thERE/ /xR EEEE

Material-Preserving Progressive Mesh Using Geometry and

Topology Simplification

Shu-Kai Yang

Jung-Hong Chuang

Department of Computer Science and Information Engineering
National Chiao Tung University
Hsinchu, Taiwan, Republic of China

Abstract

Level of detail (LOD) modeling or mesh reduction
has been found useful in interactive walkthrough
applications. Previous solutions in general employ
either geometry or topology simplification, each
alone has its own strength. Progressive meshing
techniques based oun edge or triangle collapsing
have been recogunized useful in continuous LOD,
progressive refinement, and progressive transmision.
We present a mesh reduction scheme that combines
geometry and topology simplification, and produces
a progressive mesh which generally has more than
three vertices collapsed hetween two adjacent levels.
The method also preserves the color discontinuity,
which is perceptually important; but has been less
studied in the literature.

Keywords: Virtual reality, level of detail, pro-
gressive mesh, material preserving, topology
simplification

1 Introduction

In virtual reality applications, maintaining a fast and
constant frame rate is criucial for achieving a smooth
and realistic visnal perception. Although graphics
hardware has advanced remarkably, complex scenes
defined by millions of polygons can easily excced the
maximum number of polygons that can be processed
in real time. Moreover, the advance in graphics hard-
ware stimulates the demand for displaying even larger
data sets. One way to achieving a fast frame rate is
to reduce the polygon flow that is sent to the graph-
ics pipeline for shading. Traditional methods, which
involve chipping, hierarchical traversal, and culling,

are no longer effective for complex virtual environ-
ments. For rendering architecture buildings, meth-
ods have been proposed that aim to obtain a poten-
tial visible set by performing cell segmentation, cell-
to-cell visibility, and finally eye-to-cell visibility [20].
For rendering environments with large occluders, the
so called conservative visibility has been proposed to
eliminate polygons behind the occluders [6].

When applied to complex scenes, these methods
alone, however, may not achieve a fast frame rate
simply because objects in the scene are modeled by
just too many polygons. It has become apparent that
in addition to the accurate geometric representation
of models we do need specialized representations tai-
lored for efficient graphical display. In practical point
of view, when navigating in an 3D environment, a
participant does not really sce all objects in their full
detail. For example, when an object is far away, small
features might not be seen even the object itself is still
a visually significant element in the scene. In this re-
spect, level-of-detail (LOD) modeling has become a
standard object representation, in which each object
1s assoclated with a set of representations with dif-
ferent levels of detaill. When an object is rendered,
its representation of a proper detail will be chosen
depending on observer’s distance, view angle, move-
ment criteria, and so on.

Many algorithims proposed concentrate on preserv-
ing curvature and sharp edges; but assuming no mod-
ification on the topology. Algorithms of this kind
might suffer from the difficulty on obtaining LOD
with low-reduction rate. On the other hand, some
algorithms achieve very low-reduction rate by em-
ploying topology simplification; but fail to have a
good preservation on the shape. Progressive mesh-
ing have been emphasized aiming to provide a con-
tinuous LOD, progressive refinement, and progres-
sive trsnamission. Current progressive meshing al-
gorithms, however, tend to collapse only edges or
triangles, and hence possess a very long sequence

B-540

of meshes. Another issue that is nmportant but
has heen addressed less 1s the preserving of mate-
rial property, especially the discontinuity of material
attributes such as color.

In this paper, we are primarily concerned with how
to achieve several desired features that come froin
several mesh simplification methods all together in
a single reduction scheme. The method proposed
employvs both geometry and topology simplification,
and in the meantime preserves the color discontinuity.
The paper is organized as follows. Section 2 outlines
related work on LOD generation. Ouc approach is
described in Section 3. Implementation issues and
experimental results are shown in Section 4. Finally,
conclusions are drawn in Section 5.

