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Abstract

The clustering operation is to classify m objects
into g groups whose members are similar in the
interesting features. The features of an object are
represented as a point within an n-dimensional Euclidean
space. The distance between a point and the center of its
group indicates fitness of the object within the group.
The objective is to divide these objects into groups such
that the total sum of these distances is minimized. There
are many local minima in the problem. An improved
algorithm is proposed to solve the problem based on the
tabu search technique. Some strategies for generating
trial solutions are presented to improve its effectiveness.
From the experiments, our strategies are very powerful
than existing methods.

Index: tabu search, cluster analysis, algorithm, search

1. Introduction
Cluster analysis may be defined as the process of

separating a set of objects into groups, whose members

are similar as much as possible, according to predefined
criteria. It plays an essential role in fields of image
processing, pattern recognition, medical research,
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artificial intelligence, geosciences, behavioral and social
sciences, etc.

For the simplicity, objects are represented by
points for cluster analysis in n-dimensional Euclidean
space. The features of an object are kept as values of
elements in its coordinate. The similarity of two objects
can be measured by the distance between these
corresponding points. The distance between a point and
the center of its group indicates the fitness of the point
(object) within the group. Smaller distance indicates
better fitness. Therefore cluster analysis is changed into
classifying m given points into g groups such that the
total sum of distances between points and centers of their
groups is minimized.

The total sum of these distances is the objective
function of cluster analysis. It is non-convex and hence
the analysis may suffer local minimum solutions which
are not necessarily optimal®. The optimal solution is
theoretically possible to get by examining all possible
clusterings. The number of all possible clusterings for
classifying m points into g groups is S(m, g)*'?, where

g

stm =5 T 0 £ )"
£ =0

It is a very large number. For examplé, the number of
enumerations is about 7.4 x 10%2 for classifying 50 data
points into 5 groups!'". The exhaustive enumeration is
not feasible in practice due to limitations of computer
storage and time.

Thus, approximate heuristic techniques seeking a
compromise or looking for a local minimum solution
which is not necessarily global have usually been
adopted. In this paper, we propose an efficient algorithm
based on a tabu search technique for the clustering
problem. Generating a trial solution from the current
solution is a critical operation for the tabu search
technique. If there are good guidelines for generating a
trial solution that is closer to the optimal solution than
the current solution, then the speed of searching a
feasible solution is improved. Many strategies are
proposed to generate irial solutions. From the
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experiments, these strategieé are superior to one that is
based on a probability threshold®.,

2, Cluster analysis

The supervised clustering problem may be stated
“as follows. Given m points in R, assign each point to
one of g groups such that the sum of distances between
each point and the center of its cluster is minimized.
Therefore supervised clustering problem can be
mathematically described as follows.

m g
Minimize D(w, ¢) = > wij i, Cj)
i=1 j=1

Subject to
c
( 2o wj=1fori=1,2,...,m
=1
Lwij=00r1fori=1,...,mand '
j=l..,g
where

¢j: center of the jith group (to be determined)
a(x;, Cj): distance between ith point and the center

of jth group (to be found)
g: number of groups (given)
m: number of points (given)
Wwij association weight of point x; with group j (to
be found)
x;: location of the /th given point (given)

Many distance functions, such as Euclidean
distance, city block distance, and chessboard distance,
have been used for many applications in the real world.
While clustering is applied to different applications,
different distance functions are used to suit the needs of
the application. The distance between point x; and center

of its group ¢; can be calculated directly when the

distance function is specified. In this paper, the
Euclidean distance is used to measure similarity between
two points.

From the definition above, there are two main
problems to be solved in the supervised clustering. They
are center determination and group allocation. To assign
a point as the center of one group is called the center
determination. The center of a group may be a given
point or a virtual point (which is not one of given
points). A given point is specified to a group by the
group allocation process. A point is assigned to a group
if the distance between it and the center of the group is
less than the ones between it and centers of other groups.

