
Adaptive Continuous Collision Detection for Cloth
Models using a Skipping Frame Session

Sai-Keung Wong
Department of Computer Science, National Chiao Tung University, Taiwan, ROC

Email: cswingo@cs.nctu.edu.tw

Abstract—We propose a novel adaptive pipeline for
continuous collision detection (APCCD) in simulating
cloth models. The proposed pipeline consists of four
components: bounding volume hierarchy (BVH) update,
BVH traversal, a skipping frame session, and elementary
test processing. It supports both inter- and self-collision
detection. A skipping frame session is activated adaptively
for skipping both BVH update and BVH traversal. Our
method tracks all interacting primitive pairs. Experimen-
tal results show that the proposed method significantly
improves the performance of collision detection in simu-
lating cloth models.

Index Terms—Computer graphics, continuous collision
detection, self-collision detection, cloth

I. INTRODUCTION

Continuous collision detection (CCD) attracts
much attention due to that the accurate contact in-
formation can be computed. CCD is widely applied
in simulating deformable models, such as cloth
models. The deformable models are discretized
into triangular meshes at the preprocessing phase.
Each model is bounded by some kind of bounding
volume hierarchies (BVHs). During the simulation,
an interpolation approach is employed to inter-
polate the motion of deformable models between
two discrete time frames. By employing CCD, the
first time of contact of the interacting objects can
be computed. In the conventional collision detec-
tion pipeline, both stages BVH update and BVH
traversal are invoked in order to collect potentially
colliding pairs. We observe that when two models
are interacting with each other, collision events
happen in some localized regions and these regions
may interact with each other over several frames. A
full BVH update and a full BVH traversal are not
necessary. In this paper, we propose an approach
to handle continuous collision detection for cloth

models adaptively by skipping BVH update and
BVH traversal.

Summary of results: We propose a novel adap-
tive pipeline for continuous collision detection
(APCCD) in the simulation of cloth models (Fig-
ure 1). The results are listed as follows:

1) The framework of APCCD: It consists of four
components: BVH update, BVH traversal, a
skipping frame session and elementary test
processing. By employing the skipping frame
session both BVH update and BVH traversal
stages can be skipped. In order to employ
the skipping frame session, the bounding vol-
umes of BVH nodes are inflated based on
both the local and global information of the
cloth models.

2) The partial traversal scheme: As the inflated
bounding volumes are not tight and they may
be kept for several frames, there will be
many redundant potentially colliding pairs.
Instead of performing a full BVH traversal
to eliminate the redundant pairs, a partial
traversal scheme is proposed to handle them.
The partial traversal scheme is conservative.
Thus, we will not miss any colliding primitive
pairs.

3) The distance heuristic: Based on the primitive
assignment, we use the assigned primitives to
compute the shortest distance of two poten-
tially colliding triangles. After that, we update
the estimated distance between the triangle
pairs each time step to determine whether a
full CCD check should be invoked for them.

4) Robustness: We adopt a history-based ap-
proach to keep track of the relative orientation
of all the primitive pairs in close proximity.
These primitive pairs are maintained in a hash



Fig. 1. The cloth model consists of 320k triangles. Our CCD method
took 660 ms to detect all the colliding pairs and kept track all of
them throughout the simulation.

table throughout the simulation.
The remainder of the paper is organized as fol-

lows: Section II presents the related work. Sec-
tion III presents the framework of APCCD. Sec-
tion IV presents BVH update with inflation distance
and BVH traversal. The elementary test processing
and distance heuristic are discussed in Section VI.
Self-collision detection is presented in V. Sec-
tion VII presents the skipping frame session and
Section VIII analyzes the proposed method. Sec-
tion IX presents the experimental results. Finally,
the conclusion and future work are presented in
Section X.

II. RELATED WORK

Collision detection is widely applied in the sim-
ulation of deformable models, for example, cloth
simulation [23], [5], [16], [17], [1], [3], [4], [18].
During the simulation, the topology of the de-
formable models does not change. The contact in-
formation, such as contact points and collision nor-
mal vectors should be computed. Some approaches
[23], [17], [24], [20] exploited the regularity proper-
ties of cloth models to perform self-collision detec-
tion. A comprehensive survey on collision detection
for deformable models can be found in [22].