2 Related Work

Many mesh simplification algarithms have been pro-
posed. Most algorithms work by applying local ge-
ometry based criteria for simplifying small regions on
the meshes {7, 10, I8]. "The criteria are iteratively
applied until the criteria are no longer satisfied or a
user-specified reduction rate is achieved. Some al-
gorithms optimize the geometric simplification gloh-
ally over the whole mesh [5, 11, 21]. Most of these
methods have satisfactory capability on preserving
shape; but might fail to achieve very low reduction
rate mainly due to their constraint on topology pre-
serving. Some local geometry based algorithms have
been extended to modify topology while doing geom-
etrv simplification [14, 17]; the topology simplifica-
tion 1s, however, limited. The method that simplifies
hoth geometry and topology is the vertex clustering
algorithm [16]. The method is extremely general, as
it works on any type of meshes, 1t can achieve very
low reduction rate, and it can eliminate small geo-
metric features and change the topology of a model.
It, unfortunately, does poorly on shape preservation.
Traditional simplification methods yield meshes for
a mimber of levels of detail, usnally 5 1o 10, for a given
model. A hmited nnmber of levels of detail for selee-
tion often resulis in noticeable flickers when switch-
ing bhetween diflerent levels of detail. The so called
conlinuous lcvel-of-detail or pregressive mesh is one
of the useful representations to reduce the popping
effect. Progressive mesh allows a sinooth visual tran-
sition between various levels of detail. The progres-
sive mesh can he obtained by removing vertices [17];
collapsing edges [10]; and collapsing triangles [9].
Schroeder et al. [18] have proposed a vertex dec-
imation that simplifies the mesh by removing ver-
tices. Vertices are first categorized to five categories,

B-541

namely simple, interior edge, boundary, corner, and
complex. Among the five categories, corner and com-
plex vertices are retained while the rest can be re-
moved if the vertex satisfies a distance criterion. Re-
moving a vertex from the mesh creates a hole that can
be filled by retriangulation. The decimation method
have been extended to generate progressive meshes
in [17]. In [12] the uniform cluster cells are replaced
by so called floating cells, which are centered around
their vertex of highest weight.

Hoppe [10] describes a progressive meshing method
based on edge-collapsing operation. Edges are first
ordered according to the cost that is the result of
an energy minimzation function. The cost in gen-
eral measures the amount of error introduced into
the model as the result of collapsing the edge. Edges
are then repeatedly collapsed. At each collapsing the
edge of the lowest cost is collapsed and the costs of
adjacent edges are updated. FEach edge collapsing
yields a mesh with two triangles less then the mesh
of previous level. The result is a base mesh together
with a sequence of edge-collapsing records, each of
which can be used to recover finer representation of
the mesh. Edge-collapse methods that incorporate
with different cost evaluations have been described
in [7, 14, 15]

Gieng et al. [9] describes a progressive meshing
method through triangle-collapsing operation. Tri-
angles are sorted based on fhe approximate curva-
ture for the underlying surface in the area of the
triangle. The progressive mesh is obtained by re-
peatedly collapsing a number of triangles that can be
collapsed simultaneously. Thus, the result is a bash
mesh together with a sequence of a set of simultane-
ous triangle-collapsing operations.

Another issue that has not been addressed much is
the preservation of material property. Two emphases
on material preservation have been considered: the
attribute associated with vertices over the mesh and
attribute discontinuity. The attribute associated with
vertices are preserved during simplification by texture
mapping that is built using a mapping between the
vertices of the original mesh and the simplified mesh
(2, 3,4, 13, 19]. Garland et al. {§] extends the quadric
error metrics [7] to account for material attributes
associated with vertices and attribute discontinuity.

3 Material-Preserving Progres-
sive Mesh

3.1 Overview of the Method

Most traditional methods for generating progressive
mesh based on geometric simplifications, such as edge
or triangle collapsing and vertex decimation, and
some local-topology modification as well. The pro-
posed algorithm aims to produce an effective progres-
sive mesh by (a) allowing more than three vertices to
be collapsed or clustered at each level, (b) empolying
geometric simplification as well as topology simplifi-
cation that involves local and global topology mod-
ification, and (c) using effective criteria to preserve
geometric shape, especially sharp feature, and color
discontinuity.

