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Abstract―A novel low-complexity scalable and systolic 

dual basis multiplier over GF(2 )m  is proposed in this 

paper. It is derived by utilizing the block Hankel matrix-

vector representation and is suitable for finite fields 

generated by irreducible trinomials. The proposed 

scalable architecture can achieve good trade-off between 

throughout performance and hardware complexity for 

implementing cryptographic schemes in a constrained 

environment such as embedded systems by choosing 

appropriate digit size d. Analytical results reveal that the 

proposed scalable architecture has lower space 

complexity as compared to non-scalable architectures. 

Furthermore, the proposed architecture has the features 

of regularity, modularity and concurrency, and is well 

suitable for VLSI implementations. 

Index Terms―Finite field, Galois field, Cryptography, 

Dual basis, Hankel matrix-vector, Scalable multiplier 

I. INTRODUCTION 

Arithmetic operations in finite (Galois) field 

GF(2 )m  have received much attention in recent 

years because of their importance and practical 

applications in the areas of error-correcting codes 

and cryptography [1-3]. Among these operations, 

multiplication is the most important and time-

consuming computation. Other complex 

arithmetic operations such as exponentiation, 

division and multiplicative inversion could be 

performed by repeating multiplications. Hence, 

there is demand for efficient design and 

implementation of the finite field multiplier with 

low complexity.  

For finite field GF(2 )m , there are three popular 

bases, termed polynomial basis, normal basis and 

dual basis to represent its elements. Each 

representation has its own distinct advantage. The 

polynomial basis multiplier does not require basis 

conversion and has regularity and simplicity 

feature. The normal basis multiplier is quite 

effective in performing the squaring of an element 

in finite field. The dual basis multiplier needs the 

least number of gates that leads to the smallest 

chip area demand for VLSI implementation [4]. In 

past years, most finite field multipliers on these 

bases proposed in the literature were generally 

classified as bit-serial [5,6] and bit-parallel 

architectures [7-10]. For cryptography 

applications which heavily rely on large word 

length of operands, the bit-serial architecture 

requires less chip area, but is too slow, while the 

bit-parallel architecture are typically faster, but is 

more complex and requires more chip area and 

power consumption. In order to enhance the trade-

off between throughout performance and hardware 

complexity, hybrid multipliers for composite 

fields GF((2 ) )m k  [11] and digit-serial 

architectures [12-14] were presented. These 

architectures are based on a cut-set systolization 

technique to speed up computation process. 

However, such multipliers have a similar space 

complexity as compared to the original bit-level 

multiplier designs. 

Another architecture, called scalable 

architecture [15,16], is a combination of serial and 

parallel schemes. Each m-bit data word is 

separated into /k m d=     d-bit sub-words (also 

termed digits) where the selected digit size d is the 

scalable factor. The computation of two digits is 

performed with a parallel scheme while the 

computation of two data words is performed in 

digits with a serial scheme. Hence, considering the 

trade-off between throughput performance and 

hardware complexity, the scalable architecture can 

generate an optimal realization in hardware 

implementations. Besides, it has the advantage of 
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flexibility in re-usage. Suppose there has been a 

multiplier designed for 768-bit data words. It 

cannot be directly applied to a system whose data 

word length is 1024 bits. The non-scalable (bit-

parallel) multiplier has to be re-designed to match 

the system. Conversely, with the scalable 

architecture, it does not need to change the core 

multiplier. By only adjusting the register array 

numbers to match the required longer word length 

and reusing the core multiplier, the scalable 

multiplier can then be applied to the system. In 

this paper, a novel scalable dual basis 

multiplication algorithm over GF(2 )m  is proposed. 

We utilize the block Hankel matrix-vector 

representation to derive the proposed algorithm 

from which a low-complexity scalable and 

systolic multiplier is then derived. The proposed 

scalable multiplier is suitable for the finite fields 

GF(2 )m  generated by irreducible trinomials. 

Analytical results reveal that the proposed scalable 

multiplier has lower space complexity as 

compared to traditional digit-serial and bit-parallel 

multipliers. 

The rest of this paper is organized as follows: 

Section II briefly reviews the dual basis 

multiplication over GF(2 )m  and a bit-parallel dual 

basis multiplication algorithm. Section III then 

presents the proposed novel scalable and systolic 

algorithm and architecture for dual basis 

multiplication over GF(2 )m . Its time and space 

complexities are discussed in Section IV. 

