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Abstract

This paper is concerned with designing efficient al-
gorithms for generating high-quality two-dimensionel
unstructured mesh. Beceuse the most vital factor in-
Huencing the quality of mesh generation is point place-
ment, we first propose o background quadiree to repre-
sent the density distribution within the computing do-
main that ellows us to place well-speced points. We
then adopt the Bowyer- Watson Delauney triangulation
algorithm along with Steiner point insertion end local
refinements. We identify constraints for placing new
points that allow us to improve mesh quality incremen-
tally. We also give procedures for performing local re-
finements which allow us to reduce obiuse angles end
thus improve the mesh quality by reducing the aspect
rotio and aree ratio. A runpning exemple deeling with
a blunt body in some flow domain is also presented to
dlustrate our method. Then we implement these algo-
rithms to o three elements airfoil configuration.

Keywords: Adaptive mesh refinement, Delaunay tri-
engulation, quadiree for density distribution, Steiner
point insertion, unstructured mesh generation.

1 Introduction

Before numerical simulations are performed for such
engineering problems as computational fluid dynam-
ics and others, a structured or unstructured mesh is
required to repregsent the computing domain. How-
ever, due to the increasingly complex geometry en-
countered, much attention has been devoted to the
development of uvnstructured mesh [5]. Unstructured
mesh allows greater flexibility in discretizing complex
domains and enables straightforward implementation
of adaptive mesh generation [14]. In practice, a high
quality mesh should satisfy constraints made by the
solver, such as criteria that measure the shape, size,
or number of elements (triangles in our case). It is
thus our goal in this paper to present a new method
for generating high-quality two-dimensional unsiruc-
tured mesh.

1.1 Motivation

When a finite element method or a finite volume
method is adopted, vhe computing domain is tessel-
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lated into a mesh of triangular elements (triangles in
our case) or other polygonal elements. We will use
the term “triangles” instead of “elements” to avoid
confusion in this paper. A solver is then used to ap-
proximate physical problems by means of discrete fi-
nite structures. The quality of triangles influences the
convergence of the governing equations in the solver.

The quality measurement functions, which ave fre-
quently used, include the aspect ratio, area ratio, edge
ratio, and the number of triangles. The aspect ratio
of a triangle T is the ratio Rr/rr, where Rr is the
radius of the smallest circle containing T (circumcir-
cle) and rr is the radius of the largest circle contained
in T (ingcribed circle) [22]). The best aspect ratio is 2
due to the equilateral triangle.

The area ratio between two adjacent triangles is the
ratio of the large area to the small area of these two
triangles. The best area ratio is 1, where two adjacent
triangles have the same area. The edge ratio of a trian-
gle is the ratio of the length of the longest edge to the
length of the shortest edge. The best edge ratio is 1,
in the case of an equilateral triangle. The aspect ratio,
area ratio, and edge ratio of a triangulation mesh are
the largest (worst) aspect ratio, area ratio, and edge
ratio among iis triangles, respectively.

Because of the resolution requirement due to object
geometry or interesting phenomena due o governing
equations, & pert but not all of the mesh in the com-
puting domain is dense. However, to maintain a good
area ratio, we also require 2 smooth change from dense
triangles to sparse triangles. One of the most chal-
lenging problems is to generate the smallest number
of triangles without losing any interesting phenomena
in the simulation .

1.2 Summary of Results

We will accomplish the following goals.

1. We will propose a background quadiree to rep-
resent the density distribution of the computing
domain which will guarantee that we will only
need to generate a minimal number of triangles
t0 achieve a high quality mesh.

2. Under our construction, using the Steiner poing
insertion strategy for Delaunay triangulation, we
can prove that the aspect ratio is smaller than



4.31; the avea ratio i3 smaller than 3; the edge ra-
tio is smaller than 2; each angle in every triangle
is greater than 30° and is less than 120°.

3. We will further propose methods for local refine-
ments, which allow us to improve ill-conditioned
triangles.

4. The number of triangles generated in the mesh
has the same order as the number of leaves in the
background quadiree for the density distribution.

5. The complexity of each step of our algorithm is
linear with respect to the number of poinis in-
serted or the total number of triangles.

1.3 Related Works

Given a get of N points, existing Delaunay triangula-
tion algorithms can construct a set of triangles that
maximize the minimum angle based either on the di-
vide and conquer techniques [9, 19] or on the convex-
hull techniques [18] in time O(IV log IV). However, De-

launay triangulation is only a method for constructing’

triangles; it does not guarantee their quality. Instead,
point placement can determine the quality of the tri-
angulation. Unfortunately, optimal point placement is
still an open problem. It is difficult to determine the
point placement which will not cause obtuse triangles
if one does not generate the triangulation first.