The proposed algorithm begins with a preprocess-
ing, in which each vertex is classified into five cate-
gories and evaluated to yield a weight and a priority
value, then the bounding box of the given mesh is
uniformly subdivided into cells of size 7. The algo-
rithin then enters a simplification loop, in which each
cycle yields a simplified mesh. In each cycle of mesh
simplification loop, we do the following:

1. Select a vertex with the highest priority value
to be the representative for the next clustering
operation,

. Create a floating cell of sie T that is centered on
the representative to confirm the spatial range of
vertex clustering,

. Start at the. representative and generate the
spanning tree for all vertices that are inside the
floating cell and can be clustered to the repre-
sentative,

Cluster all vertices in the spanning tree to the
representative. Delete the triangles that contain
two or three clustered vertices, and replace the
clustered vertex by the representative for trian-
gles that contain one clustered vertex,

. Record the clustered vertices, vanishing trian-
gles, and the vertex replacements,

ot

. Update the weights and priority values for the
representative and its neighboring vertices.

The cyele is repeated mntil a user-specified redue-
tion rate 15 reached. The loop yields a sequence of
meshes A", Af77) .. AV for some n, in which
M™ is the original mesh and Af° is the most simpli-
fied mesh called hase mesh. The resulting progressive

B-542

mesh consists of the base mesh M° and the sequence
of recorded information necessary for the refinement.

3.2 Vertex Categorization

All vertices of the given mesh are classified into five
categories based on the material of triangles incident
to the vertex. Such a vertex categorization is different
from that found in mesh decimation [18]. A vertex is
a simple vertex if all triangles incident to it form a
loop and are of the same material. A simple vertex
is an edge vertex if visiting the loop of incident trian-
gles encounters two material changes. A vertex is a
boundary vertex if it is geometrically on the bound-
ary of the mesh. A simple vertex is a corner verles
if visiting the loop of incident triangles encounters
more than two material changes. A vertex is a non-
manifold vertez if it possesses more than one loop of
incident triangles. See Figure 1 for illustration. Ver-
tex category for the vertex v is an integer denoted by
category(v) as shown in Figure 1.

A)
9
1. simple

2. edge 4. comaer

A
V2
3. boundnry $ nonsnmifold

Figure 1: Vertex categories.

3.3 Priorvity Assignment,
Function, and Weighting

Penalty

Such a vertex categorization is useful in preserving
material border and open boundary in the sense that
vertices of lower category value can not cluster those
with higher values. In Step 3 of the loop, we need
to know if a vertex u can be clustered to representa-
tive v. To this end, besides vertex category, we need
also to consider the perception importance of a ver-
tex and the penalty of clustering a vertex to another.
Tere, the perception importance of a vertex v is de-
noted as weight(v) and the penalty of clustering u to
v is denoted by penalty(u,v). We will show how to
define penalty(w,v) in such a way that we can claim
7w can be clustered to v if penaliy(u,v) < ¢, where
¢ is a model-independent constant”. This will elimi-
nate the difficulty of determining a threshold, which
is usually model-dependent. Now, a vertex u can be
clustered to v if the following three conditions are
satisfied simultaneously:

1. category(v) > category(u).
if

2. weight(v)
category(u).

> weighi(u) category(v)

3. penaliy(u,v) < e, for some fixed €.

3.3.1 Priority Assignment

Selecting the vertex with the highest perception im-
portance as the representative in Step 1 will end
up with an undesirable progressive imesh since, us-
ing that progressive mesh, less perceptionally impor-
tant portions will be refined first from the base mesh.
Here, we define the priorily value of a vertex v as the
number of vertices that can be clustered into v. The
vertex with the highest priority value will be selected
as the representative for clustering so that geometri-
cally or perceptionally important portions get refined
first from the base mesh.

3.3.2 Penalty Function

The function penaliy(u, v) should be designed to pre-
serve the geometric features such as sharp features
and areas of high curvature. In reviewing such geo-
metric eriteria found in literature, many of them re-
quire user-specified parameters, which are in general
model-dependent. and hence require prior knowledge.
In developing the penaliy(u, v), we have tried to alle-
viate such constraints.

For the penalty function of clusteriug u to v, we
consider the following two factors:

1. d = ||u~ v, representing the distance between
u and v, and

- n=max;((|n}y —n;l]), where f is a triangle that
is adjacent to u; but not v, ny and n’f are unit
normals of | before and after clustering u to v,
respectively. The value n represents the maxi-
mum normal difference of relevant triangles re-
sulting from clustering « to v.

