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Abstract

In order to overcome the drawback of the
hypercube that the number of nodes is limited as
power of two, the incrementally extensible hypercube
(IEH) graph is derived for arbitrary number of nodes
[14]. In this paper, we first prove that the incomplete
hypercube (1H) is a spanning subgraph of IEH. Next,
we determine the minimum size of IEH that contains «
complete binary tree. We then embed a torus (with a
side length us power of two) into an IEH with dilation
! und expansion 1.
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1. Introduction

Hypercube graphs are one class of the most
popular topologies for implementing massively
parallel machines. It has many advantages: regularity,
symmeiry, low diameter, optimally fault tolerance,
and so on [12]. However, the hypercube has one
major drawback that it is not incrementally extensible.
The number of nodes for hypercubes must be power
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of two, which considerably limit the choice of the
number of nodes in the graphs. To overcome this
drawback, a few papers have so far been written to
improve this drawback [2,7.13-14] but cause new
problems as described briefly as follows. Bhuyan and
Agrawal [2] proposed Generalized Hypercubes,
which have two drawbacks: (1) the network reduces

* to a complete graph when the number of nodes is

prime and (2) it changes significantly when a new
node is added. Katseff [7] proposed incomplete
hypercubes (IHs), which suffer from the problem of
fault tolerance -- failure of a single node will cause
the entire network disconnected. Sen [13] proposed
Supercubes, which become more irregular as the size
of the networks grows. Recently, Sur and Srimani [14)
have proposed a new generalization class of
hypercube  graphs, incrementally  extensible
hypercubes (IEHs). This topology can be defined for
an arbitrary number of nodes and still reserves several
advantages such as optimal fault tolerance, low
diameter, simple routing algorithm, and almost
regularity.

Many papers have studied the ability of various
network topologies to execute parallel algorithms by
using embedding techniques [1, 3-4, 6, 8-12, 15].
However, embedding trees and tori into IEH graphs
has never been studied. In this paper, we focus on
IEH graphs and obtain the following results. First, we
prove that IH(N) is a spanning subgraph of IEH(N)
for N is the number of nodes, Next, we determine the
minimum size of IEH that contains a complete binary
tree of height 5. We then embed a torus(with a side
length as 2" ) into ‘an 1EH graph with dilation 1 and
expunsion 1.

The rest of this paper is organized as follows.
In Section 2. we introduce basic terminology for
hypercubes, IHs, and 1EHs. In Section 3., we show IH
is a spanning subgraph of IEH. In Section 4 and 5,
we embed trees and tori into IEH graphs,



FERENTAE2ERERER

2. Preliminaries

In the research on interconnection networks,
systems are often modeled as graphs. In these graphs,
nodes represent processors and edges represent
communication channels. A hypercube H,, is a graph

G(V, E), where V is the set of 2" nodes which are
labeled as binary numbers of length n; E is the set of
edges that connects two nodes if and only if they
differ in exact one bit of their labels. An IH is a graph
with N nodes that are labeled as binary numbers of

length '-log 2N _I Each edge joins two nodes which

differ in exact one bit of their labels. An IEH graph, a
generalized hypercube graph, is composed of several
hypercubes of different sizes. These hypercubes are
connected with /nter-Cube (1C) edges. Let IEH(N) be
an IEH of N nodes. This graph is constructed by the
following algorithm [14].

Algorithm CONSTR.

Input : a positive integer N

Qutput : IEH(N)

1. Express N as a binary number (cn, s € co)z

where ¢;; = 1. For each ¢}, with ¢; # 0, construct a
" hypercube H, The edges constructed in this step

are called regular edges.
2. For all Hj, label each node with a dedicated binary
number 11...10b;_7...bp where the length of
" leading 1s is n-i and bj_j...bg is the label of this
node in the regular hypercube of dimension i.
3. Find minimum 7 where ¢; = 1, set G; = H}, and
setj=1.
i=i+1.
While i< n
if ¢; = 0 then
Connect the node 11...16;b;. ...
following / - j nodes in H; :
n-i =i~
11...1011...1 bjb,-, -b0,

=1 e

11...1001...1 bjbj_;...bo,

ey

bg in Gj to the

py i=j-)

