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Abstract—Statistical image features play an important role in 

forensic identification. Current source camera identification 

schemes select image features mainly based on classification 

accuracy and computational efficiency. For forensic 

investigation purposes, however, these selection criteria are not 

enough. Consider most real-world photos may have undergone 

common image processing due to various reasons, source 

camera classifiers must have the capability to deal with those 

processed photos. In this work, we first build a sample camera 

classifier using a combination of popular image features, and 

then reveal its deficiency. Based on our experiments, 

suggestions for the design of robust camera classifiers are 
given. 

Keywords-Digital image forensics, camera identification, 

image feature selection, robust camera classifier, pattern 

classification 

I.  INTRODUCTION 

Influenced by classical steganalysis (e.g. [1] and [2]), the 
use of statistical image features becomes common for source 
imaging device (e.g., camera, scanner) identification. Source 
imaging device identification can be thought of as a process 
of steganalysis if device noise in images is regarded as a 
disturbance caused by externally embedded messages. As a 
result, the statistics of the images captured by different 
cameras are believed to be different. 

A variety of image features have been proposed and 
studied in prior arts of steganalysis. In [1], Farid and Lyu 
found that strong higher-order statistical regularities exist in 
the wavelet-like decomposition of a natural image, and the 
embedding of a message significantly alters these statistics 
and thus becomes detectable. Two sets of image features 
were studied. The mean, variance, skewness and kurtosis of 
the subband coefficients form the first feature set while the 
second feature set is based on the errors in an optimal linear 
predictor of coefficient magnitude. A total of 216 features 
were extracted from the wavelet decomposed image to form 
the feature vector. Support vector machines (SVM) were 
employed to detect statistical deviations. In [2], Avcibas et 
al. proved that steganographic schemes leave statistical 
evidence that can be exploited for detection with the aid of 
image quality features and multivariate regression analysis. 
To detect the difference between cover and stego images, 19 
image quality metrics (IQMs) were proposed as steganalysis 
tools.  

Statistical image features were introduced for forensic 
image investigation as soon as this research field emerged. In 
one early camera identification scheme [3], Kharrazi et al. 
studied a set of features that designate the characteristics of a 
specific digital camera to classify test images as originating 
from a specific camera. CFA (color filter array) 
configuration, demosaicing algorithms and color 
processing/transformation were believed to have great 
impact on the output image of camera. Thus, three average 
values in RGB channels of an image, three correlations 
between different color bands, three neighbor distribution 
centers of mass in RGB channels as well as three energy 
ratios between different color bands were used for reflecting 
color features. Moreover, each color band of the image was 
performed with wavelet decomposition, and the mean of 
each subband was calculated, just as in [1]. In addition to 
color features, 13 IQMs were borrowed from [2] to describe 
the characteristics of image quality. The average 
identification accuracy for their SVM classifier was 88.02%. 
This scheme was re-implemented on different camera brands 
and models in [4].  

In one early scanner identification scheme [5], Gou et al. 
proposed a total of 30+18+12=60 statistical noise features to 
reflect the characteristics of the scanner imaging pipeline and 
motion system. The mean and STD (standard deviation) 
features were extracted using 4 filters (i.e., averaging filter, 
Gaussian filter, median filter, and Wiener adaptive filters 
with 3×3 and 5×5 neighborhood) in each of three color bands 
to form the first 2×5×3=30 features. The STD and goodness 
of Gaussian fitting were extracted from the wavelet 
decomposed image of each color band in 3 orientations to 
form another 2×3×3=18 wavelet features. Two neighborhood 
prediction errors were calculated from each color band at 
two brightness levels to form the last 2×3×2=12 features. 
The outcome of their SVM classifier had an identification 
accuracy over 95%.  