A brute force approach for collision detection is
to perform tests for all primitive pairs. The running
time complexity is O(n2), where n is the number
of primitives. The worst case happens when all the
triangles are packed closely. However, this hardly
happens in practice. In reality, the triangles will
not be packed together. There are spatial parti-

tioning schemes and bounding volume hierarchies
(BVHs) that have been developed in [19], [7], [9],
[2], [14]. The techniques are adopted to narrow
down the number of potentially colliding pairs. The
axis-aligned bounding box hierarchy (AABB) [2]
and k-DOPs [9] are widely applied in simulating
deformable models. Larsson and Akenine-Moller
[11] proposed a technique to perform BVH refit-
ting for models deformed by morphing and a lazy
evaluation method [12] to perform BVH update for
breakable objects. Some methods employ extra BVs
to bound the vertices and edges of each triangle [8],
[6]. Thus, during BVH update, the extra BVs should
be updated.

Mezger et al. [14] suggested that the bounding
volume could be inflated by a predefined distance.
If the enclosed primitives do not move farther than
a predefined distance, BVH update is not needed.
However, it is crucial to compute the distance of
inflation in order to apply their method but they
did not specify a way to compute the distance of
inflation automatically. It is well-known that BVH
update and BVH traversal are not necessary for a
brute force approach. However, the running time
complexity of the brute force approach is high due
to that there are many elementary tests. Similarly, if
the inflation distance is not computed appropriately,
the running time complexity of their method would
be high. In this paper, we develop an adaptive
scheme to effectively compute the inflated distance.
Moreover, our method also skips BVH traversal.

Continuous collision detection is dominated for
simulating deformable models as accurate time of
contact can be obtained. Continuous collision de-
tection was studied by Moore and Wilhelms [15].
Liu et al. [13] proposed a technique so that a cubic
equation is required to solve for each primitive
pair. The coplanar time is computed and then the
shortest distance of the primitive pair is checked for
collision. For each triangle pair, there are six point-
triangle pairs and nine edge-edge pairs. Similar
techniques are employed in [17], [3].

Wong and Baciu [25] proposed a primitive as-
signment scheme to assign edges and vertices to
incident triangles. The method significantly reduces
the number of potentially colliding triangle pairs
and the number of potentially colliding primitive
pairs. The technique [6] integrated both the tech-



Algorithm 1 APCCD Algorithm
1: if flagSkippingFrame then
2: collect dangling vertices
3: collect dangling triangles
4: perform traversal for dangling triangles
5: else
6: perform BVH update
7: perform BVH traversal
8: end if
9: perform front-end PCP record filtering

10: perform back-end PCP record filtering

niques [8], [25] to reduce the number of potentially
colliding primitive pairs further.

Selle et al. [18] proposed a method to handle
complex cloth models. In some of their animations,
the number of triangles of cloth models is more
than one million. They suggested that the history-
based approach should be adopted to keep track the
relative orientation of interacting pairs in proximity.
Relying solely on the voting mechanism is not
reliable [5] to determine collision orientation of
colliding primitive pairs. Moreover, it is important
to control the strain ratio [16] when simulating cloth
models.

III. ALGORITHM OVERVIEW

We assume that the topology of the cloth models
does not change and the simulation time step is
Δt. Two primitives collide if their shortest distance
is smaller than or equal to a predefined threshold
δd which is larger than or equal to the thickness
of cloth. If the bounding volumes of two triangles
overlap, the two triangles form a potentially collid-
ing pair (PCP). Before the simulation is performed,
we employ the primitive assignment scheme [26]
to assign each primitive to its incident triangle:
a triangle assigned to itself and a vertex or edge
assigned to one of its incident triangles. Each tri-
angle record stores a six-bit assignment mask for
the primitive assignment. The assignment mask of
the triangle indicates the vertices or edges assigned
to the triangle. Figure 2 shows the primitive as-
signment of two meshes. Based on the assignment
mask, the potentially colliding primitive pairs of
two triangles can be computed. For example, the
potentially colliding primitive pairs are eA

0 eB
0 , eA

0 eB
1 ,

and q0A for the triangles A and B.

t

Fig. 2. Primitive assignment scheme and shortest distance between
two triangles. Primitive assignment scheme: The small dot (line)
inside a triangle at a vertex (edge) indicates that the vertex (edge)
is assigned to the triangle. The shortest distance d(A,B) between
the two triangles A and B is the smallest value of d(eA

0 ,e
B
0 ),

d(eA
0 ,e

B
1 ), and d(A,q0). where d(⋅, ⋅) is the shortest distance between

two primitives. The assigned primitives are considered to compute
d(A,B).

Algorithm 1 shows the runtime phase of APCCD.
The flow chart and the related data structures are
shown in Fig. 3. At each simulation time step,
the speed of each vertex and the speed of each
triangle are computed. The speed of a triangle is
the maximum speed of its three vertices.

At the runtime phase, there is a skipping frame
session. During the skipping frame session, both
BVH update and BVH traversal are skipped. The
number of frames that the skipping frame session
lasts is n f and the value n f is determined adaptively.
In the first frame of the skipping frame session,
f lagSkippingFrame is set as false. Otherwise, it is
set as true.

