
1

Scalable Architecture for Dual Basis Multiplication

over GF(2
m
)

Liang-Hwa Chen
Department of Computer Information

and Network Engineering,

Lunghwa University of Science

and

Technology

Email: whallis2000@mail.lhu.edu.tw

Po-Lun Chang

Department of Electrical Engineering,

Lunghwa University of Science

and

Technology

Email: whc1223@ms7.hinet.net

Chiou-Yng Lee
Department of Computer Information

and Network Engineering,

Lunghwa University of Science

and

Technology

Email: PP010@mail.lhu.edu.tw

Abstract―A novel low-complexity scalable and systolic

dual basis multiplier over GF(2)m is proposed in this

paper. It is derived by utilizing the block Hankel matrix-

vector representation and is suitable for finite fields

generated by irreducible trinomials. The proposed

scalable architecture can achieve good trade-off between

throughout performance and hardware complexity for

implementing cryptographic schemes in a constrained

environment such as embedded systems by choosing

appropriate digit size d. Analytical results reveal that the

proposed scalable architecture has lower space

complexity as compared to non-scalable architectures.

Furthermore, the proposed architecture has the features

of regularity, modularity and concurrency, and is well

suitable for VLSI implementations.

Index Terms―Finite field, Galois field, Cryptography,

Dual basis, Hankel matrix-vector, Scalable multiplier

I. INTRODUCTION

Arithmetic operations in finite (Galois) field

GF(2)m have received much attention in recent

years because of their importance and practical

applications in the areas of error-correcting codes

and cryptography [1-3]. Among these operations,

multiplication is the most important and time-

consuming computation. Other complex

arithmetic operations such as exponentiation,

division and multiplicative inversion could be

performed by repeating multiplications. Hence,

there is demand for efficient design and

implementation of the finite field multiplier with

low complexity.

For finite field GF(2)m , there are three popular

bases, termed polynomial basis, normal basis and

dual basis to represent its elements. Each

representation has its own distinct advantage. The

polynomial basis multiplier does not require basis

conversion and has regularity and simplicity

feature. The normal basis multiplier is quite

effective in performing the squaring of an element

in finite field. The dual basis multiplier needs the

least number of gates that leads to the smallest

chip area demand for VLSI implementation [4]. In

past years, most finite field multipliers on these

bases proposed in the literature were generally

classified as bit-serial [5,6] and bit-parallel

architectures [7-10]. For cryptography

applications which heavily rely on large word

length of operands, the bit-serial architecture

requires less chip area, but is too slow, while the

bit-parallel architecture are typically faster, but is

more complex and requires more chip area and

power consumption. In order to enhance the trade-

off between throughout performance and hardware

complexity, hybrid multipliers for composite

fields GF((2))m k [11] and digit-serial

architectures [12-14] were presented. These

architectures are based on a cut-set systolization

technique to speed up computation process.

However, such multipliers have a similar space

complexity as compared to the original bit-level

multiplier designs.

Another architecture, called scalable

architecture [15,16], is a combination of serial and

parallel schemes. Each m-bit data word is

separated into /k m d=    d-bit sub-words (also

termed digits) where the selected digit size d is the

scalable factor. The computation of two digits is

performed with a parallel scheme while the

computation of two data words is performed in

digits with a serial scheme. Hence, considering the

trade-off between throughput performance and

hardware complexity, the scalable architecture can

generate an optimal realization in hardware

implementations. Besides, it has the advantage of

P2P101
矩形

2

flexibility in re-usage. Suppose there has been a

multiplier designed for 768-bit data words. It

cannot be directly applied to a system whose data

word length is 1024 bits. The non-scalable (bit-

parallel) multiplier has to be re-designed to match

the system. Conversely, with the scalable

architecture, it does not need to change the core

multiplier. By only adjusting the register array

numbers to match the required longer word length

and reusing the core multiplier, the scalable

multiplier can then be applied to the system. In

this paper, a novel scalable dual basis

multiplication algorithm over GF(2)m is proposed.

We utilize the block Hankel matrix-vector

representation to derive the proposed algorithm

from which a low-complexity scalable and

systolic multiplier is then derived. The proposed

scalable multiplier is suitable for the finite fields

GF(2)m generated by irreducible trinomials.

Analytical results reveal that the proposed scalable

multiplier has lower space complexity as

compared to traditional digit-serial and bit-parallel

multipliers.

The rest of this paper is organized as follows:

Section II briefly reviews the dual basis

multiplication over GF(2)m and a bit-parallel dual

basis multiplication algorithm. Section III then

presents the proposed novel scalable and systolic

algorithm and architecture for dual basis

multiplication over GF(2)m . Its time and space

complexities are discussed in Section IV.