In edge collapsing approach, the penally(u,v) is
usually defined as a linear combination of d and n;
l.e.,

penalty(u, v) = ad + fn,

for some o and 3. The edge (u, v) will be collapsed if
penalty(u, v) is less than or equal to a user-specified
threshold ¢. Such a criterion poses a fow problems.
First of all, the scale of d is model-dependent and
value of » is in the range of [0,2]. As a consequence,
when the scale of d is large, penally(u,v) will not
change no matter what n is; on the other hand, when
the scale of d 15 small, the value of d cannot mfluence
Secondly, a fixed
(e, /3) doesn’t work for all models, especially due to
the first. problem. Hence, different. models may re-
quire different pairs of («, 3). Thirdly, the threshold

the value of penaliy(uw, v) much.

B-543

€ is model-dependent and it is hard to predict the
reduction result for a particular e.

To alleviate the problems,
penalty(u, v) as

we formulate

penally(u,v) = f(d) g(n),

and expect that f and ¢ reveal the following three
properties:

1. g(n) remains very small when n is very small and
increases rapidly when n is larger than a partic-
ular number. This will encourage the clustering
to proceed when n is small and d is arbitrary,
and will limit the clustering when n is large.

. The scale of f(d) should be model-independent
such that f(d) ranges inside a fixed interval. We
expect that f(d) is small when d is small, and
remains fixed when d is not small; that is, when d
is not small, the value of penalty(u, v) will largely
depend on g(n). This will allow the clustering to
proceed when d is small and n is arbitrary. Hence
small geometric features of high curvature can be
eliminated in the reduced mesh.

. The choice of f and g should allow the threshold
¢ to be model-independent.

Ideal shapes of f(d) and g(n) are shown in Figure 2.
Our choice 1s f(d) = (—T‘!)% and g(n) = e”; that is,

10 [-r 7
6
o8 { K
a6 H 1
04 &3
, /
1
o 1
) R .
(17 05 19 0on n.s 10 1.5 pay

Figure 2: Ideal shapes of f(d) and g(n).

d
penaliy(u,v) = (—)%en,
' T

where 7 is the cell size in the uniform subdivision.
Figure 3 shows the shapes of f(d) and g(n). Since

10 7 -
03 s /S “

3 X
06 1 Z
04 f{ £

{ 2
02 1
X bR 12 [0 0a 10 3 2

Figure 3: Shapes of f(d) = (g)%

the clustered vertex must be inside the floating cell,
the value of i} must be less than or equal to 1, and
so does f(d). Since n € [0.2], y(n) = " € [1,¢7].
Cousequently, for model of any seale, penalty(u, v) =
(7
15 independent on the scale of the model and can be

1 . . .
)3 must be inside [0, ¢°], and hence the size of €

chosen by the systein. Sinee for a given ¢ there exist
a 7 such that penalty(u,v) = _(i:—)%('" is less than or
equal to ¢. The system begins with an ¢ and a T,
and doubles the value of © when the user-specified
reduction rate has not been achieved. Such a process

repeats until the rdenction rate is achieved.

3.3.3 Weighting Function

The weight of a vertex considered in [16] takes the
combination of the maxinnim angle between incident
edges and the maxinnnu length of incident edges into
account. Similavly, weight(v) heve is defined by

weight(v) = wax(|la — vfjyem sl =nsl)
u

where w is the neighboring vertex of », [is the tri-
angle contaiing v, n, and ny are unit normals at v
and of [, respectively.

3.4 Clustering by Spanning Tree Ex-
pansion

Starting from the representation u, we next seek all
vertices that can be clustered to the representative.
Those vertices must be inside the floating cell and
satisfy three conditions described in previous section.
This search of clustered vertices can he performed by
the spanning tree expansion starting from the repre-
sentative. Such a spanning tree can be constructed
by a branch-first search over the mesh. Note that spe-
cial cares must he taken in the tree expansion since
loops exist on the mesh.

Separate meshes may exist inside a floating cell.
When such a case happens, the spanning tree expan-
sion repeats as follows. After the spanning tree T
starting from the representation » is constructed, we
find 1n a separated mesh a vertex v* that is closest
to the representative » and construct the spanning
tree starting from v/, The constructed spanuing tree
T then becomes a child of »; that is, 77 becomes a
suh-tree of T under v. Such a search for v continues
until all separate meshes are considered. Figure 4 il-
Justrates the construction of two separate spanning
trees and how they are connected.