Conclusions are finally drawn in Section V. 

II. PRELIMINARIES 

 It is commonly known that the finite (Galois) 

field GF(2 )m  can be viewed as a vector space of 

dimension m over GF(2) , where the field is 

generated by the irreducible polynomial 
1

0 1 1( ) m m

m
F x f f x f x x

−

−= + + + +…  of degree m 

over GF(2) . Suppose that α is a root of the 

irreducible polynomial ( )F x . Then, any element 

A in the finite field GF(2 )m can be represented as 
2 1

0 1 2 1

m

m
A a a a aα α α −

−= + + + +� , where the 

coordinates GF(2)
i

a ∈  for 0 1i m≤ ≤ −  and the 

set { }2 11, , , , mα α α −…  is called the polynomial 

basis (PB) of GF(2 )m .  

Definition 1. The trace function ( )Tr x  over 

GF(2 )m is defined as [5] 

 

1
2

0

( )
m

i

i

Tr x x
−

=

=∑
. □ 

Definition 2. A basis { }0 1 1, , ,
m

β β β −…  in GF(2 )m  

is said to be the dual basis (DB) of 

{ }2 11, , , , mα α α −…  if the following condition is 

satisfied: 

 
1, ,

( )
0, ,

i

j

if i j
Tr

if i j
γα β

=
= 

≠
 (1) 

where γ  is chosen so as to simplify the 

conversion between polynomial and dual bases.  
  □ 

For any element 2

0 1 2A a a aα α= + + +
 

1

1

m

m
a α −

−+�  in GF(2 )m , its dual basis 

representation can be expressed as 
1

0 1 1( ) ( ) ( )m

m
A Tr A Tr A Tr Aγ β γα β γα β−

−= + + +� . 

For any two elements A and B in GF(2 )m  

represented in polynomial and dual basis 

respectively, i.e., 
1

0

m
i

i

i

A a α
−

=

=∑ , 
1

0

m

i i

i

B b β
−

=

=∑ , their 

product C AB=  represented in dual basis, i.e., 
1

0

m

i i

i

C c β
−

=

=∑ , can be computed with the following 

discrete-time Wiener-Hopf equation (DTWHE) 

[17]:  

 

0 0 1 1 0

1 1 2 1

1 1 2 2 1

m

m

m m m m m

c b b b a

c b b b a

c b b b a

−

− − − −

     
     
     =
     
     
     

�

�

� � � � � �

�

 (2) 

where 

   

1

0 1 1 1 1

0

,

for 0, 1, , 1.

m

m i j i j i i m i m

j

b f b f b f b f b

i m

−

+ + + − + −

=

= = + + +

= −

∑ �

�
(3) 

It is derived as follows: First, from Definition 2, 

the coordinates 
i

b  of B can be obtained as 

( )i

i
b Tr Bγα=  for 0 1i m≤ ≤ − . Next, since 
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( ) 0F α = , thus, 

 
1

2 1

0 1 2 1

0

m
m i m

i m

i

f f f f fα α α α α
−

−

−

=

= = + + + +∑ � , (4) 

 

1

0

1 2 1

0 1 2 1

m
m i i j

j

j

i i i i m

m

f

f f f f

α α

α α α α

−
+ +

=

+ + + −

−

=

= + + + +

∑

�

. (5) 

Let us define that ( )m i

m i
b Tr Bγα +

+ = , then, 

according to (5), 

 

1

0

1

0

0 1 1 2 2 1 1

( ) ( )

( )

for 0, 1, , 1.

m
m i i j

m i j

j

m
i j

j

j

i i i m i m

b Tr B Tr f B

f Tr B

f b f b f b f b

i m

γα γ α

γα

−
+ +

+

=

−
+

=

+ + − + −

 
=  

 

=

= + + + +

= −

∑

∑

�

�

�

 (6) 

From Definition 2, the coordinates 
i

c  of C can 

also be obtained as ( )i

i
c Tr Cγα= . With the fact 

that  C AB= , 
1

0

m
i

i

i

A a α
−

=

=∑ , and according to (6), 

we get 

   

1 1

0 0

0 1 1 2 2 1 1

( ) ( )

( ) ( )

,

for 0, 1, , 1.

i i

i

m m
i j i j

j j

j j

i i i m i m

c Tr C Tr AB

Tr a B a Tr B

a b a b a b a b

i m

γα γα

γα α γα
− −

+

= =

+ + − + −

= =

 
= = 

 