We now survey four popular mesh generation al-
gorithms. The first quadtree method subdivides the
computing domain orthogonally into four cells recur-
gively, where each cell is a square, until the local geom-
etry has been approximated. Then the triangles can
be created by subdividing each cell in sequence using
a simple and efficient way [25]. However, the mortal
drawback is that points in the quadivee system are
not amenable to the object geometry; therefore, extra
effort ig required to pregerve the boundary curve by
wrapping or adjusting triangles near the boundary.

The second Delaunay triangulation with Steiner
point ingsertion method refers to the insertion of ad-
ditional points into an existing triangulation in order
to improve the quality of the triangulation [13]. If the
circumcircle radius is greater than the density length
in the center, it is natural to insert one point in the
center [2, 4, 20, 23, 24]. Thus, based on this method,
point placement matches the density distribution of
the computing domain. Because new points inserted
only affect the triangulation locally, it is particularly
suitable for the adaptive solution strategy [14].

However, Delaunay t{riangulation also does noé
guarantee boundary integrity. Special ireatmenis,
such as edge swapping or adding more boundary
points, are necegsary if some boundary edges are not
in the final triangulation. Other researchers also have
proposed constrained Delouney triengulotion method
t0 ensure that all boundary edges are in the final trian-
gulation [6, 10, 21). However, the quality of the mesh
siill cannot be guaranteed.

Unlike the two methods described above, the
third method guarantees boundary integrity. In the
advancing-front method, one first provides the initial
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fronts on the boundary curves. New points are in-
serted ahead of the selected front one ab a {ime. New
triangles are constructed by joining each new poing
with existing fronts. The current front is then removed
from the list since it i3 now obscured by the new tri-
angle, and new fronts are generated from the new tri-
angles. This process continues uutil the entire domain
have been tessellated [11, 16]. Placement of a new
point is first determined by the prescribed point dis-
tribution function, which is defined in the background
mesh, resulting in a triangle of optimal size and shape.
In general, the advancing-front method can generate
smooth high-quality unstructured mesh in most of the
domain.

However, difficulties arise when two fronts or many
fronts are encountered. In this case, the newly placed
point may intersect with existing fronts, or this poing
may be too close to the existing points. Since there
is no general strategy for generating the new trian-
gle, one is forced to check all the near-by fronts and
points to avoid congestion. The examination process
may be very time-consuming. A hybrid approach is
to adopt the advancing front method to place points
in the computing domain, then the nnstructured mesh
is accomplished using an existing Delaunay triangula-
tion algorithm [12, 17). Alternatively, in this paper,
we will use the advancing front method to generate
several boundary fronts in order to preserve bound-
ary integrity while using Delaunay triangulation with
the Steiner point insertion method to generate other
internal points. ’

The fourth sphere-packing based method is built
upon the equivalence between a well-shaped mesh and
a well-spaced point set [15, 22]. First, a balanced
quadtree refinement is applied. Second, for each leaf
cell, a set of over-sampling random points is gener-
ated. Third, for each point, a circle, whose center is
the point and whose radius i3 equal to one half of the
egtimated local spacing, is generated. Because these
circles might overlap, they are reduced to an undi-
rected graph, where each circle is represented by a
node. If two circles overlap, then there is an edge con-
necting the corresponding two nodes. The final set of
points can then be generated by means of 2 maximal
independent set of circles. After that, the Delaunay
triangulation method is adopted to generate the mesh,
Tt is shown that the worst case edge ratio obtained us-
ing this method i3 2 or even worse depending on the
sampling points [22].

On the theoretical side, Baker et ol. gave an algo-
rithm for triangulating the interior of a polygon with
angles between 13° and 90° [1). Chew further pre-
sented an algorithm which under uniform density dis-
tribution, could improve the resulis such that there
were no angles less than 30° [7]. Bern et ol. showed
that the balanced quadiree refinement generated a
well-shaped mesh. They proposed algorithms which
produced no angles less than 18.4° [3]. Miller and
Teng ¢t ol. algo proved that the sphere-packing based
method generated a well-shaped mesh [15, 22]. How-

- ever, in practice, we have found that the results can

be betier if we further apply local refinements.



The rest of this paper is organized as follows. In
Section 2, we define the density distribution of points
(or triangles) within the computing domain. In Sec-
tion 3, we pregent our Steiner point insertion method
and some optimizations. We also give upper bounds of
the aspect ratio, area ratio, and edge ratio. The com-
plete proofs can be seen in Section 4. In Section 5,
we present experimental studies dealing with a2 blunt
body in some flow domain and 2 three elements airfoil.
Finally, some concluding remarks are given in Section
6.

2 Representing Density Distribution by a
Quadtree

Because the solution near extreme points or near the
object boundary may vary greatly, these regions nor-
mally require much smaller triangles than do other
regions. Additionally, in order to maintain a good
avea, ratio, edge lengths between neighboring triangles
should not change too much. We will now propose a
quadtree to represent the density distribution.

