists of 500 faculty members (forecasting mod-
els), let us denote them by gp;: ( = 1,2,...,500.)
The class-taking behavior of traders is assumed to
follow the following sequential search process. The
trader will randomly select one forecasting model
gpje (j = 1,..,F) with a uniform distribution.
She will then walidate this model by using it to fit
the stock price and dividends over the last nj trad-
ing days, and compare the result (MAPE) with her
original model. If it outperforms the old model,
she will discard the old model, and put the new
one into practice. Otherwise, she will start an-
other random selection, and do it again and again
until either she has a successful search or she con-
tinuously fail I* times.

3 Simulation Results

Based on the experiment design given above (Ta-
ble 1), a single run with 14,000 generations was
conducted. Notice that the number of generations
is also the time scale of simulation, i.e., GEN =1.
In other words, we are simultaneously evolving the
population while deriving the price P;. In the fol-
lowing, we shall present our results in an order
to answer a series of questions raised in Pagan
(1996).1

First, are price and returns normally dis-
tributed? The time series plot of the stock price is
drawn in Figure 1. Over this long horizon, P; fluc-
tuates between 55 and 105. The basic statistics of
this series, {P;};29%, is summarized in Table 2.
Given the price series, the return series is derived
as usual,

ry = ll’l(Pt) - ln(Pt_l). (31)

Figure 2 is a time series of stock return, and Table
2 also gives the basic statistics of this return series.
From Table 2, neither the stock price series {P;}
nor return series {r; } is normal. The null hypothe-
sis that these series are normal are rejected by the
Jarqu-Bera statistics in all periods. The fat-tail
property is especially striking in the return series.

Second, does prices follow a random walk? Or,
more technically, does the price series have a unit
root? The standard tool to test for the-presence
of a unit root is the celebrated Dickey-Fuller (DF)
test (Dickey and Fuller, 1981). The DF test con-
sists of running a regression of the first difference
of the log prices series against the series lagged
once.

AIH(Pt) = ll’l(Pt) - h'l(Pt_l) = Bl III(Pt_l) (32)

YPagna (1996) summarized a list of stylized facts in fi-
nancial time series.

Table 1: Parameters of the Stock Market

The Stock Market

Shares of the stock (H) 100

Initial money supply | 100

(M)

per capital

Interest rate (r) 0.1
Stochastic Process (Dy) U(5.01,14.99)
Price adjustment func- | tanh

tion

Price adjustment (51) 10>

Price adjustment (f52) 0.2x10~°

Business School

Number of faculty mem- | 500
bers (F)

Number of trees created | 50
by the full method

Number of trees created | 50

by the grow method

Function set

{+, -, 5in,Cos,
Ezp, Rlog, Abs, Sqri}

Terminal set

{P:,Pi-1, - Pi—10,Pe—1+Dt -1
<+ Pi-10 + Di-10}

Selection scheme

Tournament selection

Tournament size

5

0.10

Probability of creating a

tree by reproduction

Probability of creating a | 0.70
tree by crossover

Probability of creating a | 0.20
tree by mutation

Probability of mutation 0.0033
Probability of leaf selec- | 0.5

tion under crossover

Mutation scheme

Tree Mutation

Replacement scheme

(141) Strategy

Maximum depth of tree 17
Number of generations 20,000
Maximum number in the | 1700
domain of Exp
Criterion of fitness (Fac- [ MAPE
ulty members)
Evaluation cycle (m1) 20
Sample Size (MAPE) [ 10
(me)

Traders
Number of Traders (V) 500
Degree of RRA (1)) 0.5

Criterion of fitness
(Traders)

Tncrements in wealth (Income)

Sample size of 67;,,, (n1) | 10
Evaluation cycle(nz) 1
Sample size (ng) 10
Search intensity (1”) 5

61 0.5

[ 10~°
83 0.0133

The number of trees created by the full method or grow method

is the number of trees initialized in Generation 0 with the depth

of tree being 2, 3, 4, 5, and 6. For details, see Koza (1992).