= + + +

= −

∑ ∑

�

�

 (7) 

Express (7) as matrix form, the DTWHE in (2) is 

then obtained. Besides, if we define the following 

vectors: 0 1 1[ , , , ]
m

a a a −= �A , 0 1[ , ,F f f= �  

1, ]
m

f −  
and  

 ( )

1 1[ , , , ], for 0, 1, , 1B i

i i i m
b b b i m+ + −= = −� � , (8) 

then,  (6) and (7) can also be expressed as 

 ( )i

m i
b + = �B F  (9) 

 ( )i

i
c = �B A  (10) 

where “� ” denotes the inner product operation of 

two vectors. Note that (0)

0 1 1[ , , , ]
m

b b b −= = �B B . 

Applying (9) and (10), the DB multiplication can 

be carried out by the following algorithm. 

Algorithm 1: [7] 

Input:
 0 1 1[ , , , ]

m
a a a −= �A , 0 1 1[ , , , ]

m
b b b −= �B  

and
 0 1 1[ , , , ]

m
f f f −= �F  

Output:
 0 1 1[ , , , ]

m
c c c −= =C AB�  

1. Initial step 

1.1 [0, 0, , 0]= �C  

1.2 
(0) =B B  

2. Multiplication step 

    2.1 For i = 0 to 1m −  do 

2.2    
( )i

m i
b + = �B F  

    2.3    
( )i

i
c = �B A  

    2.4    
( 1) ( ) 1 [0, , 0, ]i i

m i
b

+

+= +� �B B  

2.5  Endfor 

3. Return C. 

 According to the above algorithm, Lee, et al. 

[7] proposed a bit-parallel systolic DB multiplier 

consisting of 
2

m  cell which consists of one AND 

gate, one XOR gate and two 1-bit latches. Due to 

the regularity of its architecture, this DB 

multiplier is suitable for VLSI implementation. 

However, for large field size of binary finite fields, 

such as 233GF(2 )   in ECDSA (elliptic curve digital 

signature algorithm) recommended by NIST 

(National Institute for Standards and Technology) 

[18], the corresponding large space complexity 
2( )O m  makes such kind of multiplier 

inappropriate for implementing in constrained 

hardware environments such as smart cards and 

mobile handsets. To overcome this problem, we 

propose in the next section a scalable scheme for 

the DB multiplication that divides m-bit word into 

several d-bit digits and then iteratively applies a 

smaller scale multiplier to get the complete m-bit 

multiplication. 

 

III. PROPOSED SCALABLE SYSTOLIC DUAL BASIS 

MULTIPLIER OVER GF(2
m
) 

To derive the scalable architecture of DB 

multiplier, we need first to introduce the Hankel 

matrix-vector representation. 

A.  Hankel matrix-vector representation 

Definition 3. An m m×  matrix H is called a 

Hankel matrix if it satisfies the relation  

( , ) ( 1, 1)H Hp q p q= + − , for 0 2p m≤ ≤ − , 

1 1q m≤ ≤ − , where ( , )H p q  represents the 
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element in the intersection of row i and column j. 
 □ 

A Hankel matrix can be entirely determined by 

the 2 1m −  entries that locate on its first row and 

last column. That is, it can be defined by the 

corresponding Hankel vector H =
 

0 1 2 2[ , , , ]
m

h h h −� . With the Hankel matrix-vector 

representation, the product of a Hankel matrix H 

and a vector 0 1 1[ , , ]
m

v v v −=V �  , i.e., HV , is 

denoted as ⊗H V . With such notation, the DB 

multiplication in (2) can be expressed as  

 = ⊗C B A , (11) 

where 0 1 1 2 2[ , , , , , , ]
m m m

b b b b b− −= � �B  is the 

corresponding Hankel vector of the matrix in (2). 