Conclusions are finally drawn in Section V.

II. PRELIMINARIES

 It is commonly known that the finite (Galois)

field GF(2)m can be viewed as a vector space of

dimension m over GF(2) , where the field is

generated by the irreducible polynomial
1

0 1 1() m m

m
F x f f x f x x

−

−= + + + +… of degree m

over GF(2) . Suppose that α is a root of the

irreducible polynomial ()F x . Then, any element

A in the finite field GF(2)m can be represented as
2 1

0 1 2 1

m

m
A a a a aα α α −

−= + + + +� , where the

coordinates GF(2)
i

a ∈ for 0 1i m≤ ≤ − and the

set { }2 11, , , , mα α α −… is called the polynomial

basis (PB) of GF(2)m .

Definition 1. The trace function ()Tr x over

GF(2)m is defined as [5]

1
2

0

()
m

i

i

Tr x x
−

=

=∑
. □

Definition 2. A basis { }0 1 1, , ,
m

β β β −… in GF(2)m

is said to be the dual basis (DB) of

{ }2 11, , , , mα α α −… if the following condition is

satisfied:

1, ,

()
0, ,

i

j

if i j
Tr

if i j
γα β

=
= 

≠
 (1)

where γ is chosen so as to simplify the

conversion between polynomial and dual bases.
 □

For any element 2

0 1 2A a a aα α= + + +

1

1

m

m
a α −

−+� in GF(2)m , its dual basis

representation can be expressed as
1

0 1 1() () ()m

m
A Tr A Tr A Tr Aγ β γα β γα β−

−= + + +� .

For any two elements A and B in GF(2)m

represented in polynomial and dual basis

respectively, i.e.,
1

0

m
i

i

i

A a α
−

=

=∑ ,
1

0

m

i i

i

B b β
−

=

=∑ , their

product C AB= represented in dual basis, i.e.,
1

0

m

i i

i

C c β
−

=

=∑ , can be computed with the following

discrete-time Wiener-Hopf equation (DTWHE)

[17]:

0 0 1 1 0

1 1 2 1

1 1 2 2 1

m

m

m m m m m

c b b b a

c b b b a

c b b b a

−

− − − −

     
     
     =
     
     
     

�

�

� � � � � �

�

 (2)

where

1

0 1 1 1 1

0

,

for 0, 1, , 1.

m

m i j i j i i m i m

j

b f b f b f b f b

i m

−

+ + + − + −

=

= = + + +

= −

∑ �

�
(3)

It is derived as follows: First, from Definition 2,

the coordinates
i

b of B can be obtained as

()i

i
b Tr Bγα= for 0 1i m≤ ≤ − . Next, since

P2P101
矩形

3

() 0F α = , thus,

1

2 1

0 1 2 1

0

m
m i m

i m

i

f f f f fα α α α α
−

−

−

=

= = + + + +∑ � , (4)

1

0

1 2 1

0 1 2 1

m
m i i j

j

j

i i i i m

m

f

f f f f

α α

α α α α

−
+ +

=

+ + + −

−

=

= + + + +

∑

�

. (5)

Let us define that ()m i

m i
b Tr Bγα +

+ = , then,

according to (5),

1

0

1

0

0 1 1 2 2 1 1

() ()

()

for 0, 1, , 1.

m
m i i j

m i j

j

m
i j

j

j

i i i m i m

b Tr B Tr f B

f Tr B

f b f b f b f b

i m

γα γ α

γα

−
+ +

+

=

−
+

=

+ + − + −

 
=  

 

=

= + + + +

= −

∑

∑

�

�

�

 (6)

From Definition 2, the coordinates
i

c of C can

also be obtained as ()i

i
c Tr Cγα= . With the fact

that C AB= ,
1

0

m
i

i

i

A a α
−

=

=∑ , and according to (6),

we get

1 1

0 0

0 1 1 2 2 1 1

() ()

() ()

,

for 0, 1, , 1.

i i

i

m m
i j i j

j j

j j

i i i m i m

c Tr C Tr AB

Tr a B a Tr B

a b a b a b a b

i m

γα γα

γα α γα
− −

+

= =

+ + − + −

= =

 
= = 

 

= + + +

= −

∑ ∑

�

�

 (7)

Express (7) as matrix form, the DTWHE in (2) is

then obtained. Besides, if we define the following

vectors: 0 1 1[, , ,]
m

a a a −= �A , 0 1[, ,F f f= �

1,]
m

f −
and

 ()

1 1[, , ,], for 0, 1, , 1B i

i i i m
b b b i m+ + −= = −� � , (8)

then, (6) and (7) can also be expressed as

 ()i

m i
b + = �B F (9)

 ()i

i
c = �B A (10)

where “� ” denotes the inner product operation of

two vectors. Note that (0)

0 1 1[, , ,]
m

b b b −= = �B B .