After the spanning tree is constraucted, all vertices
except the root are clustered to the root. Those tri-
angles with two or three vertices clustered become

B-544

{a) Spanning (h) Spanning (c) Connect T
tree 7. trees T and to T.
v 7.

Figure 4: Spanning trees on separate meshes and
their connection.

degenerate and are removed from the mesh, while
those with one vertex clustered are retained but with
the clustered vertex replaced by the root (the repre-
sentative). Figure 5 shows the triangle removal and
the vertex replacement.

SEANAGY
o)

4N 0
i

e

\Y,
i
Original

(a)

mesh,

(b) After tri-
angle removal.

(<)
vertex
placement.

Figure 5: Clustering operation.

3.5 Global Error Control and Error
Accumulation

The penalty function proposed considers only lo-
cal geometry and cannot yield a global error con-
trol, in which the displaced-distance of each ver-
tex in the base mesh is required to be less than or
equal to a user-specified tolerance. The computa-
tion for ensuring the global error control, however,
1s usually complicated. Tere we consider an ap-
proximate global error control, which is similar to
the method in {1]. We associate with each vertex
w a value, called shift,ar (), representing the maxi-
muam displaced-distance of the vertices clustered to
t. Then when determining if v should be clus-

After

re-

tered to v, we replace d in the penalty(u,v) by
d+5hiflmaz(u). Such a replacement will ensure that
d+shifimar (1) will be less than or equal to 7; oth-
erwise (d+shiftyaz(1))/T will be larger than 1, and
in turns, penalty(w,v) > 1 will hold. Note that, af-
ter clustering v to v, the shift,,.-(v) is updated to
hiflyar (1) = max,(||n — vl|4+shiftar(u)), for all v
that is clustered to v.

A carefully modeled mesh often has more trian-
gles in the areas of higher curvature. The simphifi-
cation scheme, however, may repeadtedly try to sim-
plify these areas of higher curvature. To avoid such
repetition, we can associate each vertex v with a
shiflgerum(v) and accumulate |ju—vl| to shiftaceum(v)
after clustering u to wu; that is, shiflyceum(v) =
. lu—=2||. T computing penaliy(u, v), we replace d
by d+shiftycum(v). 100 has been repeatedly selected
as a represcntative, the proposed scheme will limit
the number of vertices that can be clustered to v and
hence » will not serve as a representative after v has
clustered many vertices. With this scheme, the shape
of a high enrvature area can be easily preserved by
retaining more vertices. The global error control and
errar accumlation can be achieved simultaneously by
replacing d in penalty(u, v) with d+max(shiftyar(u),
shiftoccum(v)).

3.6 Progressive Mesh Generation and
Defragmentation

The clustering proceeds until a user-specified reduc-
tion rate is obtained and produces a sequence of
meshes, denoted as A7™, A" ... MY MY for some
n. All eliminated vetices and triangles, and vertex re-
placements for each clustering operation are recorded.
Thus, using this sequence of recorded information,
the original mesh can be recovered by refinning {rom
AP,

In our implementation, all triangles and vertices
are stored in arrays. The refinement records are usu-
ally stored in scattered positions, which complicates
the data strncture and slows down the refinement,
and hence shonld be defragmented. As shown in Fig-
ure 6, triangles in the base mesh A% are stored as the
first part of the triangle array, the addéd triangles for
each refinement are then stored in a slot-by-slot basis
and in the order of refinement. Vertex array and ver-
tex replacement array are arranged in a similar way.
The refinement. and coarsing of the progressive mesh
can then be done by simply moving the index offsets
to the trinngle array and vertex array, and perform-
ing a number of vertex replacements indicated on the
vertex replacement array. Using such a data stoue-

B-545

Luse mest chagles

wigigles added by refinement 1

| SRR

tremgles added by refincinen). 2

optimizanon

—

g e trimgles edded by refinement 3

Figure 6: Defragmentation of triangle array.

ture, every refinement takes only O(1) time to update
the index offsets, and the refinement from MO to M™
takes O(m) time, where m is the triangle number of
the original mesh. Ience the array structure with
defragmentation can simplify the data structure and
speed up the refinement process.