If f lagSkippingFrame is false, we perform a full
BVH update and a full BVH traversal. In BVH
update, the size of the bounding volume is extended
adaptively according to the moving state of the
objects. After that, BVH traversal is performed to
gather potentially colliding triangle pairs (PCTPs)
and the PCTPs are stored in the PCP pending list.

If f lagSkippingFrame is true, we will collect
the vertices and triangles which move farther from
their estimated movement distance. We call the
vertices dangling vertices and the triangles dangling
triangles. A partial BVH traversal scheme is applied
for processing the dangling triangles.

We proceed to perform elementary test process-
ing which consists of two sub-phases: front-end
PCP filtering and back-end PCP filtering. In the
front-end PCP filtering phase, non-colliding pairs
will be further eliminated based on the distance
heuristic. The PCTPs in the PCP pending list are
inserted into the admissible PCP list if they pass the
check of the distance heuristic. The PCTPs in the



Fig. 3. Collision detection pipeline.

admissible PCP list will be passed to the back-end
PCP filtering phase and their contact information
is computed. Our method guarantees to detect all
PCTPs whose shortest distance is smaller than or
equal to δd .

IV. BVH UPDATE AND BVH TRAVERSAL

In our approach, each object has one BVH. In
BVH update, the task is to refit the BV of each
node so that the BV bounds the swept volume of
the triangles assigned to the node. The BVs of
leaf nodes are updated first and they are extended
by the thickness of cloth. Then the BV of each
internal node is computed by merging the BVs of
its children. The process is performed recursively
until the root node is updated.

A. BVH update with inflation distance

In the following we assume that each leaf node
contains one triangle. It is straightforward to handle
a leaf node that contains more than one triangle.
In our method, we will inflate the BV of each leaf
node in order to perform the skipping frame session.
Assume that the leaf node is associated with a
triangle T . The inflation distance is the estimated
movement distance de(T ) of the triangle which is
the maximum estimated movement distance of its
three vertices. We compute the estimated movement
distance de(P) of a vertex P as follows.

Assume that v(P) is the speed of P. Then the
estimated movement distance of P is v(P)ct(P) in
the current simulation time interval, where ct(P)
is the contact time of P. However, ct(P) is un-
known before collision detection is performed. As

ct(P)≤Δt, it implies that v(P)ct(P)≤ vΔt. Thus the
estimated movement distance could be computed
as v(P)Δt for one time step. The inflation distance
v(P)Δt is adopted in the conventional BVH refitting
methods. However, in our approach, we attempt to
skip more than one frame in the skipping frame
session. We observe that the movement of a vertex
is greatly affected by its neighborhood as it is a
part of a continuum material (e.g. cloth model).
In simulating cloth models, the strain ratio should
be smaller than certain percentages (less than 15%)
[17], [3]. Thus, we propose to adaptively estimate
de(P) as de(P) = (αv(P) + β v̄)Δt + γ l̄, where v̄
is the average speed of the vertices in the neigh-
borhood of P, and l̄ is the average edge length
of the cloth model. The three values α , β and
γ are adaptively adjusted. There are other terms
that can be included in computing de(P), such as
acceleration. In this paper, our focus is on the
linear terms. To compute v̄, we have to know the
connectivity of the cloth model and compute the
average for its neighborhood. In this way, the cost
is expensive. In order to reduce the computation
cost, v̄ is approximated as the average speed of all
the vertices of the cloth model. The crucial part is
to compute α , β and γ . The detailed information is
presented in Section VII.

B. BVH traversal with PCP registration

The task of BVH traversal is to collect potentially
colliding triangle pairs. Algorithm 2 shows the
pseudocode of BVH traversal. The root nodes of
the two BVHs are explored. If they overlap, then
their children are checked. This is done recursively



Algorithm 2 traverse(node0, node1)
1: if (BV(node0) ∩ BV(node1) = nil ) return
2: if node0 != leaf ∥ node1 != leaf then
3: if num(node0) > num(node1) then
4: traverse(c0, node1) ∀ child c0 ∈ node0

5: else
6: traverse(node0, c1) ∀ child c1 ∈ node1

7: end if
8: else
9: compute pcpMask for (tri(node0), tri(node1))

10: if pcpMask not nil then
11: registerPCP(tri(node0), tri(node1))
12: end if
13: end if

until the two leaf nodes are detected. Then the two
corresponding triangles are checked further.