 

B. Algorithm 

For digit size chosen as d-bits, and k m d=    , 

Eq. (2) can also be expressed as the following 

block Hankel matrix-vector form: 

0 0 1 1 0

1 1 2 1

1 1 2 2 1

B B B

B B B
B

B B B

k

k

k k k k k

−

− − − −

     
     
     = = =
     
     
     

C A

C A
C A

C A

�

�

� � � � � �

�

 

  (12) 

where 

 1 ( 1)[ , , , ]
i id id id d

c c c+ + −=C � ,  for 0 1i k≤ ≤ − , (13) 

 1 ( 1)[ , , , ]
i id id id d

a a a+ + −=A � ,  for 0 1i k≤ ≤ − , (14) 

are all 1d ×  vectors and 

 

1 ( 1)

1 2

( 1) (2 2)

id id id d

id id id d

i

id d id d id d

b b b

b b b

b b b

+ + −

+ + +

+ − + + −

 
 
 =
 
 
 

B

�

�

� � � �

�
, 

                                   for 0 2 2i k≤ ≤ −  , (15) 

are all d d×  Hankel matrices and their 

corresponding Hankel vectors are  

1 ( 1) (2 2)[ , , , , , , ]i id id id d id d id db b b b b+ + − + + −= � �B
, 

                                     for 0 2 2i k≤ ≤ − . (16) 

With the Hankel matrix-vector representation, we 

can then get the following equations from (12) : 

 

1 10 1 1

1

0

, for 0 1.

i i i ki k

k

i j j

j

i k

+ + − −

−

+

=

= ⊗ + ⊗ + + ⊗

= ⊗ ≤ ≤ −∑

C B A B A B A

B A

�

 (17) 

Here, the Hankel vectors 0 1 2, , , k −B B B�  consist 

of 0 1 2, , ,
m

b b b −�  which can be directly picked up 

from the original input vector B . The remaining 

Hankel vectors 1 2 2, , ,k k k− −B B B�  consist of 

1 2 2, , ,
m d m d m

b b b− − + −�  where 1 2 2, , ,
m m m

b b b+ −�  

have to be computed out from 0 1 1, , ,
m

b b b −�  and 

depend on the generating function ( )F x . From 

(17), it shows that each digit of the product word 

C, i.e., 
i

C , can be obtained with the summation of 

the k Hankel matrix-vector multiplications, i.e., 

i j j+ ⊗B A , for 0 1j k≤ ≤ − .  

To compute 0C , according to (17), the Hankel 

vectors 0 1 1, , , k−B B B�  are required. They can be 

generated from the vector 
(0)

B =
 

0 1 1 1[ , , , , , , ]
m m m d

b b b b b− + −� �  whose former part of 

coordinates, 0 1 1, , ,
m

b b b −� , are exactly those of 

the original input vector B . That is, (0)

i i
b b= , for 

0 1i m≤ ≤ − . But its latter part of coordinates, 

1 1, , ,
m m m d

b b b+ + −� , i.e., (0)

i
b  for 1m i m d≤ ≤ + − , 

have to be derived from its former part of 

coordinates. When the generating function is an 

irreducible trinomial, i.e., ( ) 1m nF x x x= + + , the 

values of 1 2 1, , , ,
m m m d m d

b b b b+ + − + −�  can be pre-

computed simultaneously as follows: Let α be the 

root of F(x), then 1
m nα α= + . Because 

m i
b +  is 

defined as ( )m iTr γα + B , thus, 

 
( )( ) ( 1)

( ) ( ) ,

B B

B B

m i n i

m i

n i i

n i i

b Tr Tr

Tr Tr b b

γα γ α α

γα γα

+

+

+

+

= = +

= + = +
 

  for 0 1i d≤ ≤ − . (18) 

When n and d are chosen as smaller than 2m , i.e., 

0 , 2n d m< ≤    , then 1 1n d m+ − ≤ − . By using 

(18), we obtain that 1 1[ , , , ]
m m m d

b b b+ + − =�   

0 1 1 1 1[( ), ( ), , ( )]
n n n d d

b b b b b b+ + − −+ + +� . That is, 

they can be pre-computed simultaneously from 

0 1 1, , ,
m

b b b −�  with d XOR gates.  
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To compute 
i

C , 1 1i k≤ ≤ − , we need Hankel 

vectors 1 1, , ,i i i k+ + −B B B�  which can be generated 

from the vector 1 1[ , , , , ,
id id id m id m

b b b b+ + − +�  

1, ]
id m d

b + + −�  which is defined as 
( )i

B . That is,  

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 1 1 1

1 1 1

[ , , , , , , , ]

[ , , , , , , ].

B
i i i i i i i

m m m m d

id id id m id m id m d

b b b b b b

b b b b b

− + + −

+ + − + + + −

= � �

� � �
(19) 

( )i

B can be obtained by the operation of 
( 1)idα

−

B  

because the j-th coordinate of 
( 1)idα

−

B  is 

  

( 1) ( 1)

( 1) ( )

( ) ( )

, for 0 1

B Bj d i j d i

i d j d id j

Tr Tr

b b j m d

γα α γα− + −

− + + +

=

= = ≤ ≤ + −  
(20) 

which is exactly the j-th coordinate, 
( )i

j
b , of 

( )i

B . 