—_— -
11...1011...0 bjbj.1...bo.
Setj = i and G; be the composed graph
obtained in this step. /* G is the graph which is
composed of Hys’ for k< i*/
endif '
i=i+],
endwhile
Thus obtain the IEH(N) graph to G,.#
In algorithm CONSTR, we observe two useful

-

-
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3. Find minimum / where ¢; = 1, set Gj=

!

properties. First, G; is the IEH(Z /2Ky graph.
k=0
Second. any two nodes which are joined by IC edges
differ in one or two bits of their labels. For illustration,
Figure 1 shows the IEH(11) graph. Note that solid
lines represent regular edges and dot lines represent
IC edges.

e H
@ H,

O H,

Figure 1. IEH(11) uraph
For convenience of discussion, we divide IC
edges into two classes: /-/€ edges and 2-/C edges. A
1-1C edge connects nodes which differ in exact one
bit of their labels; and a 2-IC edge connects nodes

which differ in exact two bits. Let (a1, v) be an IC
edge, u be in Hi’ and v be in A, fori=j. We call (u,

v).a forward IC edge of u if i < j, otherwise a
backward one. Figure 1 shows that (1100, 1110) is
a forward 1-1C edge of node 1110 and (0000,1100) is
a backward 2-1C edge of node 0000. Note that node
u which has forward 2-1C edges, connected to some
nodes in Hj for k> i. It have exact one forward 1-
IC edge to a dedicate node in Hg.

3. Relations between IH and IEH

In [9]. an IH is decomposed into several
hypercubes of different size. Any pair of distinct
subcubes Hf and Hj where k > j are only ‘connected
through links along dimension 4. By applying this
idea, we have the following algorithm. similar to
algorithm CONSTR, to construct an [H(N).
Algorithm CONSTR-IH
Input : a positive integer N
Output ;: ITH(N)

1. Express N as a binary number (cn, e € Co)3 '
where ¢, = 1. This vector is called cube vector. For

each ¢;,# 0, construct a hypercube Hi’

2. For all Hj, label each node with a dedicated binary

number cn_]...c,()b,'.j...b() where bi1...bg is the

label of this node in the regular hypercube of
dimension /.

Hj, and
setj=1.

=i+ 1.
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Whilei<n
if cj= 0 then
Connect the node €t Cibjbj-y...by in Gj

to the node in H; :

n—f 1=i-1

Cr=1. Ci+11Ci. G+ bjbj_]bo

Set j = i and G; be the composed graph
obtained in this step. /* G; is the graph
which is composed of Hys’ for k < i*/

endif

i=i+ 1.

endwhile
Thus obtain G, IH(N), to output.#

Observe algorithm CONSTR and algorithm
CONSTR-IH. We find that they both use thé same
hypercubes as subcubes. Further, these edges
connecting subcubes in IH(N) are the 1-IC edges in
IEH(N). Thus, we have the following corollary.
Corollary 1. IH(N) is a subgraph of IEH(N).
proof: This corollary is proved by the above
argument.#

Since IHs are subgraphs of IEHs, many good
results for IHs are immediately available in IEHs.
For example, IHs have a deadlock free routing[5] and
this result can be used to implement wormhole
routing in IEHs. Moreover, many parallel algorithms
for IHs [4.9,11,15-16] will adapt to IEHs with a sllom
modification.

4. Embedding complete binary
trees into IEHs

In this section, we will show how to embed
complete binary trees in IEHs optimally. We will give
some necessary definitions and explain our work.
Definition 1.[10] A double-rooted binary tree DRBT,
where d is the height of the tree, is a complete binary
tree with the root replaced by a path of length two.#
Definition 2. A low-double-rooted binary tree
LDRBTy4, where d is the height of the tree, is a
complete binary tree with the root removed and the
two level-one nodes are joined.#

) ]

Figure 2. DRBT; and LDRBT..
For illustration, Figure 2 (a) shows DRBT, and
Figure 2 (b) shows LDRBT,. We still need the

following lemmas for ease of reference.

Lemma 1. [10] A double-rooted tree of height 4 can
be embedded into an (h+1)- dlmensxonal hypercube
with edge adjacency reserved.#

Lemma 2. A low-double-rooted binary tree of height
h can be embedded into an (4+2)-dimensional
hypercube with edge adjacency reserved.