If the two triangles are assigned vertices or edges,
the potentially colliding primitive mask, namely,
pcpMask, is computed. The mask pcpMask indi-
cates which primitive pairs are required for further
processing in the back-end filtering phase. The
mask pcpMask is a fifteen-bit string and each bit of
it corresponds to one of the fifteen primitive pairs
of the two triangles. The primitive pairs include
six point-triangle pairs and nine edge-edge pairs.
The bit of pcpMask associated with two primitives
(m0,m1) is set if the primitives m0 and m1 are
assigned to the first triangle and the second triangle,
respectively. If none of the bits are set in pcpMask,
then the two triangles are ignored. Otherwise, the
triangle pair is stored as a PCP entry in a hash table
[10] via a PCP registration process. A PCP manager
is used to manage the hash table and PCP entries.
In order to quickly retrieve the PCP entries, their
entry pointers are stored in a PCP pending list.

We observe that by enlarging the size of the
AABBs, there are many potentially colliding pairs
but they are too far to collide within the simulation
time interval. In order to eliminate these pairs, we
employ the distance heuristic (Sec. VI). In order to
employ the distance heuristic, the shortest distance
between two triangles should be computed. Con-
ventionally all primitive pairs of two triangles are
required to compute in order to obtain the shortest
distance of two triangles. However, in our method,
we only consider the assigned primitives. After
a triangle pair (T0,T1) is collected during BVH

Fig. 4. Partial BVH update. Update the BVH starting from leaf
nodes of the dangling triangles, and then merge BVs while climb up
the BVH until reaching the root node.

traversal, the shortest distance d(T0,T1) is computed
between the two triangles based on pcpMask (see
Fig. 2). If d(T0,T1) ≤ de(T0) + de(T1) + δd , the
triangle pair is registered. In this way, the triangle
pair which is far away will be eliminated.

C. Processing dangling triangles

As the skipping frame session may last for sev-
eral frames, there are dangling triangles that move
beyond their inflated bounding volumes. We have
to handle them in order to avoid penetration.

At the beginning of a skipping frame session, the
maximum distance of each vertex P is computed
as de(P) = (αv(P) + β v̄)Δt + γ l̄. In the remain-
ing frames of the session, de(P) is updated as
de(P)− v(P)Δt. If de(P) ≤ δd , then the vertex is
marked as a dangling vertex. After that we have to
collect all the dangling vertices and the dangling
triangles. If the number of dangling triangles is
small, we perform BVH traversal for each dangling
triangle individually. On the other hand, if there
are many dangling triangles, we partially update the
BVH in a bottom-up manner [12]. Firstly update the
BVs of the dangling triangles and secondly climb
up the BVH to the root and keep merging the BVs
of internal nodes and mark the nodes (see Figure 4).
Finally, we perform BVH traversal for the marked
nodes to collect PCTPs. We should avoid storing
duplicated copies of the PCTPs in the hash table. In
our simulation, we would like to keep the number
of dangling triangles as small as possible. If it is
not, the cost in traversal for dangling triangles will
be expensive.



V. SELF-COLLISION DETECTION

In order to handle self-collision events for a cloth
model, we partition it into a set of low curvature
sub-surfaces. Each triangle will be assigned to a
low curvature sub-surface. A triangle belonging to
a low curvature sub-surface satisfies the condition
n(t) ⋅ nπ > 0 within the time interval [0,Δt], where
n(t) is the normal of the triangle at time t and nπ
is the representative normal of the sub-surface. In
the following discussion, we assume that the sub-
surfaces of two sibling nodes are connected.

There are two stages to partition a cloth model
into a set of low curvature sub-surfaces. In the first
stage, we compute the continuous canonical cone
[24] for each triangle. If the continuous canonical
cone exists, then the triangle is itself a low curvature
sub-surface. In the second stage, we traverse up
the BVH to check for each internal node to merge
canonical cones of its children. If the merging
process is successful, then the triangles at the leaf
nodes rooted at that node form a low curvature sub-
surface. Then, we keep traversing up the BVH and
repeat the process. If the canonical cone of a node
does not exist, the merging process is stopped for
the node. In this case, we obtain some low curvature
sub-surfaces associated with the child nodes.

Collision detection check is performed between
each pair of the sub-surfaces. The collision check
between two sub-surfaces is performed as an inter-
collision check. There is no collision check for
the triangles belonging to the same sub-surfaces.
Collision events may happen at the boundary of a
low curvature surface. In this case, the method in
[20] should be adopted for checking triangles at the
boundary.

By employing the method to partition a cloth
model, it is required that the sub-surfaces of two
sibling nodes should be connected. To avoid the
problem that the sub-surfaces not connected, we can
perform region glowing to identify the connected
components of a cloth model in the preprocessing
stage. After that the BVH of the cloth model is
constructed so that the sub-surfaces of two sibling
nodes are connected.