The center determination and the group allocation
are interrelated. Points can be assigned to groups when
centers of groups are determined. After group allocation
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is completed, centers of groups are reconstricted by the
following equation.

When centers of groups are changed, group allocation
process is executed again. A stable situation will be
obtained by repeating these processes above.
Unfortunately, the obtained stable situation may be one
local minima. It is not an absolute minima.
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Figure 1: An example
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An example is given in Figure 1 to demonstrate
that a stable situation is a local minima. The clustering
problem is to classify the following seven 2D points, (2,
D, (3, 2), (4, 3), (7, 6), (10, 13), (11, 15), and (12, 14),
into 3 groups. If points are assigned into 3 groups as {(2,
1), (3, 2), (4, 3), (7, 6)}, {(10, 13)}, and {(11, 15), (12,
14)}, then a local minima is obtained. Iis- global minima
is occurred when 3 groups are {(2, 1), (3, 2), (4, 3)},
{(7, 6)}, and {(10, 13), (11, 15), (12, 14)}.

A brute-force approach for the clustering problem
is to assign points into one group randomly. Then the
objective function value of each assignment is computed.
The assignment whose objective function value is closest
to optimal is chosen. However, testing different
assignments is considered impracticable, especially for a
large number of clusters®. For example, the number of
enumerations of every possible partition of 56 data
points into three clusters is greater than 10' for the
crude-oil data'®. Many approaches are proposed for the
clustering problem. A brief summary of these works is as
follows.

Clustering techniques may be divided into iwo
categories: hierarchical and partitional  strategies.
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Hierarchical clustering refers to a clustering process that
organizes the data into large groups, which contain
smaller groups, and so on. A hierarchical clustering can
be drawn as a tree. The finest grouping is at the bottom
of the tree, where each point by itself forms a group. The
coarsest grouping is at the top of the tree, where exists a
single group containing all points. In between, there are
various numbers of clusters. At a level, two groups are
merged into a group if distance between these two
groups is the shortest among distances of pairwise
groups. Different hierarchical clustering algorithms are
obtained by using different methods to measure the
distance between two groups.

Among the partitional clustering techniques, the
K-means, C-means, or Isodata algorithm is the most
widely used method. The K-means algorithm'* ® is based
on the optimization of a specified objective function. A
generalized convergence theorem for the method is
derived®. In the theorem, conditions for local optimality
of the solution obtained by the method are characterized.
It has been proved that K-means algorithm terminates'®;
that is, eventually no points change groups. However, it
may converge to a local minimum solution.

The isodata algorithm is developed to solve the
clustering problem®. it can be considered to be an
enhancement of the approach taken by the K-menas
algorithm. The number of groups in it may be an
interval. A group is split if the number of groups is too
few or if the group contains very dis-similar points.
Groups are merged if the number of groups grows too
large or if groups are too close together. It is more
complex and more expensive to implement than the k-
means algorithm. But it suffers from local minimum
solutions.

The genetic algorithm has applied to solve the
clustering problem. Genetic algorithms are stochastic
search methods based on the principle of natural genetic
systems™. Each solution is usually coded as a binary
string of finite length. Each string is considered as an
individual. A collection of individuals is called a
population. The best string obtained so far is preserved
in a separate location outside the population so that the
algorithm may report the best value found, among all
possible solutions inspected during the whole process.
The proposed method based on genetic algorithms can
find lower value of the objective function than K-means.

A tabu search technique is used to solve the
clustering problem®. It is different from the well-known
hill-climbing local search techniques in the sense that it
-does not become trapped in local optimal solutions. The
tabu search approach allows movements out of a current
solution. Such movements may make the objective
function worse but these movements eventually might
achieve a better solution. Its results are better than the
well-known K-means algorithm.

