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Absiract

Techniques that transform one polygon 1o another have been
gained considerable interest in recer:zt years. Extending these
techniques, this paper addresses the problem of shape
transformation between two given shapes, both of which are
represenied by piecewise Bézier curves. In order to achieve
visual pleasaniness, a new transformation method based on
Hermite-form representation is proposed to blend two Bézier
segiments. Unlike the traditional vertex-to-vertex matching
strategy, we use the dynamic programming to wmaich the
similar segmenis between 1wo sets of piecewise curves. Some
experimental results are given to demonstrate the quality of
proposed algorithm.
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1.  Imtroduwetion

Shape transformation is defined as a geometric
transformation from one object to another. This process
generates a sequence of in-between shapes, which provides a
continuous transformation between objects. Such a technique
has been widely used in the fields of geometric modeling and
computer animation. In geomefric modeling, shape
transformation is used to blend original shapes for creating
new shapes[4,6]. Similar work is also applied to produce new
fonts[10,11]. In computer animation, it is often nsed to

generate in-between shapes from key-frame objects[2,7].

In recent years, many methods are proposed for solving the

iransformation of polygonal shapes in 2-D[4,11,12,13,15], or
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polyhedral objects in 3-D[8,16]. These methods usually
consist of two progesses: construction of vertex/edge/face
correspondence and shape interpolation. The former is to
establish the matching between two objects. The latter is to
blend the source and target entities according to this
correspondence. However, the blending of high-order curves
is given less emphasis. In this paper, we focus our attention
on the 2-D or 3-D shape transformation for piecewise cubic
Bézier curves. As known, Bézier curve is widely used in
CAD or other drawing packages(1] since it provides a
convenient control over its behavior. Constructing a
composite curve from several simple Bézier curves can be
made G’ geometric continuity (i.e. a curve with continuous
tangent directions) simply[3]. Therefore, it is quite easy to

design a smooth curve by using piecewise Bézier curves.

In general, the transformation between two shapes is not

_unique. However, a natural transformation should have some

common characteristics. Hence we give some basic criteria

and show our proposed algorithm satisfying these criteria.

identity preserving: When iwo given curves are

identical, the blending is the same as the input curves.

translation invariable: If the original curves have the
same shape but different locations, then the blending
curves are the translation of the input curves at an

uniform speed of movement.

smoothness preserving: Smooth curves are often
generated in many computer graphics applications.
For the wansformation of high-order curves, all

blending curves should be smooth if both original



curves are smooth.

feature preserving: If the original shapes have
common feafures, the features should be retained

during the transformation.

In this paper, we firstly introduce two blending methods
between any two simple Bézier curves based on Bézier-form
and Hermite-form representations, and suggest the one to be
used for joining composite blending curves smoothly. In
order to find the global matching between a pair of piecewise
curves, we define a cost function to measure the goodness of
blending results, and then use the dynamic programming fo
find the iransformation with the least cost. Finally,

experimental results are given to show the quality of

proposed transformation,

2, Representation of Parametric Cubic Curves

In this section, the two types of curve formulations, named
Bézier form and Hermite form, that are interest here are

reviewed. More details can be found in [5].
2.1. Bézier form

A cubic parametric curve in Bézier form is determined from

four control points, which is defined as

Qu) = B,(Fy, B, P, Fy)
= —~u)’ B+ 3u(l-uy’ B+ 3’ (I~ u)P, + P,

0Lu<l,where F, P, P, and P; are control points.

From the definition, the following formulas can be easily

derived:
o0 =5,
D=5,

Q O)=3(F, ~ F),
Q(D=3(F; - F),

where @ (#) denotes the first derivative of Q(u) with
respect to the parameter « . Thus, this curve starts on

Q(0) = F, and stops on Q(I)= F;, and the tangent vector
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st B s QO)=3F-F)

QD)=3(F~F).

and at P is

2.2, Hermite form

The Hermite form of cubic curve is uniquely defined by two
endpoints and their tangent vectors. In a similar way, we

denote this form of curve as
Qu)=H, (Fy,P,Ty,T5) = H,(Fy, Py, kgVy, k3V3)

0<u<l, where T, =Q (0)y=kyV, and T, =Q () =k;V,,
and V, and V; are unit tangent vectors, k, and k; are
the tangent magnitudes. Note that a curve originally defined
in Bézier form can be converted into Hermite form by
calculating the tangent vectors in terms of the control

points[5]; that is,

Q(“)zHu(])(hR?yTOsz‘) =Bu(P0’1% +-jl‘-7-b$P3 —'3LY:?1IJ3)

0<u £1.1t is kmown that Bézier form has many advantages
over Hermite form. For example, the shape of Bézier curve is
well controlled and there exists efficient geometric

subdivision algorithms for generating Bézier curves.

For an arbitrary object, it may be difficult to devise a single
set of parametric equations that completely defines its shape.
But any object can be formed by piecing several segments
over different parts of the object. Such a piecewise
construction must be carefully designed to eﬂsme that there

is a smooth transition from one segment to the next.