VI. ELEMENTARY TEST PROCESSING AND

DISTANCE HEURISTIC

This section presents elementary test process-
ing which consists of two sub-phases: front-end
PCP filtering and back-end PCP filtering phase.
In the front-end PCP filtering phase, we employ
the distance heuristic to eliminate non-colliding
pairs in the PCP pending list. The idea of the
distance heuristic is presented as follows. Let
di

e(OA,OB) be the estimated distance between two
objects OA and OB at frame i. Now in the next
frame, the estimated maximum displacement of the
two objects are di+1

e (OA) and di+1
e (OB), respec-

tively. Their movement directions are not known.
If di

e(OA,OB)> di+1
e (OA)+di+1

e (OB)+δd , then the
two objects cannot collide at the current frame. We
update di+1

e (OA,OB) as di
e(OA,OB)− (di+1

e (OA)+
di+1

e (OB)).
Now in our case for handling a PCTP in the

PCP pending list, the two objects are two triangles
(T0,T1). The maximum displacement of a triangle
T is v(T )Δt, where v(T ) is the speed of T . If
di

e(T0,T1) ≤ di+1
e (T0)+ di+1

e (T1)+ δd , the PCTP is
added to the admissible PCP list. As di

e(T0,T1) is
always less than or equal to the actual distance
d(T0,T1), the proposed method is conservative. Af-
ter we have checked all the PCTP in the PCP
pending list, we proceed to the phase back-end PCP
filtering.

In the phase of back-end PCP filtering, we per-
form continuous collision detection for each pair
in the admissible PCP list. We process the point-
triangle pairs and the edge-edges pairs that are
encoded in the pcpMask. The relative orientation
of all pairs is also updated [18]. After the phase
of back-end PCP filtering, all the colliding point-
triangle and edge-edge pairs are detected.

VII. THE SKIPPING FRAME SESSION

A skipping frame session consists of n f frames.
At the first frame of the skipping frame session,
both BVH update and BVH traversal are performed.
For the remaining (n f − 1) frames, both BVH
update and BVH traversal are skipped. In order to
improve the performance, n f should be computed
adaptively. The idea is given as follows.

During the simulation, we keep track of the CPU
time spent on collision detection and adaptively



adjust α , β and γ . If the average time is getting
better, we increase n f and at the same time change
α , β and γ when necessary. In the remaining
(n f − 1) frames, the expected movement distance
of P is (n f − 1)v(P)Δt. However, P is affected by
its neighboring vertices and the length of edges also
affects the speed of a vertex due to the strain rate of
a cloth model. So, finally the expected movement
distance of a vertex P in the remaining frames
is adjusted to de(P) = ((n f − 1)v(P)+β v̄)Δt + γ l̄.
Thus, α is set as (n f −1). The two values β and γ
are the weights for the average velocity of vertices
and length of edges of the cloth model in computing
de(P) of the vertex P. In our experiments, there
is wind drag affecting the motion of cloth models
and the motion of cloth models is unpredictable.
Thus, instead of computing these two values based
on the simulation time step, they are assigned
constant values. Experimental results showed that
the performance of the skipping frame session is
reasonable when β = 0.2 and γ = 0.1.

If the CPU time spent on collision detection is
getting worse, n f should be decreased and the cur-
rent skipping frame session should be terminated.
If n f is changed to one, the skipping frame session
will be disabled for a while before a new skipping
frame session begins. Sometimes, it is necessary to
set n f as one in order to know the CPU time spent
on collision detection without the skipping frame
session. In this way, we will know whether or not
the performance of the skipping frame session is
reasonable at the moment.

When self-collision detection is performed, each
cloth model is partitioned in the first frame of the
skipping frame session. In the remaining frames,
the continuous canonical cone is computed for each
triangle per time step. We will identify the triangles
that violate the low curvature property of their
current assigned low curvature sub-surfaces. These
triangles may lead to self-collision events. They are
handled individually to check whether or not they
collide with the other parts of the cloth model.

VIII. ANALYSIS AND DISCUSSION

In our framework of APCCD, we rely on the
speed of vertices of the cloth models to estimate
expected movement distance of vertices. In this
section, we show that the higher the resolution of

Fig. 5. Movement without collision. (1): A bounding volume b
moves inside a region B. The region is not necessarily to be a disk.
It can be other shapes. (2): An AABB b moves inside another AABB
B with a distance of d in an arbitrary direction. b will not collide
with the boundary of B if the vertex of b at the lower left corner
lying inside the dark region.

cloth models, the higher the probability of penetra-
tion free movement is. Let b be a small bounding
region and B a large bounding region. Both of them
are convex. Assume that b is randomly allocated
inside B without overlapping the boundary of B.
We want to compute: (1) the expected free move-
ment distance of b and (2) the probability that the
boundaries of b and B do not overlap if b moves
in an arbitrary direction.