Applying (9) and (10), the DB multiplication can

be carried out by the following algorithm.

Algorithm 1: [7]

Input:
 0 1 1[, , ,]

m
a a a −= �A , 0 1 1[, , ,]

m
b b b −= �B

and
 0 1 1[, , ,]

m
f f f −= �F

Output:
 0 1 1[, , ,]

m
c c c −= =C AB�

1. Initial step

1.1 [0, 0, , 0]= �C

1.2
(0) =B B

2. Multiplication step

 2.1 For i = 0 to 1m − do

2.2
()i

m i
b + = �B F

 2.3
()i

i
c = �B A

 2.4
(1) () 1 [0, , 0,]i i

m i
b

+

+= +� �B B

2.5 Endfor

3. Return C.

 According to the above algorithm, Lee, et al.

[7] proposed a bit-parallel systolic DB multiplier

consisting of
2

m cell which consists of one AND

gate, one XOR gate and two 1-bit latches. Due to

the regularity of its architecture, this DB

multiplier is suitable for VLSI implementation.

However, for large field size of binary finite fields,

such as 233GF(2) in ECDSA (elliptic curve digital

signature algorithm) recommended by NIST

(National Institute for Standards and Technology)

[18], the corresponding large space complexity
2()O m makes such kind of multiplier

inappropriate for implementing in constrained

hardware environments such as smart cards and

mobile handsets. To overcome this problem, we

propose in the next section a scalable scheme for

the DB multiplication that divides m-bit word into

several d-bit digits and then iteratively applies a

smaller scale multiplier to get the complete m-bit

multiplication.

III. PROPOSED SCALABLE SYSTOLIC DUAL BASIS

MULTIPLIER OVER GF(2
m
)

To derive the scalable architecture of DB

multiplier, we need first to introduce the Hankel

matrix-vector representation.

A. Hankel matrix-vector representation

Definition 3. An m m× matrix H is called a

Hankel matrix if it satisfies the relation

(,) (1, 1)H Hp q p q= + − , for 0 2p m≤ ≤ − ,

1 1q m≤ ≤ − , where (,)H p q represents the

P2P101
矩形

4

element in the intersection of row i and column j.
 □

A Hankel matrix can be entirely determined by

the 2 1m − entries that locate on its first row and

last column. That is, it can be defined by the

corresponding Hankel vector H =

0 1 2 2[, , ,]
m

h h h −� . With the Hankel matrix-vector

representation, the product of a Hankel matrix H

and a vector 0 1 1[, ,]
m

v v v −=V � , i.e., HV , is

denoted as ⊗H V . With such notation, the DB

multiplication in (2) can be expressed as

 = ⊗C B A , (11)

where 0 1 1 2 2[, , , , , ,]
m m m

b b b b b− −= � �B is the

corresponding Hankel vector of the matrix in (2).

B. Algorithm

For digit size chosen as d-bits, and k m d=    ,

Eq. (2) can also be expressed as the following

block Hankel matrix-vector form:

0 0 1 1 0

1 1 2 1

1 1 2 2 1

B B B

B B B
B

B B B

k

k

k k k k k

−

− − − −

     
     
     = = =
     
     
     

C A

C A
C A

C A

�

�

� � � � � �

�

 (12)

where

 1 (1)[, , ,]
i id id id d

c c c+ + −=C � , for 0 1i k≤ ≤ − , (13)

 1 (1)[, , ,]
i id id id d

a a a+ + −=A � , for 0 1i k≤ ≤ − , (14)

are all 1d × vectors and

1 (1)

1 2

(1) (2 2)

id id id d

id id id d

i

id d id d id d

b b b

b b b

b b b

+ + −

+ + +

+ − + + −

 
 
 =
 
 
 

B

�

�

� � � �

�
,

 for 0 2 2i k≤ ≤ − , (15)

are all d d× Hankel matrices and their

corresponding Hankel vectors are

1 (1) (2 2)[, , , , , ,]i id id id d id d id db b b b b+ + − + + −= � �B
,

 for 0 2 2i k≤ ≤ − . (16)

With the Hankel matrix-vector representation, we

can then get the following equations from (12) :

1 10 1 1

1

0

, for 0 1.

i i i ki k

k

i j j

j

i k

+ + − −

−

+

=

= ⊗ + ⊗ + + ⊗

= ⊗ ≤ ≤ −∑

C B A B A B A

B A

�

 (17)