Table 2: Basic Statistics of the Artificial Stock
Price Series and Return Series

Price Series

Periods P - SK | KU | JB p
1-2000 84.07 | 4.82 | 0.34| 3.07 | 40.62 0.00
2001- 76.43 | 5.84 | 0.65| 2.60 | 153.49 | 0.00
4000
4001- 67.28 | 1.84 | 0.94| 5.07 | 654.75 | 0.00
6000
6001- 65.17 | 3.27 | 0.67| 3.85 | 212.46 | 0.00
8000 )
8001- 64.46 | 2.49 | 1.16] 5.28 | 887.91 | 0.00
10000
10001- 68.44 | 5.09 | 2.24'| 11.46| 7660.11| 0.00
12000 .
12001- 74.57 | 5.48 | 1.00| 3.71 | 381.93 | 0.00
14000

Return Series
X 107% [ 1072} 1 1 108 1
1-2000 -0.74 | 1.5 3.53 | 23.64| 39.67 0.00
2001- -0.57 | 1.0 3.26 | 18.83| 24.46 0.00
4000
4001- -0.18 | 0.7 3.72| 25.94| 48.48 0.00
6000
6001- -0.2¢ | 0.7 | 3.70| 25.79] 47.86 0.00
8000
8001- | 0.32 | 0.7 3.69 | 26.97| 52.45 0.00
10000
10001- 1.69 | 1.0 6.91| 86.56| 597.87 | 0.00
12000
12001- -1.54 | 0.9 4.18 | 32.80( 79.86 0.00
14000

“SK” refers to skewness, “KU” refers to kurtosis, “JB” Jarqu-
Bera test, and “p” p-value.

The null hypothesis is that 3, is zero, i.e., In(F;)
contains a unit root. If £, is significantly different
from zero then the null hypothesis is rejected. As
can be seen from the second column of Table 3,
from the total number of 7 periods none leads to a
rejection of the presence of a unit root. All of this
does suggest that P; does follow a random walk.

Third, are returns independently and identically
distributed? Here, we followed the procedure of
Chen and Kuo (1999). This procedure is com-
posed of two steps, namely, the PSC filtering and
the BDS testing. We first applied the Rissanen’s
predictive stochastic complexity (PSC) to filter
the linear process. The third column of Table 3

Table 3: Unit Root Test and PSC Filtering

Periods DF of P; | (p,q)
1-2000 -0.285 (0,0)
2001-4000 | -0.288 (0,0)
4001-6000 | -0.150 (0,0)
6001-8000 | -0.180 (0,0)
8001-10000 | 0.173 (0,0)
10001-12000 | 0.680 (0,0)
12001-14000 | -0.753 (0,0)

The MacKinnon critical values for rejection of hypothesis
of a unit root at 99% (95%) significance level is -2.5668
(-1.9395).

Table 4: BDS Test,

Periods DIM=2| DIM=3] DIM=4] DIM==5] Reject
1-2000 -0.36 -0.20 -0.14 -0.18 No
2001- -0.16 0.13 0.40 0.57 No
4000

4001- 1.34 1.35 1.22 1.24 No
6000

6001- 0.89 0.99 1.18 1.35 No
8000

8001- 1.93 2.38 2.64 2.69 Yes
10000

10001- 0.85 0.92 0.96 0.87 No
12000

12001- 0.29 0.21 0.37 0.66 No
14000

The test statistic is asymptotically normal with mean 0 and
standard deviation 1. The significance level of the test is set
at 0.95.

gives us the ARM A(p, q) process extracted from
the return series. Interestingly enough, all these
seven periods are linearly independent (p = 0,q =
0). This result corresponds to the classical version
of the efficient market hypothesis.

Once the linear signals are filtered, any sig-
nals left in the residual series must be nonlinear.
Therefore, one of the most frequently used statis-
tic, the BDS test, is applied to the residuals from
the PSC filter. Since none of the seven return
series have linear signals, the BDS test is directly
applied to the original return series, and the result
is given in Table 4. Since the BDS test is asymp-
totically normal, it is quite easy to have an eyeball
check on the results. What is a little surprising is
that the null hypothesis of IID (identically and in-
dependently distributed) is rejected in 6 out of 7
periods. The only period whose return series has
nonlinear signals is Period 5. Putting the result
of PSC filtering and BDS testing together, our re-
turn series is efficient to the degree that, 85% of
the time, it can be régarded as a iid series. But,
if the series is indeed independent (no signals at
all), what is the incentive for traders to search?
Clearly, here, we have come to the issues raised
by Grossman and Stiglitz 20 years ago (Grossman
and Stiglitz, 1980).