3. Blending between Bézier Segments

Given two single Bézier curves Qo(u) and Q’(u) , we
will introduce how io find the blending curve Q'(w),
0<:¢<1, and discuss the continvity of adjacent blending

curves in this section.

3.1. Bézier-form blending

Let Q' (wy=B, (R}, P P} ,P)) and
Q'(w)=B,(F} P/ ,P},P{) denote two Bézier curves. The

blending of Q%(u) and Q’(x) is defined as



Figure 1. The continuity of joining point.

Q' () = sQ° () +1Q" (u)
=sB,(F} P}, P} ,P})+1B,(B) P ,P},P})
= (I-u)’(sB) +1B))+ 31 - u)*u(sP{ +1P))
+3(1—uyt’ (sP) + tP)) +18° (sP! +1P,)

= B, (sP) + 1B ,sP? + 1P, sP{ +1P} sP? +1P})

where s=1-1. This implies that we linearly interpolate the
coordinate of each corresponding control points, and then
find the in-between curves according to these new control
points. From the above equations, the endpoints of Q° ()

are given by

Q'O =5k +1p)

Q' (D =5sP) +1P}
and the tangents on the endpoints are given by

Q' (0)=3s(P) -F))+31(P} -P})

Q' (D =3s(P) -P)y+3:(P} -P}).

If the two original compésite curves are G’ continuity, then
we should observe the continuity of blending curves at
joining points carefully. Figure 1 shows an illustration for the
join of two adjacent Bézier curves Qf(u#) and Q5w .
Since Qy (=3P’ +F! =0%(0), the blending curve is

continuous. Moreover, the tangentsat P, are
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0} (=3P’ ~BL))+31(R! - P,

Q5 (O =3s(PY, ~P’)+3u(RL, - P

This implies that @ (1) and Q; (0) have not the same
tangent direction except QF (O)xQ}(0)=0 . So this

blending doesn’t give any guarantee to be G continuity.
3.2. Hermite-form blending

Next, we consider the Hermite-form case. Let
Q% ()= H, (P}, P) vy k3vY) and
Q' w)=H, (B}, P} IV k) . I order to obtain G
blending, the blending between Q°(u) and Q') is

defined as

Q' (u)=H,(Q"(0),0°(D,Q" (0),0° (1))
where

0'(0)=sP) +1F}
Q' (D= sP{ +1P]
(sk§ + 2y )sVY +2V))

M T

(k3 +2k)(sVE +1V))
[]sv;’ +eVy u ‘

Q' (=

Since Qy(N)=sP’ +1B/ =0%(0), the blending curve is

continuous. Besides, the blending curve is also &'



1 —
|
0

Figufe 2. A maiching example for /=5 and n=3.

continmous because both unit vectors of Q} ©0) and

0L (1) are equal to (sv,.°+tv,.’)/]|sv,," +tv,.'".

4. Blending between Piecewise Bézier Curves

Based on the blending of single curve segments, this section
presents a correspondence method for matching two sets of
piecewise curves. Because it is possible that two given
curves have different number of curve segments, one or more
segments will match one segment. Our strategy is to define a
cost function for any two Bézier curves firstly, and then to
employ a discrete graph to find an optimal matching between

a pair of piecewise curves.
4.1. the cost function
Let 0’ =0"w)=B,(7 P .P}.P)) and
Q' =Q'()=B,(P,P!,P},P}) betwo any Bézier curves.
Let 7, =P’ - P’ The cost function between Q° and Q!

is define as
Cost(@°,0") =T, T +|1, -1 +]z 73| -

1t is obvious that the cost function is zero if Qo = Q’ , or
Q° is a translation of Q' . In other words, the optimal
matching will satisfy identity preserving and translation

invariant,
4.2, the correspondence

Let C°=(00,07.A.,00 ) and C'=(0Ql,0/.A,0.)

denote two piecewise Bézier curves. Suppose that the

starting point of Q) (resp. Q] ) is denoted by 57
(resp. S/ ). Then we define two boundary-point lists as
L =(85,5{,A,85) and L'=(S5,5/,A,8) . ANl
curve-segment correspondences can be represented in a
(m+1DX(r+1) tectangular graph. Figure 2 shows a
matching éxample. The column represents boundary points
on C? and the rows represent boundary points on C'.
Each node (i,j) of the graph represents a possible
matching of point §; of the first list L’ with point S/
of the second list L'. So the optimal matching of the two
lists is equivalent to define the path with the minimal cost
from (0,0) to (m,n). Furthermore, each point on (i, j)
can connect to next point (i-+1,j+k), 1€k<n—-j, or
(i+k,j+I), 1Sk<m=-i. The remainder is a typical
problem of graph theory. We will use the dynamic

programming to find the optimal solution.