Here, the Hankel vectors 0 1 2, , , k −B B B� consist

of 0 1 2, , ,
m

b b b −� which can be directly picked up

from the original input vector B . The remaining

Hankel vectors 1 2 2, , ,k k k− −B B B� consist of

1 2 2, , ,
m d m d m

b b b− − + −� where 1 2 2, , ,
m m m

b b b+ −�

have to be computed out from 0 1 1, , ,
m

b b b −� and

depend on the generating function ()F x . From

(17), it shows that each digit of the product word

C, i.e.,
i

C , can be obtained with the summation of

the k Hankel matrix-vector multiplications, i.e.,

i j j+ ⊗B A , for 0 1j k≤ ≤ − .

To compute 0C , according to (17), the Hankel

vectors 0 1 1, , , k−B B B� are required. They can be

generated from the vector
(0)

B =

0 1 1 1[, , , , , ,]
m m m d

b b b b b− + −� � whose former part of

coordinates, 0 1 1, , ,
m

b b b −� , are exactly those of

the original input vector B . That is, (0)

i i
b b= , for

0 1i m≤ ≤ − . But its latter part of coordinates,

1 1, , ,
m m m d

b b b+ + −� , i.e., (0)

i
b for 1m i m d≤ ≤ + − ,

have to be derived from its former part of

coordinates. When the generating function is an

irreducible trinomial, i.e., () 1m nF x x x= + + , the

values of 1 2 1, , , ,
m m m d m d

b b b b+ + − + −� can be pre-

computed simultaneously as follows: Let α be the

root of F(x), then 1
m nα α= + . Because

m i
b + is

defined as ()m iTr γα + B , thus,

()() (1)

() () ,

B B

B B

m i n i

m i

n i i

n i i

b Tr Tr

Tr Tr b b

γα γ α α

γα γα

+

+

+

+

= = +

= + = +

 for 0 1i d≤ ≤ − . (18)

When n and d are chosen as smaller than 2m , i.e.,

0 , 2n d m< ≤    , then 1 1n d m+ − ≤ − . By using

(18), we obtain that 1 1[, , ,]
m m m d

b b b+ + − =�

0 1 1 1 1[(), (), , ()]
n n n d d

b b b b b b+ + − −+ + +� . That is,

they can be pre-computed simultaneously from

0 1 1, , ,
m

b b b −� with d XOR gates.

P2P101
矩形

5

To compute
i

C , 1 1i k≤ ≤ − , we need Hankel

vectors 1 1, , ,i i i k+ + −B B B� which can be generated

from the vector 1 1[, , , , ,
id id id m id m

b b b b+ + − +�

1,]
id m d

b + + −� which is defined as
()i

B . That is,

() () () () () () ()

0 1 1 1 1

1 1 1

[, , , , , , ,]

[, , , , , ,].

B
i i i i i i i

m m m m d

id id id m id m id m d

b b b b b b

b b b b b

− + + −

+ + − + + + −

= � �

� � �
(19)

()i

B can be obtained by the operation of
(1)idα

−

B

because the j-th coordinate of
(1)idα

−

B is

(1) (1)

(1) ()

() ()

, for 0 1

B Bj d i j d i

i d j d id j

Tr Tr

b b j m d

γα α γα− + −

− + + +

=

= = ≤ ≤ + −
(20)

which is exactly the j-th coordinate,
()i

j
b , of

()i

B .

The operation of
(1)idα

−

B can be divided into two

parts: For the former part of
()i

B , i.e.,
() () ()

0 1 1
[, , ,]

i i i

m
b b b −�

1 1
[, , ,]

id id id m
b b b+ + −= � , it is

directly obtained by a d-digit left-shifting

operation on
(1)i−

B because

() () ()

0 1 1 1 1

(1) (1) 1 (1) 1

(1) (1) (1)

1 1

[, , ,] [, , ,]

[, , ,]

[, , ,].

i i i

m id id id m

i d d i d d i d d m

i i i

d d m d

b b b b b b

b b b

b b b

− + + −

− + − + + − + + −

− − −

+ + −

=

=

=

� �

�

�

 (21)

For the latter part, i.e.,
() () ()

1 1
[, , ,]

i i i

m m m d
b b b+ + −�

1 1
[, , ,]

id m id m id m d
b b b+ + + + + −= � , it is computed from

the coordinates of
(1)i−

B as follows:

()

()

(1) (1)

(1) (1)

()

(1)

() ()

, for 0 1.

i id m j

m j id m j

n id j

n id j id j

i d d n j i d d j

i i

n d j d j

b b Tr B

Tr B

Tr B Tr B

b b

b b j d

γα

γ α α

γα γα

+ +

+ + +

+

+ + +

− + + + − + +

− −

+ + +

= =

= +

= +

= +

= + ≤ ≤ −

 (22)

When n and d are chosen as smaller than 2m , i.e.,

0 , 2n d m< ≤    , then 2 1 1n d m d+ − ≤ + − .