A. Expected free movement distance

The expected free movement distance of b inside
B is the average free movement distance of b
without overlapping the boundary of B. It is given
by:

∫
⋅ ⋅ ⋅

∫
{D,Ω}

p(θ ,φ ,x,y,z)r(θ ,φ ,x,y,z)dxdydzdθdφ ,

(1)
where (θ ,φ) is the movement direction of b in the
spherical coordinate system, (x,y,z) is the location
of the reference point of b, D is the spatial do-
main, Ω is the set of possible movement directions,
p(θ ,φ ,x,y,z) is the probability density function that
b moving in direction (θ ,φ), and r(θ ,φ ,x,y,z)
is the maximum distance that b moving in the
direction (θ ,φ) at (x,y,z) without overlapping the
boundary of B.

Consider the case in the one-dimensional space.
Then, both b and B are bounding intervals which
are lying horizontally. Let L be the length of B and
l(≤ L) the length of b . In this case, b can only
move horizontally either to the left side or right
side. Let x be the location of the right hand side



of b. Then the expected free movement distance is
computed as:
∫ L

l

1
L− l

1
2
(L− x)dx+

∫ L

l

1
L− l

1
2
(x− l)dx =

L− l
2
(2)

The smaller l, the longer the expected free move-
ment distance is. Similarly in the three-dimension
space, the smaller the size of b, the longer the
expected free movement distance is.

B. Probability of penetration free movement

Assume that b moves with a distance d in an
arbitrary direction. The probability that the bound-
aries of b and B do not overlap is given by:

∫
⋅ ⋅ ⋅

∫
{D,Ω}

p(θ ,φ ,x,y,z)c(θ ,φ ,x,y,z)dxdydzdθdφ ,

(3)
where c is a characteristic function which is given
by:

c = 0, i f r(θ ,φ ,x,y,z)≤ d+δd

c = 1, otherwise

Consider a simple example with a weak condition
that b moves with distance d in all directions. In the
three-dimensional space, assume that both B and
b are AABBs. In the next frame, the probability
that b still lies inside B is ∏ j

L j−l j−2d−2δd
L j

, where
j indicates a coordinate axis. The smaller the size
of b, the higher the probability is. Assume that the
speed of b is v in each direction and the time step
is Δt. Then d = vΔt. It implies that the probability
of penetration free movement will be higher if the
time step Δt is smaller. A higher resolution of cloth
models requires smaller Δt so as to satisfy the
Courant condition [16]. The analysis is applicable
to inter-collision detection.

IX. EXPERIMENTS

In order to understand the performance char-
acteristic of our methods, we performed two set
of experiments. In each set, there were four an-
imations. Table I shows the model complexities.
In Experiment Set One, the complexity of cloth
models is up to tens of thousands of triangles while
in Experiment Set Two, the complexity of cloth

TABLE I
THE MODEL COMPLEXITIES.

models is up to hundreds of thousands of triangles.
The experiments were all performed on an Intel(R)
Core(TM2) Quadcore CPU machine with 2.4GHz
of 2GB memory and one thread was employed to
perform the computation. We compare our methods
with two methods proposed by [25] and [6], and
other methods at the end of this section. We denote
the method by [25] as NoDup and the method by
[6] as R-TRI. Our methods are labeled as nSwD
and SwD. In nSwD, there is no skipping frame
session but in SwD, the skipping frame session is
enabled. NoDup relies on the primitive assignment
scheme to perform CCD for the primitive pairs.
R-TRI employs the improved primitive assignment
scheme and bounds each primitive (vertex or edge)
with an extra BV.

A. Experiment Set One

In Experiment Set One, the cloth models were
affected by a wind drag model in Animation Two,
Three and Four. Fig. 6 shows the snapshots. In
Animation One, a cloth mode interacted with a
spinning bumpy ball and there were many self-
collision events. In Animation Two, a cloth model
interacted with a ball. The potentially colliding pairs
changed drastically. In Animation Three, a cloth
model interacted with four rigid cones. There were
many collision events due to the large bounding
volumes of the cones. Finally, in Animation Four,
a garment interacted with a mannequin.

Table II shows the performance statistics of Ex-
periment Set One. Compared with NoDup, nSwD



Fig. 6. Experiment Set One: Snapshots.

TABLE II
EXPERIMENT SET ONE: PERFORMANCE STATISTICS.

and SwD outperform it by up to around 50% and
100%, respectively. Compared with R-TRI, nSwD
and SwD outperform it by up to around 20% and
70%, respectively.