Another scanner identification scheme was proposed by 
Khanna et al. [6]. Unlike [5] that used three types of features, 
only statistical properties of the sensor pattern noise (SPN) 
were used. The SPN was first proposed for correlation-based 
camera identification in [7]. The major component of SPN is 
the photo response non-uniformity noise (PRNU). Due to the 
similarity between camera and scanner pipelines, the PRNU-
based detection was extended for scanner identification. 
However, the camera fingerprint is a 2-D spread-spectrum 
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signal while the scanner fingerprint is a 1-D signal. So 
Khanna et al. proposed a special way to calculate the 
statistical features of the linear PRNU. The mean, STD, 
skewness, and kurtosis of the row correlations and the 
column correlations form the first eight features on each 
color channel of the input image. The STD, skewness, and 
kurtosis of the average of all rows and the average of all 
columns form the next six features. The last feature for every 
color channel is representative of the relative difference in 
periodicity along the row and column directions of the sensor 
noise. The results from their SVM-based classifier were 
often better than those in [5]. The robustness of this PRNU 
features-based scanner classifier was evaluated when subject 
to JPEG compression, contrast stretching and sharpening. 

Other image features-based schemes include [8]-[10]. In 
[8], four sets of image features related to PRNU were used. 
In [9], the impact of image content on camera identification 
rates was analyzed. In [10], several feature selection schemes 
were implemented with SVM-based classifiers. The optimal 
subset of features was defined as the one which has the 
highest identification precision rate, and meanwhile has 
redundant or irrelevant features removed. 

There are many statistical image features available for 
camera identification. It seems not difficult to select some 
commonly used features to generate a pattern classification-
based camera identifier with good detection rates. In this 
work, we first give an example to build such a classifier, and 
then reveal its deficiency. Based on our experiments, we 
discuss the issues about the design of a practical camera 
classifier. Our work is initially motivated by [14], where the 
reliability of forensic techniques was discussed. 

II. A SAMPLE CAMERA CLASSIFIER 

A. Construction of Feature Vector 

For simplicity of description, we call wavelet features, 
color features, IQMs, statistical features of difference 
images, and statistical features of prediction errors Feature 
Sets I, II, III, IV, and V, respectively. These features are 
popular ones in literature. We select them to form a new 
feature vector for our sample classifier. Below we explain 
how to calculate them. 

Feature Set I describes the correlation between the 
subband coefficients. We choose the mean, variance, 
skewness and kurtosis of high-frequency subband 
coefficients at each orientation and at scales. Using 
biorthogonal 9/7 wavelet filters, we perform one-scale 
wavelet transform on each color band. 3×3×4=36 features 
are acquired. 

Feature Sets II and III are obtained in a way similar to [3] 
and [4]. Feature Set II consists of 3+3+3+3=12 color features 
including the average value of each color band, the 
correlation pair between two different color bands, the 
neighbor distribution center of mass for each color band and 

three energy ratios, namely  
22

/1 BGE  ,  
22

/2 RGE  ,  

and 
22

/3 RBE  . Feature Set III consists of 3+3+6=12 

IQMs including three pixel difference-based features, i.e., 

Minkowski difference (1), mean absolute error (2) with 

1 , and mean square error (2) with 2 ; three 

correlation-based features, i.e., structural content (3), 
normalized cross correlation (4), and Czekonowski 
correlation (5); six spectral features, i.e., spectral magnitude 
error (6), spectral phase error (7), spectral phase-magnitude 
error (8), block spectral magnitude error (9), block spectral 
phase error (10), and block spectral phase-magnitude error 
(11) . 
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where  C and C
~

represent the original image and its 

denoised version, respectively. ),( ji and ),( vu are the 

coordinates of an image pixel in spatial and transform 
domains, respectively. NN   is the image size. 

)3(K refers to three color bands. 2 ,1 , ),( vuk  is the 

DFT of the kth band image. |),(|),( vuvuM  ，

)),(arctan(),( vuvu  , 5105.2  , 
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l  is the number of blocks. b  is the block size. Empirically, 

32b . The reader is referred to [11] for more detailed 
information about (1)-(11). 

In order to obtain Feature Set IV, the averaging filter, 
Gaussian filter, median filter, and Wiener adaptive filters 
with 3×3 and 5×5 neighborhood are separately used to 
acquire the difference images. Similar to [5], we first 
perform the absolute operation on the difference images, 

and then take 2log transformation. Afterwards, we calculate 

the mean and STD of the 2log -transformed absolute values. 