Proof. It is trivial that LDRBT, and LDRBT, can be
embedded in H; and Hj, as Figure 3 shows. By way of
induction, we assume DRBTY can be embedded into
Hp., for k> 2. Consider the case of 4+1. By Lemma |
and above hypothesis, we partition Hy,; into two Hy,.:
one contains a DRBTy,, and the other contains a
LDRBTy as Figure 4 shows. By adding necessary
edges ( i.e., the dot lines) and deleting nodes ( i.e., the
dash line), this lemma is proved.#
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Figure 3. Embed LDRBT, and LDRBT, into H, and
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Figure 4. Embed LDRBT ’g,, into Hj.,
Observe that a complete binary tree CBTy has
24 . | nodes. Under the condition of expansion 1,
we have the following theorem.
Theorem 1. A complete bmary tree CBTy can be
embedded into IEH(29*-1) with dilation 2,
congestion 2, and expansion 1.
Proof. By Corollary 1, IEH(24*'-1) is an IH(29"'-1), 2
V(Hg M11...1}. Further, we know Hg.,,. contains a
DRBT, by Lemma 2. Since hypercubes are node and
edge symmetric, we can assign these two roots
labeled as (11...1) and (11...10). Thus there exists a
path from (11...10) to the son of (11....1) without
passing (11...1). Obviously, we embed a DRBT, into
IEH rooted at (11...10) with dilation 2, congestion 2,
and expansion 1. Hence the proof.#
Tzeng et al. [15] presented a subgraph
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embedding of CBT,, into 1H(27+2/") with dilation 1
and expansion 3/2. Yeh and Shyu [16] showed no
embedding of CBT, into 1H(2+27) with dilation 1
where i < n-1. However, for 1EHs, we show the
optimal embedding of CBT, with expansion 1 and
congestion I into the IEH(2/7"'+1).

Theorem 2. The minimal size of IEH that contain
CBTyis 2d"'+1for d> 0.

Proof. Observe that IEH(Zd*'H) is a composition
graph of Hg,, and H, By Lemma 2, Hg., contains
LDRBT,. Since Hy,, is symmetric, let two ‘low’

d d
e

e,
roots of this tree be 011...10 and 001...10. By
adding H, and IC edges, A CBT is obtained for H, ,
Jd+) J l/

—— —
11...10 is the root; 011...10 and 001...10 are its
sons. Hence the proof.#

Supercubes contain complete binary trees
CBTy as spanning subgraphs. However, not all
supercubes of size N, N > 2d*1.1, contain CBT4{1].
Without this drawback. IEH(N ") contains CBTg when
Nz 2d" 4],

Theorem 3. IEH(V) contains CBTy as a subgraph
when N 2 2¢"1+],

Proof. Consider two cases.

Case 1. N < 2d"+2d

Because IEH(N) has Hg., as subcube, we have a
LDRBT, in this subcube. Observe that a node v not
in Hg,, will have a 2-1C edges connecting to nodes in
Hg.,. By adding v and its forward IC edges, our claim
is true in this case.

Case 2. 2d"+2d < N

In this case, our claim is true [15-16].#

5. Embedding meshes and tori into
1EHs

Linear arrays and rings are 1*n meshes and tori,
respectively. Our previous work [5] proved that [EHs

are Hamiltonian except when they are of size 2".1 for
all n 2 2. Next, we showed that for an IEH of size N,
an arbitrary cycle of even length Ne where 3 <N, < N

is found. We also found an arbitrary cycle of odd
length No where 2 < No < N if and only if a node of

this graph has at least one forward 2-/nter-Cube (I1C)
edges. In [16], IH contains 2K%m meshes as subgraphs.
Supercubes [1] are also proved to contain 2k%m mesh.
Since 1H are subgraphs of IEHs, a corollary is
obtained immediately.
Corollary 2. IEH(N) contains 2K*m meshes as
spanning subgraphs.#

However, no embedding tori work has been
studied in these two topologies. In the following
theorem, we show that IEH contains 2k tori if and
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only if it has 2-I1C edges.

Theorem 4. IEH(N) contains 2k*m tori if and only if
it has 2-1C edges with expansion 1.

Proof. Note that a 2K*m torus is isomorphic with a
product graph of 2k ring and m one. Further,
IEH(24*m) is a product graph of 2k cube and m ring
if and only if it contains odd cycles. Since 24 cube
contains 4 ring, this theorem is proved #
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