B. Experiment Set Two

In Experiment Set Two, there were four anima-
tions. Fig. 8 shows the snapshots of Experiment Set
Two. The motion of cloth models was not changing
drastically. The timing information was collected
for different number of frames in the skipping frame
session. We denote ax f y with the skipping frame
session enabled, where x is the value of n f and y
is the value of α . We compare our methods with
NoDup.

In Animation One, the cloth model consisted of
320k triangles. The initial time step was 5 ms and
it was dynamically adjusted during the simulation
[1]. On average, our method took 660 ms and
NoDup took 830 ms to detect all the colliding pairs
including self-collision events near the end of the
simulation.

In Animation Two, Three and Four, each cloth
model consisted of a half million triangles. The
ridges of the underneath objects are clearly shown.
In Animation Two, there was a deformable vol-
umetric model. The timing information is shown
in Figure 7 without including the timing in self-
collision detection. The numbers at the top of each
bar indicate the speedup factors. The results show
that by employing the skipping frame session, the
speedup factor of our method is in the range from
two to five.

C. Comparison with other methods

The spinning ball benchmark was performed in
several papers. On average, our method took 130
ms to detect both inter- and self-collision events for
the cloth model consisting of 97 k triangles. There
were many folds and wrinkles on the cloth model
in our animation. In [21], it took 246 ms for the
cloth model consisting of around 92 k triangles on
a 2.66 GHz Intel Pentium machine with 2GB RAM
using a single thread. In [20], it took 290 ms on a



Fig. 7. Experiment Set Two: Performance Statistics of Animation Two, Three and Four. BVHU: BVH update. BVHT: BVH Traversal.
ETP: Elementary test processing. The numbers at the top of each bar indicate the speedup factors.

Fig. 8. Experiment Set Two: Snapshots.

machine with similar settings.
As our method is a history-based method, the

required memory is mainly used for storing the
potentially colliding triangle pairs. The memory
size is propotional to the number of potentially
colliding triangle pairs. For example, in the spinning
ball benchmark, the average number of potentially
colliding triangle pairs was 142 k and the memory
size was 48 M.

X. CONCLUSION AND FUTURE WORK

We proposed a novel history-based approach to
perform continuous collision detection for cloth
models using a skipping frame session. Our ap-
proach combines the primitive assignment scheme
and the distance heuristic. Both inter- and self-
collision detection are supported. The skipping
frame session is activated adaptively to accelerate
the process of collision detection. Even though there
are external forces acting on the cloth models, our
method still outperforms some existing efficient
techniques.

There are two limitations in our method. First,
in order to employ the skipping frame session,
the movement distance of the vertices of the cloth
models should be small compared to the size of
bounding volumes of other objects. However, our
experiment results show that when a wind drag
model with moderate strength, the skipping frame
session can still be employed. If the external forces
are too strong, the skipping frame session can be
disabled. By employing the distance heuristic alone,
our method also performs efficiently. Second, as our
method is a history-based method, all colliding pairs
and potentially colliding pairs in close proximity are
hashed, the memory space is quite demanding. On
the other hand, as suggested in [18], tracking pairs
in close proximity is necessary in order to reliably
compute the relative orientation of colliding pairs.

Our future work is to adaptively estimate the
speed of vertices and apply the skipping frame
session to multilayered garments incrementally. As
our method stores all the potentially colliding pairs,



the storage size will be large for models of high
complexity. We are investigating methods to mini-
mize the storage size.

Acknowledgements: We would like to thank the
reviewers for their constructive comments. This re-
search is supported by the National Science Council
of Taiwan (No. NSC 97-2218-E-009-040).

REFERENCES

[1] D.-E. Baraff and A. Witkin, “Large Steps in Cloth Simulation”,
Computer Graphics (SIGGRAPH’98), pp. 43–54, 1998.

[2] G. van den Bergen, “Efficient Collision Detection of Complex
Deformable Models using AABB Trees”, Journal of Graphics
Tools, vol. 2, no. 4, pp. 1–14, 1999.

[3] R. Bridson, R. Fedkiw, and J. Anderson, “Robust treatment of
collisions, contact and friction for cloth animation”, ACM ToG,
vol. 21, no. 3, pp. 594–603, 2002.

[4] K.-J. Choi and H.-S. Ko, “Stable but responsive cloth”, in ACM
SIGGRAPH, 2004, pp. 604–611.

[5] M. Courchesne, P. Volino, and N. Magnenat-Thalmann, “Ver-
satile and Efficient Techniques for Simulating Cloth and Other
Deformable Objects”, in SIGGRAPH, 1995, pp. 137–144.