According to (22), we obtain that
() () ()

1 1

(1) (1) (1) (1) (1) (1)

1 1 2 1 2 1

[, , ,]

[(), (), , ()].

i i i

m m m d

i i i i i i

n d d n d d n d d

b b b

b b b b b b

+ + −

− − − − − −

+ + + + + − −= + + +

�

�

 (23)

That is, the lattermost d coordinates of
()i

B can be

computed simultaneously from the coordinates of

(1)i−
B with d XOR gates.

In summary, we obtain the following equations

of
()i

B from the above derivation:
(0) (0) (0) (0) (0) (0) (0)

0 1 1 1 1

0 1 1 1 1

0 1 1 0 1 1

1 1

[, , , , , , ,]

[, , , , , , ,]

[, , , , (), (),

, ()].

B
m m m m d

m m m m d

m n n

n d d

b b b b b b

b b b b b b

b b b b b b b

b b

− + + −

− + + −

− +

+ − −

=

=

= + +

+

� �

� �

�

�

 (24)

The recursive form of
()

, for 1 1
i

i k≤ ≤ −B , is
() () () () () () ()

0 1 1 1 1

1 1 1 1

(1)

(1) (1) (1) (1) (1) (1)

1 1 1 2 1

(1) (1

1

[, , , , , , ,]

[, , , , , , ,]

[, , , , , , ,]

[,

B

B

i i i i i i i

m m m m d

id id id m id m id m id m d

id

i i i i i i

d d d m d m d m m d

i i

d d

b b b b b b

b b b b b b

b b b b b b

b b

α

− + + −

+ + − + + + + + −

−

− − − − − −

+ + − + + + + −

− −

+

=

=

=

=

=

� �

� �

� �
) (1) (1) (1)

1

(1) (1) (1) (1)

1 1 2 1 2 1

, , , (),

(), , ()].

i i i

d m n d d

i i i i

n d d n d d

b b b

b b b b

− − −

+ − +

− − − −

+ + + + − −

+

+ +

�

�

 (25)

Based on the above derivation, we propose a

scalable dual-basis multiplication algorithm with

digit size d as follows:

Algorithm 2:

Input: 0 1 1[, , ,]
m

a a a −= �A , 0 1 1[, , ,]
m

b b b −= �B

Output:
 0 1 1[, , ,]

m
c c c −= =C AB�

1. Initial step:

1.1 Clear each output sub-vector
i

C ,

0 1i k≤ ≤ − , k m d=    .

1.2 Build each sub-vectors
i

A , 0 1i k≤ ≤ − ,

from A according to (14).

1.3 Generate
(0)

B from B according to (24).

2. Multiplication step:

2.1 For 0i = to 1k − do

2.2 Generate Hankel vectors 1 1, , ,i i i k+ + −B B B�

from
()i

B according to (16) and (19).

2.3 For 0j = to 1k − do

2.4

i ji i j+= + ⊗C C B A

2.5 Endfor

2.6 Generate
(1) ()i idα

+

=B B according to (25).

2.7 Endfor

3. Return
 0 1 1[, , ,]

k −=C C C C� .

The PB element A is divided into k sub-vectors

P2P101
矩形

6

i
A , and the DB element B is transformed into the

vector
(0)

B to generate the k Hankel vectors

0 1 1, , , k−B B B� . After totally k rounds of

computation are performed, the complete product

output vector C is obtained. In each round, the

required k Hankel vectors 1 1, , ,i i i k+ + −B B B� are

generated from the vector
()i

B which is

transformed recursively from
(1)i−

B (step 2.6).

Then, with k times of Hankel multiplication are

iteratively performed and summed up together

(step 2.4), the sub-vector
i

C is obtained.

C. Architecture

To derive the proposed scalable architecture,

we need more equations. Let us define the

following sub-vectors of d-bit length:

() () () ()

1 (1) 1[, , ,] ,

for 0 1, 0 .