2×5×3=30 features are obtained.  
Feature Set V consists of 2×2×3=12 statistical features 

of prediction errors. Strong correlation exists across a 
natural image, in particular, in smooth regions. Thus, pixel 
values in smooth regions can be predicted from their 
neighboring pixels with high accuracy. For images from 
different cameras, however, linear prediction error is 
probably different. The mean and STD of linear prediction 
errors are then used as statistical features of prediction 
errors. The way in [5] is borrowed to obtain Feature Set V. 

B. Experiments 

The above five feature sets form our feature vector of 
36+12+12+30+12=102 dimensions. We use this vector as 
the input of a camera classifier. Since the LIBSVM toolbox 
[12] with a nonlinear RBF kernel is frequently used for 
camera/scanner identification in literature, we adopt it in our 
experiments for the sake of comparison. 

Ten cameras are used. They are five Canon cameras: 
A40, A620-1, A620-2, A720, 450D; two Nikon cameras: L3-
1, L3-2; two Sony cameras: DSC-T10, DSC-W90; one 
Olympus camera: U820. For simplicity, we index the above 
ten cameras as X1, X2, X3, X4, X5, X6, X7, X8, X9, and 
X10, respectively. To evaluate the capability of these image 
features in identifying specific cameras, we use two Canon 
A620 cameras, i.e., A620-1 and A620-2, and two Nikon L3 
cameras, i.e., L3-1 and L3-2. The photos taken by Canon 
A620-2 (i.e., X3) and Nikon L3-2 (i.e., X7) are downloaded 
from http://www.flickr.com/. Each camera takes 300 photos 
of natural scenes including buildings, trees, blue sky and 
clouds, streets and people. All the photos are saved in JPEG 
format at the highest resolution each camera can support. For 
a fair comparison, we take a 1024×1024 test image block 
from each photo. Based on our previous analysis [13], each 
test image is cropped from the center of a photo to avoid 
saturated image regions. This selection strategy makes the 
test image better reflect the original image content. For each 
camera, we randomly choose 150 images to form the training 
set; the rest 150 images form the test set. Experimental 
results are shown in the form of confusion matrix, where the 
first column and the first row are the test camera index and 
the predicted camera index, respectively. For clarity of 

comparison, the classification rate below 3% is simply 

denoted as﹡. 
From Table 1, our classifier achieves the average 

accuracy of at least 95% for all cameras except X3 and X7. 
This result proves that our feature vector is very effective. As 
for X3 and X7, the correct rates are 88% and 62%, 
respectively. We owe the decline in accuracy to different 
image content. The photos taken by X3 and X7 are 
downloaded from the internet. It can not be confirmed 
whether the photos have been altered. The only thing we can 
observe is that the former image set consists of artificial 
products with various textile patterns and the image content 
is usually bright while the latter image set mainly consists of 
indoors scenes and the image content is usually dark. In 
contrast, our photos are mainly natural scenes with middle 
intensity. Our detection results coincide with the observation 
that identification rate is affected by image content [9, 13]. 

Using Tables 2-6, we further investigate the performance 
of each individual feature set. According to Table 2, the 
wavelet features have almost the same identification power 
as the five feature sets all put together. From Table 5, the 
statistical features of difference images also have good 
performance. Such results are reasonable because these two 
feature sets are based on the high-frequency component of an 
image. On the other hand, the IQMs and statistical features 
of prediction errors only have moderate performance 
according to the results in Tables 4 and 6. In particular, the 
color features only lead to the accuracy of 47%, as shown in 
Table 3. It seems that this feature set contributes the least to 
our sample classifier. 

III. ROBUSTNESS OF OUR SAMPLE CLASSIFIER  

For real-world applications, camera identifiers should 
have the capability in tackling images that have undergone 
different image manipulations. Some manipulations are 
probably not malicious attacks but normal ways for saving 
storage space or emphasizing part of image content. We 
evaluate the robustness of our classifier under three common 
image manipulations:  JPEG compression, cropping, and 
scaling.  Note that each test image has undergone only one 
type of manipulation for each case. We do not consider the 
combined effect of different manipulations to avoid making 
the analysis too complex. 