[6] S. Curtis, R. Tamstorf, and D. Manocha, “Fast collision detec-
tion for deformable models using representative-triangles”, in
Proceedings of the 2008 symposium on Interactive 3D graphics
and games, 2008, pp. 61–69.

[7] S. Gottschalk, M.-C. Lin, and D. Manocha, “OBBTree: A
Hierarchical Structure for Rapid Interference Detection”, in
ACM SIGGRAPH, 1996, pp. 171–180.

[8] M. Hutter and A. Fuhrmann, “Optimizied continuous collision
detection for deformable triangle meshes”, in WSCG, 2007, pp.
25–32.

[9] J.-T. Klosowski, M. Held, S.-B.-J. Mitchell, H. Sowizral, and
K. Zikan, “Efficient collision detection using bounding volume
hierarchies of k-DOPs”, IEEE Trans. on Vis. and Comp.
Graphics, vol. 4, no. 1, pp. 21–36, Jan. 1998.

[10] D.-E. Knuth, Sorting and Searching: The Art of Computer
Programming, 2nd ed. Addison-Wesley, 1997, vol. 3.

[11] T. Larsson and T. Akenine-Moller, “Efficient collision detection
for models deformed by morphing”, Visual computer, vol. 19,
no. 2, pp. 164–174, May 2003.

[12] T. Larsson and T. Akenine-Moller, “A dynamic bounding vol-
ume hierarchy for generalized collision detection”, Computer
and Graphics, vol. 30, pp. 451–460, 2006.

[13] J.-D. Liu, M.-T. Ko, and R.-C. Chang, “Collision Avoidance in
Cloth Animation”, Visual Computer, vol. 12, no. 5, pp. 234–
243, 1996.

[14] J. Mezger, S. Kimmerle, and O. Etzmuss, “Hierarchical tech-
niques in collision detection for cloth animation”, Journal of
WSCG, vol. 11, no. 1, pp. 322–329, 2003.

[15] M. Moore and J.-P. Wilhelms, “Collision detection and re-
sponse for computer animation”, Computer Graph., vol. 22,
no. 4, pp. 289–298, 1988.

[16] X. Provot, “Deformation constraints in a mass-spring model to
describe rigid cloth behaviour”, in Graph. Interface, 1995, pp.
147–154.

[17] X. Provot, “Collision and self-collision handling in cloth model
dedicated to design garments”, in Computer Animation and
Simulation, 1997, pp. 177–189.

[18] A. Selle, J. Su, G. Irving, and R. Fedkiw, “Robust High-
Resolution Cloth Using Parallelism History-Based Collisions
and Accurate Friction”, IEEE TVCG, 2008.

[19] A. Smith, Y. Kitamura, H. Takemura, and F. Kishino, “A simple
and efficient method for accurate collision detection among
deformable polyhedral objects in arbitrary motion”, in Virtual
Reality Annual International Symposium, 1995, pp. 136–145.

[20] M. Tang, S. Curtis, S.-E. Yoon, and D. Manocha, “ICCD: In-
teractive Continuous Collision Detection between Deformable
Models Using Connectivity-Based Culling”, IEEE TVCG,
vol. 15, no. 4, pp. 544–557, 2009.

[21] M. Tang, , S.-E. Yoon, and D. Manocha, “Adjacency-based
culling for continuous collision detection”, Visual Computer,
vol. 24, pp. 545–553, 2008.

[22] M. Teschner, S. Kimmerle, G. Zachmann, B. Hei-delberger,
L. Raghupathi, A. Fuhrmann, M.-P. Cani, F. Faure,
N. Magnetat-Thalmann, and W. Strasser, “Collision detection
for deformable objects”, in Eurographics State-of-the-Art Re-
port, 2005.

[23] P. Volino and N. Magnenat-Thalmann, “Efficient self-collision
detection on smoothly discretised surface animation using ge-
ometrical shape regularity”, Computer Graph. Forum, vol. 13,
no. 3, pp. 155–166, 1994.

[24] S.-K. Wong and G. Baciu, “Dynamic interaction between
deformable surfaces and nonsmooth objects”, IEEE TVCG,
vol. 11, no. 3, pp. 329–340, 2005.

[25] S.-K. Wong and G. Baciu, “A Randomized Marking Scheme
for Continuous Collision Detection in Simulation of De-
formable Surfaces”, in ACM International Conference on Vir-
tual Reality Continuum and Its Applications, 2006, pp. 181–
188.

[26] S.-K. Wong and G. Baciu, “Robust Continuous Collision
Detection for Interactive Deformable Surfaces”, Computer An-
imation and Virtual Worlds, vol. 18, no. 3, p. 179, 2007.