3.7 Level Reduction

Although the progressive meshing is able to cluster

more than three vertices, the resulting number of lev-

cls might be still too high. To further reduce the
number of levels in the progressive mesh, we also re-
peatedly merge the pair of two adjacent refinements.
As depicted in Figure 7, the refinements R; and R4,
are merged to R}, similarly the coarsings C'i41 and
C; are merged to C7,,. Such a mergence needs to
take unions of added vertices, triangles, and vertex re-
placements for R; and R;41. Before taking the union
of vertex replacements for R; and Rjy1, we need to

do the following:

1. If f is an added triangle in R; and in the mean-
time has one vertex replaced in R;yq, the vertex
replacement for f should be done before it be-
comes an added triangle in R, ;.

2. If f is a triangle having vertex vg replaced by vy
in R; and then vy is replaced by va in Riy, then
J will be a triangle in R}, that has vertex vo
replaced by wa.

This mergence is repeatedly applied to two adjacent
levels MY and M7F! that have the least sum of tri-
angles added in R; and Rj4p until a user-specified
number of levels is reached. This order of mergence
tends to make the changes of triangle number more
uniform among levels, Note that, the level reduction
also results in a more efficient refinement and coars-
ing process between levels since vertex replacements
between adjacent levels have been merged.

Ro-t R, Rivs R:+s Modals # of levels Avesage vefining Reduced 3 Avesnge velining
¢ \’L D —~ . of levels time in second time in second
Ny A e Canstick 734 0.000675 100 0.000500
A M w Footbones 317 0.000550 160 0.000450
— EN AN . Baster 450 0.000650 100 G.000528
. . - - Beethioven 1105 0.600900 100 0.000675
-1 o, Ci+1 Ci+2 Tow w01 0.000725 160 ©.600550
Strestlamp 1325 0.001375 100 0.001325
Teapoit 81 0.001175 100 0.000875
Spidar 86T 0.001175 100 0.000700
Dog i6ad 5.003775 100 0.002875
, R Bunay 3484 7.014300 100 0.004550
Re-1 R+ {42
- — T e, I . . . 0
Ce A0 BRI Fable 2: Average time mn second for refining from M
—— N £
- . T~ to M.
Ci-1 Cra Ciiz

Figure 7: Merge two refinements and coarsing steps.

Models Size(A1T) Size(A") Tisae | # of levels Triangle

in sec. number
Canstick 41450 498 1 T34 4.98
Footbones 9204 406 i 417 8.89
Easter 4076 Sy 1 450 9.956
Hecthoven SN0 o 2 1108 4.10
Cow B 406 2 501 10,60
Fireetlamp ARIA Ll 8 1225 6 AN
Teaport aeln 06 o 831 10,45
Spider 1A 468 3 &67 10.14
Ling 3TRAN AU 40 1624 200,56
Bunny L4901 R a2 3484 19.79

Triangts number: average namber ndf triangle slusterad in each level

Table 1: Computation efficiency and clustering per-
formauce.

4 Experimental Results

The proposed method has been implemented using C
language and several models have been tested on a
PC with Pentimm 1T 233MHz CPU, 64M RADM, and
Window NT 4.0.

We first demostrate the computation efficiency of
our method. As shown in Table 1, each of ten models
has been simplified to about 500 triangles in 1 to 40
seconds. In each clustering step, in average 4.10 to
20.56 triangles are clustered.

The number of levels i1s in general depeudent on
model’s geometry and the number of triangles in its
original mesh. For the test models, 412 to 3484 levels
are obtained. Levels of all models are also reduced
1o 100 levels. On each model, we have performed
20000 runs each of which refines the mesh from A7°
to M7 followed by simplifying from M7 to AlY. Ta-
ble 2 shows the timing data of this experiment for the
progressive meshes with original levels and reduced
levels. For progressive meshes with higher nnmber of
levels, the efficiency gain from level reduction 1s more
significant.