3. Cluster analysis using tabu search
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Our improved algorithm is based oh the tabu
search. The tabu search is a global optimization
metaheuristic that can be used to solve combinatorial
optimization problems. Basically it consists of several
elements called the initial solution, neighborhood,
searching strategy, move, tabu list, aspiration function,
and stopping criteria. The neighborhood of a solution is
the set of all possible solutions which can be accessed
from the current solution by a move. The move is a
function which transforms a solution into another
solution. At each step the neighborhood of the current
solution is searched in order to find an appropriate
neighbor which can be found inexpensively. To avoid
cycling (trapped in a local optimum) and to add
robustness of the search, forbidden moves are stored in a
short term memory called a tabu list. A move is
identified to store in the tabu list as a way to prevent
future moves that would undo the effects of previous
moves. . Nevertheless, a forbidden move can be
performed while it suffices requirements of aspiration
functions. The stopping criteria may be a limit on the

execution time, number of iterations, number of
iterations  without  improvements, or  criterion
performance.

Tabu search is a general approach for finding a
near optimal solution of combinatorial optimization
problems. Its every application needs detailed definitions
of basic elements (e.g., initial solution, neighborhood,
searching strategy, move, etc.) and values of several
tuning parameters such as the size of tabu list, level of
aspiration, stopping criteria, etc. These elements and
parameters interact to determine the speed of
convergence, performance, and running time.

The tabu search scheme for clustering® can be
stated as follows.

1. start with an initial solution and evaluate its objective
function value.

. Generate randomly trial solutions from the current
solution and evaluate their objective function values.

. If the best of these trial solutions is out the tabu list,
then it is considered to be the new solution.

. If the best of these trial solutions is in the tabu list but
its value of objective function is smaller than one of
the current solution, then it is also considered to be
the new solution.

. If both conditions stated in steps 3 and 4 are not
satisfied, then remove the best trial solution and go 1o
step 3 unless the set of trial solutions is empty.

. If the set of trial solution is empty, then go to step 2.

. Update the tabu list if necessary. .

. If the new solution is closer to the optimal solution
than the best solution so far, then the new solution
becomes the best solution.

. The new solution becomes the current solution. Go to
step 2 until the specified number of iterations is
reached.

2
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The tabu search is executed for a certain number
of iterations. A feasible solution is obtained after one
iteration. On termination, the best solution obtained so
far is the solution obtained by the algorithm. The
obtained solution is not the optimal solution. The
purpose of the tabu search is to shorten the distance
between the obtained solution and the optimal solution
as small as possible within these iterations.

It is clear that trial solution generation is the key
component of the tabu search for clustering. Our
improved algorithms focus on the ftrial solution
generation. The proposed method® is a trivial method. A
trial solution is generating from the current solution. For
each point, its group allocation is examined. The
determination of the examination is according to the
value of a random number generating from a uniformly
random number generator #(0, 1). If the value of the
generating random number is less than the probability
threshold P, then the group allocation of the point is
kept. Otherwise, the group allocation of the point is
changed. Its new group is assigned also by a random
number generator, The method is called probability
threshold.

The group allocation is the main drawback of the
probability threshold method. The historical information
about group allocation of a point is not used to
determine the new group for the point. In this manner,
the group allocation of a point is changed even if its
group allocation is correct. Such a wrong change
degrades the effectiveness of the generating trial
solution.

To avoid the degradation, a P-decay method is
proposed to determine whether the group allocation is
change or not. In this manner, the probability for the
group allocation of a point to be changed decreases
gradually P ratio. In the last generating trial solutions,
the probability for the group allocation of a point to be
changed is ¢. If the group allocation of the point is not
changed, then the probability will become Pgq. If the
group allocation of the point is changed, then the
probability is reset to 100%. Using the method, a correct
group allocation can be kept and a wrong group
allocation can be changed eventually.

In the P-decay method, the probability for the
group allocation of a point to be changed is computed
when the new solution is obtained. The storage space of
each point has a field to record the probability. While the
current solution is replaced with the new solution, the
group allocation of each point is compared and the
probability of each point is computed. In this manner,
only little memory space is needed to store the
information about probability of each point. The
computation of the probability is also little. Therefore
the extra cost of the probability maintenance is little in
the P-decay method. The effectiveness of generating trial
solutions and the quality of the solution both are
increased by the P-decay method.