One of the advantages agent-based computa-
tional economics (the bottom-up approach) is that
it allows us to observe what traders are actually
thinking and doing. Are they martingale believ-
ers? That is, do they believe that

Et (Pt-l—l -+ Dt+1) = IDt + Dt? (33)

If they do not believe in the martingale hypothe-
sis, do they search intensively? To answer the first
question, the time series of the number of martin-
gale believers, Nj;, is drawn in Figure 3. The
figure is drawn only up to the first 2000 trading
days, because after that the group of believers goes
extinct. Hence, while econometricians may claim
that the return series is iid, traders simply do not
buy it.

This naturally brings up the second question: if
they do not believe in the martingale hypothesis,
what do they actually do? Figure 4 is the time
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Table 5: Microstructure Statistics: Average of
Traders with Successful Search and Complexity of
Evolving Strategies

Periods N3 P I3
1-2000 209.13 17.85 8.14
2001-4000 189.03 28.14 9.66
4001-6000 218.53 54.34 13.29
6001-8000 215.91 59.51 14.13
8001-10000 220.78 76.60 14.74
10001-12000 206.80 69.22 13,97
12001-14000 185.40 50.58 12.94

W3 is the average of N3 taken over each period. % and B
are the average of k; and k¢ taken over each period.

series plot of the number of traders with successful
search, N3 ;. Due to the density of the plot and the
wide range of fluctuation, this figure is somewhat
complicated and difficult to read. We, therefore,
report the average of N3, over different periods
of trading days in Table 5. From Table 5, it can
be seen that the number of traders with successful
search, on the average, fluctuates about 200. At
a rough estimate, 40% of the traders benefit from
business school per trading day. Clearly, search in
business school is not futile.

1t is interesting to know what kind of useful
lessons traders learn from business school. Based
on our design given in Section 2, what business
school offers is a collection of forecasting models
{gp;+}, which can well capture the recent move-
ment of the stock price and dividends. There-
fore, while in the long-run the return series is
#d, traders under survival pressures do not care
much about this long-run property. What moti-
vates them to search and helps them to survive is
in effect brief signals.

Another way to see what traders may learn from
business school is to examine the forecasting mod-
els they employ. However, this is a very large
database, and is difficult to deal with directly.
But, since all forecasting models are in the for-
mat of LISP trees, we can at least ask how com-
plex these forecasting models are. To do so, we give
two definitions of the complezity of a GP-tree. The
first definition is based on the number of nodes ap-
pearing in the tree, while the second is based on
the depth of the tree. On each trading day, we have
a profile of the evolved GP-trees for 500 traders,
{f::}. The complexity of each tree is computed.
Let k;: be the number of nodes of the model f;;
and k; 4 be the depth of f;;. We then average as
follows.

500 500
. k'i . ‘.i
kt = 'Zz—~—7t and Rt = Zz Rit . (34)

500 500

Figures 5 and 6 are the time series plots of k; and
k¢ One interesting hypothesis one may make is
that the degree of traders’ sophistication is an in-
creasing function of time (monotone hypothesis).
In other words, traders will evolve to be more and
more sophisticated as time goes on. However, this

is not the case here. Both figures evidence that,
while traders can evolve toward a higher degree
of sophistication, at some point in time, they can
be simple as well (Table 5). Despite the rejection
of the monotone hypothesis, we see no evidence
that traders’ behavior will converge to the simple
martingale model.

4 Concluding Remarks

In this paper, we propose a new architecture of the
artificial stock market. The single-run simulation
with 14,000 trading days can, at best, be consid-
ered as a pilot experiment. But, from this pilot
experiment, we already experienced the rich dy-
namics generated from the agent-based modeling
of the artificial stock market.
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