We show figures of some tested models, inclnd-
ing Beethoven scupture, bunny, foothene, spider, and
easter. Beethoven scupture has many geometrie fea-
tures in hair, on face, on necktie and cloth. Using ge-
ometric simplification alone, low reduction rate will
he hardly abtainable due to the preservation of sinall

B-546

geometric features. On the other hand, cluster ap-
proach may eliminate small geometric features in the
beginning of the clustering process. The proposed
penalty function is in general able to sensitively de-
tect, the effect of normal change, and in the meantime
negleet the normal change when the vertex distance
is small. So small geometric features on Beethoven
scupture are retained in the early phase of the sim-
plification process, and are eliminated when a low
reduction rate is required. See Figure 8 for the im-
ages of Beethoven scupture with four levels. Fig-
ure 9 shows images of bunny model. Bunny model
also has many small protrudent features, which are
retained for models with 10000 triangles, and grad-
nately smoothed out in model with 1000 triangles,
and totally smoothed out in model with 491 triangles.
The bunny model-with 100 triangles still preserves its
global shape.

The topologies in footbones and spider model are
modified or simplified in our test. In footbones model
with 1950 triangles, digjoint but close bones are con-
nected. In models with 1034 and 412 triangles, long
or thin bones are simplified to 2D triangles or 1D seg-
ments. In spider model with 2032 triangles, joints on
the foot are smoothed out. In model with 1022 tri-
angles, foots and tentacles are simplified to 2D trian-
gles. In model with 500 triangles, tentacles and some
tail parts of the foot are simplified to 1D segments
and disappear. Figures 10 and 11 show the reduced
meshes and their shaded images of footbones and spi-
der model. The preservation of color discontinuity is
depicted in Figure 12. The color discontinuity on the
raster model is maintained in the sense that the bor-
der line ts simplified as well when the mesh 1s reduced.

4.1 Discussion

The proposed penalty(u,v) has shown its good capa-
bilily in preserving geometric features and its ability
to eliminate small features such as that on cheese-
like surfaces. By using the connecting spanning trees
found in separate meshes inside athe floating cell, dis-
joint meshes can be joined. More, due to the nature

15
R «

it A

o
(a) 5030 triangles.

(c) &

Figure 8: Beethoveu's scupture.

OR tnangles,

triangles.

triangles.

e

@y 412

Figure 10: Footbones model.

riangles.

(a) 9286

(c) 1000 triangles,

W

Figure 9: Bunny model.

(A) 491 triangles.

iriangles,

JIAN

triangles.

~he
- :}%ﬁ% 185

£ 4:‘"\‘ N

, b

7 I 4

" (d) 500

’;ﬁl :;
=

triangles.

Figure 11: Spider model.

B-547

triangles.

triangles.

(c) T466triangles. (1) 498 triaungles.

Figure 12: Easter model.

of the clustering operation, a triangle can be reduced
to an edge or a vertex, and hence is eliminated. So
thin portions of a given mesh can be reduced to a
2D polygon, or a 1D line segment and hence is elim-
mated.

5 Conclusions

We have proposed a mesh reduction method that
combines the geometry and topology simplification,
and their advantages as well. The method produces
a progressive mesh by using a more general collapsing
scheme, in which more thaii three vertices can be clus-
tered in each reduction step. The method also pre-
serves the discontinuity of color atiribute (color bor-
ders), which is perceptually important but has been
less addressed in previous methods. The method be-
gins with a preprocessing, in which each vertex is
classified into five categories and evaluated to yicld a
weight and a prionity value, then the bounding box
of the given mesh is uniforinly subdivided. The algo-
rithm produces a progressive mesh by repeatedly ap-
plying the simplification step, each yvields a simplified
mesh. In each simplification step, we (1) select a ver-
tex with the highest priority value to be the represen-
tative for the next clustering operation, (2) create a
floating cell centering on the representative Lo confirm
the spatial range of vertex clustering, (3) search for
vertices that can be clustered to the representative,
(1) cluster vertices and delete degenerate triangles,

and finally (5) record the clustered vertices, vanish-
ing triangles, and the vertex replacements. We have
found that the proposed penalty function can effec-
tively preserve geometry features and is able to elim-
inate small features of high curvature. The involved
clustering operation has also shown its strength on
topology simplification. The color discontinuity is
also effectively preserved in such a way that the color
border is simplified as well when the mesh is reduced.
As the future research directions, we are currently
extending the proposed method to support a view-
dependent refinement of progressive mesh.