A. Experimental Results under Compression  

We take JPEG compression with quality factor 70. From 
Table 7, the average accuracy is 43%. Compared with Table 
1, the performance of the classifier greatly decreases. We 
further investigate the performance of each individual feature 
set. From Feature Sets I to V, the correct identification rates 
are 21%, 46%, 31%, 24%, and 33%, respectively. 
Apparently, the performance of each feature set degrades. 
Among them, Feature Set I has the sharpest decline in 
performance (see Table 8). The possible reason is that 
compression makes more high-frequency coefficients equal 
zero. On the other side, the performance of Feature Set II is a 
little surprising. The classifier has the average accuracy of 
46%. Compared with the accuracy before compression 
(47%), there is only a slight decline. This implies that 
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compression has little impact on Feature Set II (color 
features).  

B. Experimental Results under Cropping  

We remove 1/8 image region from the original image to 
simulate a cropping manipulation. According to Table 9, the 
average accuracy is 39%. From Feature Sets I to V, the 
correct identification rates are 35%, 32%, 25%, 84%, and 
25%, respectively. It can be seen that Feature Sets III and V 
are more sensitive to cropping. The possible reason is that 
the pixels in the removed image regions are replaced with 
value 0 and such replacement affects the measurement of 
IQMs (see Table 10). Meanwhile, the removed and replaced 
regions can be thought of as smooth regions. Their 
appearance probably affects the performance of statistical 
features of prediction errors (see Table 11). In contrast, 
Feature Set IV maintains good performance. Thus, cropping 
does not affect Feature Set IV (statistical features of 
difference images) too much. 

C. Experimental Results under Scaling  

We shrink the test images with scaling factor 0.9. 
According to Table 12, the accuracy is 53%. From Feature 
Sets I to V, the correct identification rates are 32%, 47%, 
39%, 58%, and 49%, respectively. Feature Set I has the 
greatest decline in performance (see Table 13). The possible 
reason is that wavelet features are fragile to geometrical 
distortions such as scaling. On the other side, Feature Set IV 
(statistical features of difference images) still has the best 
performance. In other words, Feature Set IV is not very 
sensitive to small scaling operations. 

IV. CONCLUSIONS 

The issue of selecting image features for robust camera 
identification has not been thoroughly addressed in literature. 
In this paper, we have shown (i) some features (e.g., wavelet 
features) may perform well for intact images, but are 
sensitive to image processing; other features (e.g., color 
features) may have mediocre performance for intact images, 
but have some robustness to image processing; (ii) different 
image manipulations have different effects on image features.  

The problem of camera identification is a complex one 
with no universally applicable solution. Our efforts in this 
work only reveal the deficiency of a camera classifier which 
has been designed without considering the robustness against 
common image processing. It is inferred from our 
experiments that the use of many different types of image 
features can benefit the robustness of camera classifiers. 
Moreover, even when decreasing the number of features for 
the sake of computational efficiency, the selection of reduced 
feature set has to take the robustness into account. The 
selection of suitable feature set is our future work. 
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Figure 1. Test photos, from left to right, top to bottom, taken by 

cameras X1, X2, X3, X4, X5, X6, X7, X8, X9, and X10. 
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Table 1. Confusion matrix for our sample classifier using all 
the five feature sets. Accuracy = 92% (1383/1500) 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 97 * * * * * * * * * 

X2 3 95 * * * * * * * * 

X3 * * 88 6 * * * * * * 

X4 * * * 96 * * * * * * 

X5 * * * * 98 * * * * * 

X6 * * * * * 98 * * * * 

X7 * * * * 21 8 61 * * 5 

X8 * * * * * * * 99 * * 

X9 * * * * * * * * 95 * 

X10 * * * * * * * * * 95 

 
 

 

Table 2. Confusion matrix for our sample classifier using only 

Feature Set I. Accuracy = 92% (1382/1500) 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 95 * * * * * * * * * 