The operation of 
( 1)idα

−

B  can be divided into two 

parts: For the former part of 
( )i

B , i.e., 
( ) ( ) ( )

0 1 1
[ , , , ]

i i i

m
b b b −�

1 1
[ , , , ]

id id id m
b b b+ + −= � , it is 

directly obtained by a d-digit left-shifting 

operation on 
( 1)i−

B  because 

 

( ) ( ) ( )

0 1 1 1 1

( 1) ( 1) 1 ( 1) 1

( 1) ( 1) ( 1)

1 1

[ , , , ] [ , , , ]

[ , , , ]

[ , , , ].

i i i

m id id id m

i d d i d d i d d m

i i i

d d m d

b b b b b b

b b b

b b b

− + + −

− + − + + − + + −

− − −

+ + −

=

=

=

� �

�

�

 (21) 

For the latter part, i.e., 
( ) ( ) ( )

1 1
[ , , , ]

i i i

m m m d
b b b+ + −�

 

1 1
[ , , , ]

id m id m id m d
b b b+ + + + + −= � , it is computed from 

the coordinates of 
( 1)i−

B  as follows: 

 

( )

( )

( 1) ( 1)

( 1) ( 1)

( )

( 1)

( ) ( )

, for 0 1.

i id m j

m j id m j

n id j

n id j id j

i d d n j i d d j

i i

n d j d j

b b Tr B

Tr B

Tr B Tr B

b b

b b j d

γα

γ α α

γα γα

+ +

+ + +

+

+ + +

− + + + − + +

− −

+ + +

= =

= +

= +

= +

= + ≤ ≤ −

 (22) 

When n and d are chosen as smaller than 2m , i.e., 

0 , 2n d m< ≤    , then 2 1 1n d m d+ − ≤ + − . 

According to (22), we obtain that  
( ) ( ) ( )

1 1

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

1 1 2 1 2 1

[ , , , ]

[( ), ( ), , ( )].

i i i

m m m d

i i i i i i

n d d n d d n d d

b b b

b b b b b b

+ + −

− − − − − −

+ + + + + − −= + + +

�

�

  (23) 

That is, the lattermost d coordinates of 
( )i

B  can be 

computed simultaneously from the coordinates of 

( 1)i−
B  with d XOR gates.  

In summary, we obtain the following equations 

of 
( )i

B  from the above derivation: 
(0) (0) (0) (0) (0) (0) (0)

0 1 1 1 1

0 1 1 1 1

0 1 1 0 1 1

1 1

[ , , , , , , , ]

[ , , , , , , , ]

[ , , , , ( ), ( ),

, ( )].

B
m m m m d

m m m m d

m n n

n d d

b b b b b b

b b b b b b

b b b b b b b

b b

− + + −

− + + −

− +

+ − −

=

=

= + +

+

� �

� �

�

�

 (24) 

The recursive form of 
( )

, for 1 1
i

i k≤ ≤ −B , is 
( ) ( ) ( ) ( ) ( ) ( ) ( )

0 1 1 1 1

1 1 1 1

( 1)

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)

1 1 1 2 1

( 1) ( 1

1

[ , , , , , , , ]

[ , , , , , , , ]

[ , , , , , , , ]

[ ,

B

B

i i i i i i i

m m m m d

id id id m id m id m id m d

id

i i i i i i

d d d m d m d m m d

i i

d d

b b b b b b

b b b b b b

b b b b b b

b b

α

− + + −

+ + − + + + + + −

−

− − − − − −

+ + − + + + + −

− −

+

=

=

=

=

=

� �

� �

� �
) ( 1) ( 1) ( 1)

1

( 1) ( 1) ( 1) ( 1)

1 1 2 1 2 1

, , , ( ),

( ), , ( )].

i i i

d m n d d

i i i i

n d d n d d

b b b

b b b b

− − −

+ − +

− − − −

+ + + + − −

+

+ +

�

�

  (25) 

Based on the above derivation, we propose a 

scalable dual-basis multiplication algorithm with 

digit size d as follows: 

Algorithm 2: 

Input: 0 1 1[ , , , ]
m

a a a −= �A , 0 1 1[ , , , ]
m

b b b −= �B  

Output:
 0 1 1[ , , , ]

m
c c c −= =C AB�  

1. Initial step: 

1.1 Clear each output sub-vector 
i

C , 

0 1i k≤ ≤ − , k m d=    . 