References

[1} A. Ciampalini, P. Cignoni, C. Mantani, and
R. Scopigno. Multiresolution decimation based
on global error. The Visual Computer, 13:228-
246, 1997.

P Cignont, C. Montani, C. Rocchini, and
R Scopigno. A general method for preserving
attribute values oun simplified meshes. In Pro-
ceedings of IEEE Visualization '98, pages 59-66,
1998.

[3] J. D. Cohen, D. Manocha, and M. Olano. Sim-
plifying polygonal models using successive map-
pings. In Proceedings of IEEE Visualization 97,
pages 395-402, 1996.

{4 J. D. Cohen, M. Olano, and D. Manocha.
Appearence-preserving simplification. In Pro-
ceedings of ACM Siggraph 98, pages 115-122,
1998.

J. D. Cohen, A. Varshney, D. Manocha, G. Turk,
1. Weber, P. Agarwal, F. P. Brooks, Jr., and
W. Wright. Simplification envelopes. In Pro-
ceedings of ACM Siggraph 96, pages 119-128,
1996.

[6] S. Coorg and S. Teller. Real-time occlusion
culling for models with large occluders. In Pro-
ccedings of ACM Symposium on Interaciive 3D
Graphics '97, pages 83-90, 1997.

[7] M. Garland and P. S. Heckbert. Surface simpli-
fication using quadric error metrics. In Proceed-

ings of ACM Siggraph '97, pages 209-224, 1997.

M. Garland and P. S. Heckbert. Simplifying sur-
face with color and texture using gquadric error
metrics. In Proceedings of IEEE Visualization
08, pages 263-269, 1998.

B-548

9]

[10]

(1]

[13)

[14]

[19]

T. 5. Gieng, B. Hamann, K. 1. Joy, G. L. Schuss-
man. and 1. J. Trotts. Constructing hierarchies
for triangle meshes. IEEE Transactions on Visu-
alization and Computcr Graphics, 4(2):145- 161,
1998.

H. Moppe. Progressive meshes, In Proceedings

af ACM Siggraph "96, 1996.

H. Hoppe, T. DeRose, 'T. Duchamp, J. McDon-
ald, and W. Stuetzle. Mesh optimization. In
Proceedings of SIGGRAPH 03, pages 19-26,
1993.

K. L. Low and T. S. Tan. Model simiplifica-
tion nsing vertex-clustering. In Proceedings of
ACM Symposium on Inieractive 3D Graphics
97, pages 75-81, 1997,

M. Maruya. Generating texture map from
object-surface texture data. In Proceedings of
Eurographics "95, pages 397-105, 1995.

J. Popovié¢ and H. Hoppe. Progressive simplicial
complexes. In Proceedings of ACM Siggraph 97,
pages 217-224, 1997,

R. Ronfard and J. Rossignac. Full-range approx-
imation of triangnlated polyhedra. In Proceed-
ings of Eurographics 96, 1996.

J. Rossignac and P. Borrel. Multi-resolution 3-D
approximations for rendering complex scenes. In
B. Faleidieno and T. L. Kunii, editors, Modcling
in Computer Graphics, pages 455-465. Springer-
Verlag, Berlin, 1993.

W. J. Schroeder. A topology modifying pro-
gressive decimation algorithm. In Procecdings
of IEEE Visualization 97, 1997.

W. J. Schroeder, J. A. Zarge, and W. E.
Lorensen. Decimation of triangle meshes.
Compuler Graphics (Proceedings of Siggraph),
26(2):65-70, 1992.

M. Soucy, G. Godin, and M. Rioux. A texture-
mapping approach for the compression of col-
ored 3D trianguwlations. The Viswal Computer,
12:503- 504, 1996.

S.J. Teller and T. A. Séquin. Visibility pre-
processing for interactive walkthronghs. Com-
puler Graphaes (Proceedings of ACM Siggraph),
25(4):61 69, 1991

G. Turk. Re-tiling polygonal ineshes. Computer
Graphics (Procecdings of Siggraph), 26(2):55 64,
1902,

B-549