B
i

i i i
j jd jd j d

b b b

i k j k

+ + −=

≤ ≤ − ≤ ≤

�
 (26)

Then, the vector
()i

B in each round can be

expressed as the composition of
()i

jB :

() () () () () ()

0 1 2 1[, , , ,]
i i i i i i

k k−=B B B B B B� , (27)

and the subsequently generated Hankel vectors

i j+B expressed as
() () ()

1 (2) 1[, \], for 0 1
i i i

i j j j j db j k+ + + −= ≤ ≤ −B B B ,

 (28)

where
() ()

1 (2) 1\
i i
j j db+ + −B denotes removing the

lattermost bit ()

(2) 1

i

j d
b + − from

()

1

i

j+B . Besides,

according to the recursive equation in (25), we get

() (1)

1 , for 0
i i

j j j k
−

+= ≤ ≤B B , (29)

and
() () () ()

1 1[, , ,]
i i i i

k m m m d
b b b+ + −=B � can be calculated

from
(1) (1) (1)

1 2, , ,
i i i

k

− − −

B B B� with d XOR gates.

Based on Algorithm 2 and the above equations,

the proposed scalable architecture for dual-basis

multiplication over GF(2)m is illustrated in Figure

1. This architecture is majorly composed of one

d d× Hankel multiplier, three registers for A, B

and C respectively, one summation circuit (⊕) for

C and one recursion circuit (
dα block) for B. The

d d× Hankel multiplier (shown in Figure 2) is

applied to perform the Hankel matrix-vector

multiplication, i j j+ ⊗B A , and is composed of 2d

U-cell. Each U-ce ll (shown in Figure 3) consists

of one AND gate, one XOR gate and two 1-bit

latches. This systolic Hankel multiplier is similar

to that one presented in [7]. The register A

consists of k d-bit latches and performs as a

circular-shift register. The register B is composed

of 1k + banks which are all d-bit latches. When

the control signal of the MUXs ctr1 0= , the

register B works as a circular-shift register, and

when ctr1 1= , it performs the recursive

transformation operation
() (1)i idα

−

=B B in (25).

The
dα block here is composed of d XOR gates

and performs the generation of the lattermost d

coordinates of
()i

B from
(1)i−

B . The register C is a

d-bit latch and is responsible for accumulating and

outputting the sub-vector
i

C in each computation

round. When the control signal of the SW ctr2 0= ,

the register C accumulates the outputs of the

Hankel multiplier, and when ctr2 1= , the sub-

vector
i

C is sent out.

Initially, the register C is cleared (step 1.1). The

input vector A is divided into k sub-vectors
j

A

and stored into register A (step 1.2). Input vector

B is transformed into
(0)

B (step 1.3) which is

divided into 1k + sub-vectors
(0)

jB (Eq. (26)) and

stored into register B. In round 0, the control

signals ctr1 and ctr2 are all assigned to the value 0.

Register B performs as a circular-shift register and

thus
(0) (0) (0)

1 (2) 1[, \]j j j j db+ + −=B B B , and
j

A ,

0 1j k≤ ≤ − , are sequentially sent into the Hankel

multiplier to perform the product operations

j j
⊗B A . In the meantime, register C accumulates

the outputs of the Hankel multiplier and thus

performs the summation operation

0 0 j j
= + ⊗C C B A (step 2.4). The signal ctr2 is

changed to the value 1 to make the result 0C be

outputted when the multiplier outputs the product

of 1 1k k− −⊗B A . The signal ctr1 is changed to the

value 1 when the data
(0) (0) (0)

1 1 1[, \]k k k m d
b− − + −=B B B

P2P101
矩形

7

and 1k−A are about to be sent into the multiplier.

At that time, the content of register B (from bank0

to bankk) is
(0) (0) (0) (0) (0) (0)

1 0 1 3 2[, , , , , ,]k k k k− − −B B B B B B� .

With the effect of the MUXs when ctr1 1= , the

contents will, at the next clock cycle, be changed

to
(0) (0) (0) (0) (0)

1 2 3 1[, , , , ,]k k+B B B B B� which is exactly

equal to
(1) (1) (1) (1) (1)

0 1 2 1[, , , , ,]k k−B B B B B� (according

to (29)). Note that the content of bankk is changed

to
(0) (1)

1k k+ =B B which is the output of the
dα block.

d d

bank1:
()

1B
i

Hankel

Multiplier in

Figure 2

(B Ai j j+ ⊗)

A0

A1

Aj

Ak-1

Ci

SW

bank0:
()

0B
i

MUX

bank2:
()

2B
i

MUX

bankk-1:
()

1B
i

k −

MUX

bankk:
()

B
i

k

MUX αααα d

from

 bank3

bankk-2:
()

2B
i

k −

MUX

MUX

1
0

1
0

from
 bank4

1
0

from
 bank(j+3)%(k+1)

from
 bank0

1
0

from
 bank1

1
0

bankj:
()

B
i

j

1
0

from
 bank5

MUX

1 0

0 1
ctr2

ctr1

d-1

2d-1

d

m

d

d

d

A

B

(0)

B A
j
 Bi j+

0

1

0

1

0

k




− 



�

�

 1

2

1

0

k

k

−

−

C

C

C

C

�

0 0 1 0

1k −

� ��	
	�

d

d

d

d

d

d

d

d

d

Note: Each bankj is a d-bit latch. “%” denotes the mod operation.