1.2 Build each sub-vectors 
i

A , 0 1i k≤ ≤ − , 

from A according to (14). 

1.3 Generate 
(0)

B  from B according to (24). 

2. Multiplication step: 

2.1 For 0i =  to 1k −  do 

2.2     Generate Hankel vectors 1 1, , ,i i i k+ + −B B B�  

from 
( )i

B  according to  (16) and (19). 

2.3     For 0j =  to 1k −  do 

2.4        
 

i ji i j+= + ⊗C C B A  

2.5     Endfor 

2.6     Generate 
( 1) ( )i idα

+

=B B  according to (25). 

2.7 Endfor 

3. Return
 0 1 1[ , , , ]

k −=C C C C� . 

The PB element A is divided into k sub-vectors 

P2P101
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i
A , and the DB element B is transformed into the 

vector 
(0)

B  to generate the k Hankel vectors 

0 1 1, , , k−B B B� . After totally k rounds of 

computation are performed, the complete product 

output vector C is obtained. In each round, the 

required k Hankel vectors 1 1, , ,i i i k+ + −B B B�  are 

generated from the vector 
( )i

B  which is 

transformed recursively from 
( 1)i−

B  (step 2.6). 

Then, with k times of Hankel multiplication are 

iteratively performed and summed up together 

(step 2.4), the sub-vector 
i

C  is obtained. 

C. Architecture 

To derive the proposed scalable architecture, 

we need more equations. Let us define the 

following sub-vectors of d-bit length: 

 

( ) ( ) ( ) ( )

1 ( 1) 1[ , , , ] ,

for 0 1, 0 .

B
i

i i i
j jd jd j d

b b b

i k j k

+ + −=

≤ ≤ − ≤ ≤

�
 (26) 

Then, the vector 
( )i

B  in each round can be 

expressed as the composition of 
( )i

jB : 

 
( ) ( ) ( ) ( ) ( ) ( )

0 1 2 1[ , , , , ]
i i i i i i

k k−=B B B B B B� , (27) 

and the subsequently generated Hankel vectors 

i j+B  expressed as 
( ) ( ) ( )

1 ( 2) 1[ , \ ], for 0 1
i i i

i j j j j db j k+ + + −= ≤ ≤ −B B B , 

  (28) 

where 
( ) ( )

1 ( 2) 1\
i i
j j db+ + −B  denotes removing the 

lattermost bit ( )

( 2) 1

i

j d
b + −  from 

( )

1

i

j+B . Besides, 

according to the recursive equation in (25), we get 

 
( ) ( 1)

1 , for 0
i i

j j j k
−

+= ≤ ≤B B , (29) 

and 
( ) ( ) ( ) ( )

1 1[ , , , ]
i i i i

k m m m d
b b b+ + −=B �  can be calculated 

from 
( 1) ( 1) ( 1)

1 2, , ,
i i i

k

− − −

B B B�  with d XOR gates.  

Based on Algorithm 2 and the above equations, 

the proposed scalable architecture for dual-basis 

multiplication over GF(2 )m  is illustrated in Figure 

1. This architecture is majorly composed of one 

d d×  Hankel multiplier, three registers for A, B 

and C respectively, one summation circuit ( ⊕ ) for 

C and one recursion circuit (
dα  block) for B. The 

d d×  Hankel multiplier (shown in Figure 2) is 

applied to perform the Hankel matrix-vector 

multiplication, i j j+ ⊗B A , and is composed of 2d  

U-cell. Each U-ce ll (shown in Figure 3) consists 

of one AND gate, one XOR gate and two 1-bit 

latches. This systolic Hankel multiplier is similar 

to that one presented in [7]. The register A 

consists of k d-bit latches and performs as a 

circular-shift register. The register B is composed 

of 1k +  banks which are all d-bit latches. When 

the control signal of the MUXs ctr1 0= , the 

register B works as a circular-shift register, and 

when ctr1 1= , it performs the recursive 

transformation operation 
( ) ( 1)i idα

−

=B B  in (25). 