E-89

The correct group allocation of a point may be
changed in the P-decay method. This phenomenon
should be eliminated to increase the effectiveness of
generating trial solutions. An improved method is
proposed to cancel the spot. The probability for the
group allocation of a point to be changed is proportional
to the distance between the point and its center.
Therefore the group allocations of points that are far
away their centers are necessary to be changed to
improve the efficiency of the tabu search algorithm.

The value of the distance is determined with the
following fact. If points are uniformly distributed within
a circle with radius R, then the average distance between

points and the center of the circle is \% Distances

between points, that are within a group, and the group's
center are computed. The average distance, d, of points
with the group can be obtained. For each point within the

group, its distance is compared with \/Ed. If its distance

is greater than \/Ed, then the group allocation of the
point is reassigned. Otherwise, there are no modification
for the point. This strategy is called the distance
proportional method.

In the distance proportional method, the group
allocation of a point is randomly assigned while it must
be changed. Such a randomized modification moves out
a local minima. The correct group allocations can be
kept. The effectiveness of generating trial solutions is
improved by this issue. The wrong group allocations can
be changed eventually. Therefore the optimal solution
should be found by the method. The quality of the
solution is also improved in a certain number of
iterations.

Although the effectiveness of trial solution
generation is improved dramatically by distance
proportional method, the speed of convergence seems to
be further enhanced. It is a drawback in the distance
proportional method to reassign randomly farther points
from its group center. This drawback can be eliminated
by that each point of these points is assigned to a group
which is nearest to it. Therefore for a group there are
three areas surrounding its center. Points in the internal
area are fixed in the group to keep the effects of previous
works. Points in the middle area are reassigned randomly
to jump local minimum solution. Points in the external
area are reassigned to the nearest group to improve the
speed of convergence.

4. Experimental studies ‘

In this paper, an algorithm for the clustering
problem is presented. The algorithm is based on the tabu
search technique. There are some strategies are proposed
for generating trial solutions. In our experiments, these
strategies will be compared with the probability
threshold method. These methods have been coded and
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executed on an IBM compatible machine on several test
problems.

probability threshold P-decay method
number of trial solutions number of trial solutions

20 25 30 20 25 30
Aq 43602.64 | 3648332 | 3327339 | 2579865 | 2460750 | 24181.57
B1 48503.79 | 3167193 | 3274395 | 27949.84 26055.1 25859.68
Cy 4434933 | 38133.13 | 3449219 | 27907.87 | 31104.01 | 2726627
Dj 40270.77 | 37614.86 | 3197878 | 27233.00 | 24044.15 | 2395851
Eq 29661.16 | 28005.64 | 2478551 | 2063442 | 19698.62 | 1938042
Fi 29217.19 | 2726222 | 24531.52 | 20123.56 | 20117.89 | 20058.77
Gy 28451.19 | 2655423 | 26006.58 | 23065.19 | 19681.35 | 19677.57
Hy 30293.52 | 26671.51 | 26202.72 | 2036477 | 19880.08 | 1954944

Table 1: The objective function values

The testing data is randomly generated in R’
There are three classes of testing data. They are
overlapped clusters, touching clusters, and separated
clusters. For each class, there are at least three testing
cases whose numbers of points are different. The number
of points in a case may be 16 , 64, or 256 and the
number of groups is 5. For each case, the experiment is
repeated at least ten times. Only the average result for a
case is shown in our experimental result tables.

probability threshold P-decay method
number of trial solutions [number of trial solutions

20 25 30 20 25 30
Ay| 1691 | 2362 | 3196 | 1839 | 2664 | 3462
By| 1706 | 2389 | 3222 | 1867 | 2694 | 2220
Cy| 1727 | 2401 | 3236 | 1895 | 1059 | 1451
Dy | 1747 | 2420 | 3253 | 1920 | 2767 | 3572
Ej| 1795 | 2616 | 3394 | 1842 | 2653 | 3468
Fp| 1817 | 2639 | 3418 | 1879 | 2704 | 3484
G| 1836 | 2663 | 3445 | 1903 | 2740 | 3549
Hy| 1806 | 2680 | 3466 | 1936 | 2774 | 3588