X2 * 97 * * * * * * * * 

X3 * * 83 7 * * 7 * * * 

X4 * * * 91 * 6 * * * * 

X5 * * * * 94 * * * * * 

X6 * * * * * 95 * * * * 

X7 * * * * 5 3 87 * * * 

X8 * 3 * * * * * 97 * * 

X9 5 * * * * * * * 91 * 

X10 * * * * * * 6 * * 93 

 

 

 
Table 3. Confusion matrix for our sample classifier using only 

Feature Set II. Accuracy = 47% (702/1500) 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 64 * * * 6 8 * * 9 7 

X2 20 40 * * 13 9 * 3 8 5 

X3 * * 81 3 * 7 * * * 3 

X4 7 17 * 45 4 9 * 5 * 9 

X5 4 7 * 5 38 17 * 3 12 9 

X6 15 6 * 12 11 43 * 3 6 * 

X7 6 9 13 7 7 * 43 * 9 4 

X8 3 11 * 7 24 15 * 29 * 5 

X9 9 10 7 9 13 13 * 3 35 * 

X10 * 5 * 9 4 12 * 10 5 51 

 

 
Table 4. Confusion matrix for our sample classifier using only 

Feature Set III. Accuracy = 66% (987/1500) 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 77 7 * 11 * * * * * * 

X2 20 61 * 9 * * * * * * 

X3 * * 81 11 * * * * * * 

X4 11 13 6 58 * 5 * * * * 

X5 5 * * * 88 * 5 * * * 

X6 4 5 * * 4 70 * 4 10 * 

X7 * 7 * 7 12 * 52 5 4 7 

X8 * 4 4 5 5 * 17 56 3 * 

X9 * 4 * * 6 11 17 13 45 * 

X10 * * * 4 3 * 11 9 * 69 

 

Table 5. Confusion matrix for our sample classifier using only 
Feature Set IV. Accuracy = 85% (1277/1500) 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 83 10 * * * * * * * * 

X2 12 85 * * * 3 * * * * 

X3 * * 87 7 * * * * * * 

X4 * * * 87 * * * * 5 * 

X5 * * * * 99 * * * * * 

X6 5 * * * * 83 4 * 3 * 

X7 * * * * 10 * 73 * 7 3 

X8 * * * * * * * 95 * * 

X9 5 * * * * * 4 8 75 * 

X10 4 * * * 5 * 3 * * 85 

 

 

 
Table 6. Confusion matrix for our sample classifier using only 

Feature Set V. Accuracy = 59% (898/1500) 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 83 3 * * * 5 * * * * 

X2 10 43 * 5 5 23 * * 6 3 

X3 * 5 73 7 * * * 5 * 4 

X4 * 4 7 67 * 7 * 5 * 3 

X5 * * * * 85 * * 5 * 5 

X6 * 21 4 5 * 53 * * 10 * 

X7 3 5 3 5 9 * 45 8 12 7 

X8 * * * * 26 * * 59 * 4 

X9 * 7 5 5 11 9 * 10 40 8 

X10 5 * * 5 16 4 * 11 * 52 

 

 

 
Table 7. Confusion matrix for our sample classifier using all 

the five feature sets. Accuracy = 43% (638/1500) 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 57 * 5 4 3 15 11 * * 4 

X2 31 21 * 4 4 18 15 * * 5 

X3 17 * 39 * 3 12 21 * * 5 

X4 7 * * 21 5 7 44 * * 15 

X5 * * 4 * 73 * 23 * * * 

X6 4 * * * 5 65 21 * * * 

X7 7 * * * 8 5 73 * * 4 

X8 4 3 6 * 19 * 65 * * * 

X9 13 * * * 21 22 35 * * * 

X10 * * * * 8 * 11 * * 75 

 

 
Table 8. Confusion matrix for our sample classifier using only 

Feature Set I. Accuracy = 21% (319/1500) 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 12 3 * * * * 79 * * 4 