The 
dα  block here is composed of d XOR gates 

and performs the generation of the lattermost d 

coordinates of 
( )i

B  from 
( 1)i−

B . The register C is a 

d-bit latch and is responsible for accumulating and 

outputting the sub-vector 
i

C  in each computation 

round. When the control signal of the SW ctr2 0= , 

the register C accumulates the outputs of the 

Hankel multiplier, and when ctr2 1= , the sub-

vector 
i

C  is sent out. 

Initially, the register C is cleared (step 1.1). The 

input vector A is divided into k sub-vectors 
j

A  

and stored into register A (step 1.2). Input vector 

B is transformed into 
(0)

B  (step 1.3) which is 

divided into 1k +  sub-vectors 
(0)

jB  (Eq. (26)) and 

stored into register B. In round 0, the control 

signals ctr1 and ctr2 are all assigned to the value 0. 

Register B performs as a circular-shift register and 

thus 
(0) (0) (0)

1 ( 2) 1[ , \ ]j j j j db+ + −=B B B , and 
j

A , 

0 1j k≤ ≤ − , are sequentially sent into the Hankel 

multiplier to perform the product operations 

j j
⊗B A . In the meantime, register C accumulates 

the outputs of the Hankel multiplier and thus 

performs the summation operation 

0 0 j j
= + ⊗C C B A  (step 2.4). The signal ctr2 is 

changed to the value 1 to make the result 0C  be 

outputted when the multiplier outputs the product 

of 1 1k k− −⊗B A . The signal ctr1 is changed to the 

value 1 when the data 
(0) (0) (0)

1 1 1[ , \ ]k k k m d
b− − + −=B B B  

P2P101
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and 1k−A  are about to be sent into the multiplier. 

At that time, the content of register B (from bank0 

to bankk) is 
(0) (0) (0) (0) (0) (0)

1 0 1 3 2[ , , , , , , ]k k k k− − −B B B B B B� . 

With the effect of the MUXs when ctr1 1= , the 

contents will, at the next clock cycle, be changed 

to 
(0) (0) (0) (0) (0)

1 2 3 1[ , , , , , ]k k+B B B B B�  which is exactly 

equal to 
(1) (1) (1) (1) (1)

0 1 2 1[ , , , , , ]k k−B B B B B�  (according 

to (29)). Note that the content of bankk is changed 

to 
(0) (1)

1k k+ =B B  which is the output of the 
dα  block. 

d d 

bank1: 
( )

1B
i

 

Hankel 

Multiplier in 

Figure 2 

( B Ai j j+ ⊗ ) 

A0 

A1 

Aj 

Ak-1 

Ci 

SW 

bank0: 
( )

0B
i

 

MUX 

bank2: 
( )

2B
i

 

MUX 

bankk-1: 
( )

1B
i

k −  

MUX 

bankk: 
( )

B
i

k  

MUX αααα d  

from 

 bank3 

bankk-2: 
( )

2B
i

k −  

MUX 

MUX 

1 
0 

1 
0 

from 
 bank4 

1 
0 

from 
 bank(j+3)%(k+1) 

from 
 bank0 

1 
0 

from 
 bank1 

1 
0 

bankj: 
( )

B
i

j  

1 
0 

from 
 bank5 

MUX 

1 0 

0 1 
ctr2 

ctr1 

d-1 

2d-1 

d 

m 

d 

d 

d 

A 

B 

(0)

B  A
j
 Bi j+  

0

1

0

1

0

k




− 



�

�

  1

2

1

0

k

k

−

−

C

C

C

C

�   

0 0 1 0

1k −

� ��	
	�  

d 

d 

d 

d 

d 

d 

d 

d 

d 

Note: Each bankj is a d-bit latch. “%” denotes the mod operation. 

Figure 1.  Proposed scalable DB multiplier over GF(2 )m
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At the same time, the next computation round 

(round 1) begins. The signals ctr1 and ctr2 are 

changed back to 0 and the computation 

11 1 j j+= + ⊗C C B A  is then performed with same 

scheme as that in round 0. The remaining sub-

vectors 
i

C , 2 1i k≤ ≤ −
 
are then sequentially 

computed in the same manner and outputted from 

the register C in the remaining rounds i.  

IV. TIME AND SPACE COMPLEXITY 

The proposed scalable DB multiplier contains 

one d d×  Hankel multiplier (Figure 2) which 

consists of 2
d  U-cells. Each U-cell (Figure 3) 

comprises one AND gate, one XOR gate and two 

1-bit latches. Thus, 2
d  AND gates are required. 