Table 2: Computation time (unit: seconds)

The number of trial solutions that is generated in
an iteration is related to the efficiency of the algorithm.
If the number of trial solution is large, then the
computational time of the iteration in the algorithm is
huge. On the other hand, if the number of trial solution is
large then the probability for finding a solution that is
better than the best solution so far is also increased.
Therefore the relations between the objective function
value, the number of trial solution, and computation time
are studied. The experiment is performed by the
probability threshold method and the P-decay method.

The relations between the objective function value and
the number of trial solutions for these methods are listed
in Table 1. For each case, the objective function value is
smaller when its number of trial solution is larger. In
each case, the objective function value of the P-decay
method with 20 trial solution is better than the one of the
probability threshold method with 30 trial solutions. The
relations between the number of trial solutions and the
computation time are listed in Table 2. The computation
time is longer when its number of trial solutions is larger.
In each case, the computation time of the P-decay
method with 20 trial solution is less than the one of the

probability threshold method with 30 trial solutions. The

P-decay method is better than the probability threshold
method in the sense that the better objective function
value is obtained in less computation time.

P-decay method distance proportional

values time (sec) values time (sec)
Ay | 3565749 13090 143970.8 13982
By | 357636.1 13171 147960.3 14080
Cy | 3078975 13215 155197.5 16507
Dy | 301357.7 13093 138765.6 16587
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Table 3: Experimental results of the P-decay method
and the distance proportional method

The performances of the P-decay method and the
distance proportional method are tested. The result is
listed in Table 3. The objective function values of the
distance proportional method are better than the ones of
the P-decay method. The computation time of the
distance proportional method is little larger than the one
of the P-decay method. In the distance proportional
method, the objective function value converges to its
optimal value very quickly. For these cases in Table 3,
the number of iterations of the distance proportional
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method whose objective function values are better than
ones of the P-decay method are 12, 13, 15, and 16,

respectively.

distance proportional method enhanced distance proportional
50 iterations 300 iterations method
values sec values sec  |values sec iterations
As 67422.53 158 57119.51 1049 36470.23 168 i0
Bj 68703.25 158 65109.66 1050 51427.19 116 o
Cs 102346.4 158 72517.33 1050 62196.26 54 6
Dy 65899.35 258 57242.18 1686 33113.04 366 30
Es3 68859.73 258 60565.78 1686 51180.61 190 23
F3 99435.14 258 76145.57 1686 62196.25 110 6
G3 69672.62 373 57210.73 2423 33011.48 95 12
Hj 67085.64 374 58455.67 2421 51180.63 376 22
I3 96385.59 375 67654.02 2431 62196.25 68 5

Table 4: The experimental results of the distance proportional method and its enhanced method

The comparison between distance proportional
method and its enhanced method is listed in Table 4. The
stopping criterion is that the total number of iterations
without improvements reaches 2. The number of
iterations for the enhanced method is so small that the
speed of convergence is quick. From the values of the
objective function, solutions obtained by the enhanced
method is better than one by the distance proportional
method. The computational time of the enhanced method
is about from 1 to 7 minutes. That is, the enhanced
method can be used in practical systems.

5. Conclusions

In this paper, we have developed an improved
algorithm for solving the clustering problem that is based
on the tabu search technique. The algorithm has been
implemented and tested on various problems. Some
smart strategies for generating trial solutions are
proposed to improve its effectiveness. From the
experiments, these strategies are shown to improve the
efficiency of the algorithm and the quality of the
solution. The preliminary computational experience is
very encouraging. The initialization of clusters is an
interesting problem to work in the future. The
intensification and diversification actions in our
algorithm are necessary to further study.
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