Figure 1. Proposed scalable DB multiplier over GF(2)m

P2P101
矩形

8

At the same time, the next computation round

(round 1) begins. The signals ctr1 and ctr2 are

changed back to 0 and the computation

11 1 j j+= + ⊗C C B A is then performed with same

scheme as that in round 0. The remaining sub-

vectors
i

C , 2 1i k≤ ≤ −

are then sequentially

computed in the same manner and outputted from

the register C in the remaining rounds i.

IV. TIME AND SPACE COMPLEXITY

The proposed scalable DB multiplier contains

one d d× Hankel multiplier (Figure 2) which

consists of 2
d U-cells. Each U-cell (Figure 3)

comprises one AND gate, one XOR gate and two

1-bit latches. Thus, 2
d AND gates are required.

Besides, the summation circuit (⊕) for C and the
dα block all consist of d XOR gates. Thus,
2

2d d+ XOR gates are required. As for latches,

the register A, B and C are composed of k d-bit

latches, 1k + d-bit latches and one d-bit latch,

respectively. Thus, totally
2

2 2 2d kd d+ + 1-bit

latches are required. Moreover, the multiplier

requires d switches for register C and kd d+

MUXs for register B.

As for the computation latency, the proposed

scalable multiplier requires
2

k Hankel matrix-

vector computations to perform a complete m-bit

multiplication. Each Hankel matrix-vector

computation performed with the d d× Hankel

multiplier requires a latency of 2 1d − clock

cycles. Moreover, in each computation round, the

sub-vector
i

C is outputted after k clock cycles due

to the feedback structure of the summation circuit

for register C. The lattermost sub-vector 1k −C is

then outputted after k computation rounds. Hence,

the total latency for obtaining the desired complete

product vector C is
2

2 2k d+ − clock cycles.

Besides, the critical path delay is the time duration

required by each U-cell in the d d× Hankel

multiplier that is
A X

T T+ where
A

T and
X

T are the

time delay of a 2-input AND gate and a 2-input

XOR gate, respectively. Table 1 summarizes the

above space and time complexities of the

proposed scalable multiplier and shows the

comparisons between our multiplier and other

non-scalable multipliers (bit-parallel [7] and digit-

serial [12,13]). The table reveals that the proposed

multiplier has lower space complexity 2()O d as

compared to the non-scalable architectures

(2()O m for bit-parallel and 2()O kd for digit-

serial). It clearly demonstrates the superiority of

the proposed scalable multiplier.

Table 1. Comparisons between various multipliers

over GF(2)m

Multiplier
Kim et al.

[12]

Ibrahim et

al. [13]

Lee et al.

[7]

Proposed

(Fig. 1)

Basis Polynomial Dual Dual Dual

Architecture Digit-serial Digit-serial
Bit-

parallel
Scalable

Ui,0 Ui,1 Ui, j Ui, d-1

Ud-1,0 Ud-1,1 Ud-1, j Ud-1, d-1

U0,0 U0,1 U0, j U0, d-1

U1,0 U1,1 U1, j U1, d-1

0

0

0

0

a0 a1 aj ad-1
b0 b1 bj bd-1

bd

bi+d-1

b2d-2

c0

c1

ci

cd-1

 Figure 2. Systolic DB Hankel multiplier used to

perform B Ai j j+ ⊗

aj
bi+j

ci

ci

Ui,j

Note: Symbol ● denotes 1-bit latch

Figure 3. Detailed circuit of a U-cell

P2P101
矩形

9

Space

complexity

#2-input AND
2(2)k d d+ 22kd 2

m
2

d

#2-input XOR 22kd 22kd 2
m 2 2d d+

#1-bit latch 10kd k+ 6kd 22m m+

22 2

2

kd d

d

+

+

#1 2× SW 0 0 m d

2 1× MUX 2kd d m kd d+

Critical path

delay time
(1)

A X

MUX

dT dT

d T

+

+ −

2
A X

MUX

T dT

T

+

+

A X
T T+

A X
T T+

Latency

(unit = cycle)
3k 2k 2m

2 2

2

k d+

−

/k m d=    , d : selected digit size

V. CONCLUSIONS

This paper investigates a scalable scheme for

dual basis multiplication over GF(2)m . By

utilizing the block Hankel matrix-vector

representation, a novel low-complexity scalable

and systolic dual basis multiplier for GF(2)m

generated by irreducible trinomials is derived and

proposed. The scalable architecture has the

advantage of achieving good trade-off between

throughout performance and hardware complexity

for implementing cryptographic schemes in a

constrained environment such as smart cards and

embedded systems by choosing appropriate digit

size d. Analytical results have confirmed that the

proposed scalable architecture has lower space

complexity as compared to non-scalable

architectures. Furthermore, due to the features of

regularity, modularity and concurrency, the

proposed scalable architecture is well suited to

VLSI implementations.