Let Cost(iy, jy.iy,j;) to be the elementary cost of the are
joining nodes (i, j,) and (i;,j,). Suppose that C(, )
is the cumulated cost of the optimal path starting at node
(0,0) and ending at (i, /) . Then we obtain

CGi, J) = MIN{C, (i, ),C, (i, )}
where

Cy(é, j)=MIN{C(k, j—~ D)+ Cost(k, j~1,i, DEVO <k <i—1
Cy(i, j)=MIN{C(i — 1,k) + Cost(i — 1,k,i, D} VO<k < j—1

Starting from the first column, the algorithm proceeds to next

column until the last one is reached. Thus the last column is



Figure 3. Bézier-form vs. Hermite-form blending.

searched for the node with the minimal cost, and the optimal
path is found by tracing back the remembered nodes.
According to this optimal path, we uniformly subdivide the
Bézier curves such that two composite curves have the same
number of segments. Then, applying the Hermite-form
blending to interpolate each pair of Bézier curves, we can

successfully obtain the final blending results.

5. Experimental Resulis

In order to demonstrate the validity of our approach, we
firstly compare the blending resulis based on Bézier-form
and Hermite-form rcpresentatioﬁs, In Figure 3, two original
G' curves are denoted as bolder curves. As expected, it can
be found that the Bézier-form blending is not smooth at the
join points. Therefore, using Hermite-form blending can

produce better results at the aspect of smoothness preserving.

Our correspondence strategy can be also applied to the
polygonal transformation. Most traditional methods are
based on the vertex-to-vertex matching strategy[4,12,15).
However, our method uses the segmeni-to-segment matching
in order to avoid intense bending. In Figure 4, the second

example shows this comparison.

The third example is to demonstrate the transformation of
piecewise Bézier curves in Figure 5. Although the original
curves have different number of curve segments, the
experiment shows that the algorithm works well for the cases

where the input curves have similar features.

G, Conclusions

In this paper, we have described an algorithm io the problem

of blending a pair of cubic Bézier curves. This method

Figure 4. (a) vertex-to-vertex maiching, (b) segment-to-segment maiching.
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Figure 5. A blending between piecewise Bézier curves.

successfully meets the criteria of identity preserving,

translation invariant, smoothness preserving and feature

preserving. The algorithm has been implemented and tested

for several examples. Experimental results show that the

method can produce pleasant results.

7.

Acknowledgements

This research work was supposed in part by the National

Science Council under contract NSC-87-2218-E-214-012.

References

(1

(3]

{4]

(5]

(6]

Richard H. Bartels, Ar introduction to splines for use
in computer graphics and geometric modeling, Morgan
Kanfmann Puablishers, 1987.

B. W. Bethel and S. P. Uselion, “Shape distortion in
computer-assisted keyframe animation,” State of the
Art in Computer Animation, pp. 215-224, 1989.

M. D. Carmo, Differential Geometry of Curves and
Surfaces, Prentice-Hall, 1976.

S. E. Chen and R. B. Paren, “Shape averaging and its
applications to industrial design,” IEEE Computer
Graphics and Applications, pp. 47-54, 1989.

J. D. Foley, A. V. Dam, S. K. Feiner and J. F. Hugher,
Computer Graphics:  Principles and  Practice,
Addison-Wesley, 1992.

K. C. Hui and Yadong Li, “A feature-based shape
techniqgue  for  industrial

blending design,”

Compuier-Aided Design, vol. 30, no. 10, pp. 823-834,

B-530

(7

[8]

91

[10]

(11]

(12]

(13}

[14]

[15]

1998.

A. Kaul and J. Rossignac, “Solid-interpolating
deformations: construction and animation of PIPs,”
Proc. Eurographics ‘91, pp. 493-505, 1991.

J. R. Kent, M. B. Carlson and R. B. Parent, “Shape
transformation for polyhedral objects,” Computer
Graphics, vol. 26, no. 2, pp. 47-54, 1992,

F Lazarus, “Smooth interpolation between two
polylines in space,” Computer Aided Design, vol. 29,
no. 3, pp. 189-196, 1997.

Z. Pan, X. Ma, M. Zhang and J. Shi, “Chinese font

- composition imethod based on algebraic system of

geometric shapes,” Computer & Graphics, vol. 21, no.
3, pp. 321-328, 1997.

Laxmi Parida, "A cﬁmputational technique for general
shape deformations for usé in font design,” Computer
& Graphics, vol. 17, no. 4, pp. 349-356, 1993.

T. W. Sederberg and E. Greenwood, “A physically
based approach to 2-D shape blending,” Computer
Graphics, vol. 26, no. 2, pp. 25-34, 1992.

T. W. Sederberg, P. Gao, G Wang and H. Mu, “2-D
shape blending: an intrinsic solution to the vertex path
problem,” Computer Graphics, vol. 27, no. 2, pp. 15-18,
1993.

B. Serra and M. Berthod, “Subpixel contour matching
using continuous dynamic programming,” JEEE
Conference on Computer Vision and Pattern
Recognition, pp. 202-207, 1994,

M. Shapira and A. Rappoport, “Shape blending using



the siar-skeleton representation,” IEEE Compuser
Graphics and Applications, vol. 15, no. 2, pp. 44-50,
1995.

[16] Y. M. Sun, Wenping Wang and Francis Y. L. Chin,
“Interpolating polyhedral models using insirinsic shape
patameters,” The Journal of Visualization and

Compuler Animation, vol. 8, pp. 81-96, 1997.

B-531