Besides, the summation circuit ( ⊕ ) for C and the 
dα  block all consist of d XOR gates. Thus, 
2

2d d+  XOR gates are required. As for latches, 

the register A, B and C are composed of k d-bit 

latches, 1k +  d-bit latches and one d-bit latch, 

respectively. Thus, totally 
2

2 2 2d kd d+ +  1-bit 

latches are required. Moreover, the multiplier 

requires d switches for register C and kd d+  

MUXs for register B.  

As for the computation latency, the proposed 

scalable multiplier requires 
2

k  Hankel matrix-

vector computations to perform a complete m-bit 

multiplication. Each Hankel matrix-vector 

computation performed with the d d×  Hankel 

multiplier requires a latency of 2 1d −  clock 

cycles. Moreover, in each computation round, the 

sub-vector 
i

C  is outputted after k clock cycles due 

to the feedback structure of the summation circuit 

for register C. The lattermost sub-vector 1k −C  is 

then outputted after k computation rounds. Hence, 

the total latency for obtaining the desired complete 

product vector C is 
2

2 2k d+ −  clock cycles. 

Besides, the critical path delay is the time duration 

required by each U-cell in the d d×  Hankel 

multiplier that is 
A X

T T+  where 
A

T  and 
X

T  are the 

time delay of a 2-input AND gate and a 2-input 

XOR gate, respectively. Table 1 summarizes the 

above space and time complexities of the 

proposed scalable multiplier and shows the 

comparisons between our multiplier and other 

non-scalable multipliers (bit-parallel [7] and digit-

serial [12,13]). The table reveals that the proposed 

multiplier has lower space complexity 2( )O d  as 

compared to the non-scalable architectures 

( 2( )O m  for bit-parallel and 2( )O kd  for digit-

serial). It clearly demonstrates the superiority of 

the proposed scalable multiplier. 

 
Table 1.  Comparisons between various multipliers 

over GF(2 )m
 

Multiplier 
Kim et al. 

[12] 

Ibrahim et 

al. [13] 

Lee et al. 

[7] 

Proposed 

(Fig. 1) 

Basis Polynomial Dual Dual Dual 

Architecture Digit-serial Digit-serial 
Bit-

parallel 
Scalable 

Ui,0 Ui,1 Ui, j Ui, d-1 

Ud-1,0 Ud-1,1 Ud-1, j Ud-1, d-1 

U0,0 U0,1 U0, j U0, d-1 

U1,0 U1,1 U1, j U1, d-1 

0 

0 

0 

0 

a0 a1 aj ad-1 
b0 b1 bj bd-1 

bd 

bi+d-1 

b2d-2 

c0 

c1 

ci 

cd-1 

 Figure 2. Systolic DB Hankel multiplier used to 

perform B Ai j j+ ⊗  

aj 
bi+j 

ci 

ci 

Ui,j 

Note: Symbol ● denotes 1-bit latch 

Figure 3.  Detailed circuit of a U-cell 

P2P101
矩形



9 

Space 

complexity 
    

#2-input AND 
2(2 )k d d+  22kd  2

m  
2

d
 

#2-input XOR 22kd  22kd  2
m  2 2d d+  

#1-bit latch 10kd k+  6kd  22m m+  

22 2

2

kd d

d

+

+
 

#1 2× SW 0 0 m  d  

# 2 1× MUX 2kd  d  m  kd d+  

Critical path 

delay time 
( 1)

A X

MUX

dT dT

d T

+

+ −

 

2
A X

MUX

T dT

T

+

+
 

A X
T T+  

A X
T T+  

Latency 

(unit = cycle) 
3k  2k  2m  

2 2

2

k d+

−
 

/k m d=    ,  d : selected digit size 

V. CONCLUSIONS 

This paper investigates a scalable scheme for 

dual basis multiplication over GF(2 )m . By 

utilizing the block Hankel matrix-vector 

representation, a novel low-complexity scalable 

and systolic dual basis multiplier for GF(2 )m  

generated by irreducible trinomials is derived and 

proposed. The scalable architecture has the 

advantage of achieving good trade-off between 

throughout performance and hardware complexity 

for implementing cryptographic schemes in a 

constrained environment such as smart cards and 

embedded systems by choosing appropriate digit 

size d. Analytical results have confirmed that the 

proposed scalable architecture has lower space 

complexity as compared to non-scalable 

architectures. Furthermore, due to the features of 

regularity, modularity and concurrency, the 

proposed scalable architecture is well suited to 

VLSI implementations.  
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