REFERENCE

[1] D.E.R. Denning, Cryptography and Data

Security, Addison-Wesley Longman

Publishing Co., Inc., 1983.

[2] M.Y. Rhee, Cryptography and Secure

Communications, McGraw-Hill, Singapore,

1994.

[3] A.J. Menezes, P.C.V. Oorschot, and S.A.

Vanstone, Handbook of Applied

Cryptography, CRC Press, 1996.

[4] I.S. Hsu, T.K. Truong, L.J. Deutsch, and I.S.

Reed, “A comparison of VLSI architecture of

finite field multipliers using dual, normal, or

standard bases,” IEEE Transactions on

Computers, vol.37, no.6, pp.735-739, 1988.

[5] S.T.J. Fenn, M. Benaissa, and D. Taylor,

“GF(2
m
) multiplication and division over the

dual basis,” IEEE Transactions on

Computers, vol.45, no.3, pp.319-327, 1996.

[6] C.W. Wu and M.K. Chang, “Bit-level

systolic arrays for finite-field

multiplications,” The Journal of VLSI Signal

Processing, vol.10, no.1, pp.85-92, Jun.1995.

[7] C.Y. Lee, J.S. Horng, and I.C. Jou, “Low-

Complexity Bit-Parallel Multiplier over

GF(2
m
) Using Dual Basis Representation,”

Journal of Computer Science and Technology,

vol.21, no.6, pp.887-892, Nov.2006.

[8] C.Y. Lee and C.W. Chiou, “Efficient Design

of Low-Complexity Bit-Parallel Systolic

Hankel Multipliers to Implement

Multiplication in Normal and Dual Bases of

GF(2
m
),” IEICE Trans Fundamentals,

vol.E88-A, no.11, pp.3169-3179, Nov.2005.

[9] A. Reyhani-Masoleh and M.A. Hasan, “Low

complexity bit-parallel architectures for

polynomial basis multiplication over

GF(2
m
),” IEEE Transactions on Computers,

vol.53, no.8, pp.945-959, 2004.

[10] C.Y. Lee, “Low complexity bit-parallel

systolic multiplier over GF(2
m
) using

irreducible trinomials,” IEE Proceedings

Computers and Digital Techniques, vol.150,

no.1, pp.39-42, 2003.

[11] C. Paar, P. Fleischmann, and P. Soria-

Rodriguez, “Fast arithmetic for public-key

algorithms in Galois fields with composite

exponents,” IEEE Transactions on

Computers, vol.48, no.10, pp.1025-1034,

1999.

[12] C.H. Kim, C.P. Hong, and S. Kwon, “A

digit-serial multiplier for finite field GF(2
m
),”

IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol.13, no.4,

pp.476-483, 2005.

P2P101
矩形

10

[13] M.K. Ibrahim and A. Aggoun, “Dual basis

digit serial GF(2
m
) multiplier,” International

Journal of Electronics, vol.89, no.7, pp.517-

523, 2002.

[14] J.H. Guo and C.L. Wang, “Digit-serial

systolic multiplier for finite fields GF(2
m
),”

IEE Proceedings Computers and Digital

Techniques, vol.145, no.2, pp.143-148, 1998.

[15] A.F. Tenca and C.K. Koc, “A scalable

architecture for modular multiplication based

on Montgomery's algorithm,” IEEE

Transactions on Computers, vol.52, no.9,

pp.1215-1221, 2003.

[16] C.Y. Lee, C.W. Chiou, J.M. Lin, and C.C.

Chang, “Scalable and systolic Montgomery

multiplier over GF(2
m
) generated by

trinomials,” IET Circuits, Devices & Systems,

vol.1, no.6, pp.477-484, 2007.

[17] M. Morii, M. Kasahara, and D.L. Whiting,

“Efficient bit-serial multiplication and the

discrete-time Wiener-Hopf equation over

finite fields,” IEEE Transactions on

Information Theory, vol.35, no.6, pp.1177-

1183, 1989.

[18] National Institute for Standards and

Technology, Digital signature standard,

FIPS Publication 186-2, 2000.

P2P101
矩形