X2 * 19 * * * * 73 * * 4 

X3 * * 23 * * 10 58 * * 6 

X4 * * * 12 * * 74 * * 10 

X5 * * * * 4 * 96 * * * 

X6 * * * * * * 93 * * * 

X7 * * * * 4 4 87 * * * 

X8 4 8 * * * * 86 * * * 

X9 6 * * * 12 13 65 * * * 

X10 * * * * * * 46 * * 53 
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Table 9. Confusion matrix for our sample classifier using all 

the five feature sets. Accuracy = 39% (581/1500) 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 63 5 7 * * * * * * 24 

X2 5 57 9 4 * * * * * 23 

X3 * * 37 57 * * * * * 5 

X4 * * 7 74 * * * * * 15 

X5 * * 84 * * * * * * 13 

X6 * * 7 13 * 45 * * * 31 

X7 * * 65 4 * * 4 * * 24 

X8 * 11 45 13 * * * 6 * 23 

X9 3 * 16 5 4 * * * 33 37 

X10 * * 30 * * * * * * 66 

 

 

 
Table 10. Confusion matrix for our sample classifier using only 

Feature Set III. Accuracy = 25% (380/1500) 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 49 * 6 23 * 4 3 * 11 * 

X2 46 * 7 19 4 11 * * 9 * 

X3 40 * 31 17 * 4 * * * * 

X4 31 * * 24 5 9 * * 20 * 

X5 * * 8 6 51 * 23 * * 7 

X6 17 * 4 18 10 21 * * 26 * 

X7 3 * 9 21 18 9 25 * * 9 

X8 5 * 5 17 11 17 19 * 19 3 

X9 11 * * 20 25 7 9 * 17 7 

X10 9 * 5 14 8 3 13 * 13 31 

 

 

Table 11. Confusion matrix for our sample scheme using 
Feature Set V. Accuracy = 25% (371/1500) 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 90 * * * * * 4 * * * 

X2 87 * * * * * 6 * * * 

X3 71 9 11 * * 3 * * * * 

X4 61 13 * 5 * 10 5 * * 4 

X5 23 * * * 59 * 10 * 4 * 

X6 87 * * * * 7 * * * * 

X7 27 * * * 5 * 50 * 11 * 

X8 41 6 * * 28 * 17 * * 3 

X9 62 6 * * * 7 11 * 3 9 

X10 39 * * * 8 13 12 * 5 21 

 

 

Table 12. Confusion matrix for our sample classifier using all 
the five feature sets. Accuracy = 53% (793/1500) 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 48 * * * * 45 * * * * 

X2 24 30 * * 7 38 * * * * 

X3 * 8 71 9 * * * * * 4 

X4 * 20 * 37 11 15 6 * * 8 

X5 3 * * * 96 * * * * * 

X6 * * * * 5 89 * * * * 

X7 * * * * 20 6 64 * * 4 

X8 5 55 * * 30 * 7 * * * 

X9 6 17 * * 24 30 19 * * * 

X10 * * * * 3 * 3 * * 91 

 

 

 
Table 13. Confusion matrix for our sample classifier using only 

Feature Set I. Accuracy = 32% (486/1500) 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 * * * 5 * 70 20 * * * 

X2 3 3 * 12 * 62 12 * * 5 

X3 * * 7 57 7 13 13 * * * 

X4 * * * 22 17 37 8 * * 15 

X5 * 9 * * 77 * 13 * * * 

X6 * * * * * 70 23 * * * 

X7 * * * * 20 * 77 * * * 

X8 * 11 * * 39 5 43 * * * 

X9 * 5 * * 11 15 63 * * * 

X10 * * * * 5 * 26 * * 67 

 

 

 

 

Table 13. Confusion matrix for our sample classifier using only 
Feature Set I. Accuracy = 32% (486/1500) 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

X1 * * * 5 * 70 20 * * * 

X2 3 3 * 12 * 62 12 * * 5 

X3 * * 7 57 7 13 13 * * * 

X4 * * * 22 17 37 8 * * 15 

X5 * 9 * * 77 * 13 * * * 

X6 * * * * * 70 23 * * * 

X7 * * * * 20 * 77 * * * 

X8 * 11 * * 39 5 43 * * * 

X9 * 5 * * 11 15 63 * * * 

X10 * * * * 5 * 26 * * 67 
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