Figure 1-(d) shows a sample blunt body in some
flow domain. The domain is decomposed by means
of a quadiree representation. There are four types of
cells, where each cell is a square. A white cell indicates
that points can be placed in a systematic way, such
as by using the quadtree method, some other tiling
method, or simply the Steiner point insertion method.
A boundary cell indicates that points are placed using
the advancing-front method. An adjacent boundary
cell indicates that points are placed using the Steiner
point insertion method so as to guarantee a smooth
transition from boundary cells to white cells. A cell
not in the computing domain will not be placed any
internal points.

2.1 Density Rank Table

We adopt the following rules according to Table 1 to
decide the cell size.

density density cell’s triangles
real length cesll rank side langth in & cell
1 X 1 4ha 32
2 kasz 1 442 20
3 k2Az lor2 44z or 8Az 13 or 61
4 242 2 8A= 32
b kb 2 8An 20
) 282 A0 Z2or8 84z or 1662 13 or 51
7 A2 3 1642 s2
8 dhie 8 164 20
) 462480 Sor4 164z or 82A= 13 or 51
10 84z 4 3242 32
11 8kAz 4 . 3242 20
12 81laz 20r85 | S2azoreshz | 13orS1
13 1843 5 644z 32
14 16kAa 5 84z 20
16 160242 Soré 8442 or 128A2 | 13 or 51
16 324¢ 6 12842 32

Table 1: The relations among the density rank, the
density edge length, and the cell size. The fifth column
is the estimated number of triangles in the correspond-
ing cell.

1. The minimum edge length within the computing
domain is Az corresponding to density rank 1.

2. The density edge length correspondmg t0 density
rank i is k"' Az, where k = 1.26, k° = 1.5876,
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Figure 1: Hlustration of the background quadiree for
the density distribution: (a) The initial dengity con-
straints; (b) the balanced quadtree for the initial step;
(c) the first intermediate step in assigning the den-
sity distribution; (d) the final quadiree for the density
distribution.

and k® = 2. The factor  represents the expected
_area ratio between two adjacent triangles, which
are in neighboring cells, respectively.

3. The side length of one cell, whose rank is j, is
27-14Az. For example, the side lengths of cell
ranks 1, 2, 3, 4, 5, and 6 are 44z, 2 x 44z,
22 x 4Asw, 93 ' dAz, 2* x 4dAx, and 2° x dAg,
respectively.

4. A cell of rank 1 only contains points with density
ranks from 1 to 3; a cell of rank j only contains
points with density ranks from 3(j — 1) to 37,
where j > 1.

5. According o the cell rank and the density rank of
points, one can estimate the number of triangles
in a cell as shown in the fifth column of Table 1.
This approximate number is equal to the num-
ber of isosceles rectangular triangles (the type 4
triangles shown in Figure 77-(b)) placed in a cell.

2.2 Procedure for Assigning Density Dis-
tribution

From Table 1, we can assign density distribution
within the computing domain. In Figure 1-(a), the
initial density constraints ave given. Three cells, each
containing one extreme point, where the curvature ig
large, are assigned the highest density of density rank
1. Figure 1-(b) shows the balanced gquadiree for the
initial step. Figure 1-(c) illusirates the first interme-
diate step in assigning the density disiribution. We
use the advancing-front method starting from the cells
A having the highest density (and, thus, the smallest
density rank number); then, the density ranks of their



neighboring cells B, which were not visited before, are
assigned to be

min{original density rank of B, (density rank of A) + 1},

where the cell rank and the density rank have to satisty
constraints defined in Table 1. Otherwise, if the cell
rank of B is greater than an expected rank, then cell
B hasg t0 be further divided into four orthogonal small
cells. On the other hand, if the cell rank of B ig smaller
than an expected rank, then the density rank of B is
agsigned the same value as the density rank of 4. The
final density distribution is shown in Figure 1-(d).

The background density quadiree implicitly main-
tains a well-spaced point placement. One immediate
advantage is that we can use this background density
quadtree to estimate the number of triangles in the fi-
nal mesh. For example, if there are three rank-3 cells,
all of whose density ranks are 6, then according to the
fifth column in Table 1, about 3 x 51 = 153 triangles

are placed in these three cells. Then, after accumulat-.

ing the number of triangles in each cell, we obtain the
estimated number of triangles in the final mesh, which
is around 1694.

3 Delaunay Triangulation Using Steiner
Point Insertion

Because Delaunay triangulation does not guarantee
boundary integrity, we have to use a special treatment
near boundary. First, boundary points are placed ac-
cording to the density distribution as shown in Fig-
ure 4-(a). Second, initial triangulation for boundary
points i3 performed; we then remove triangles which
are out of the computing domain as shown in Fig-

ure 4-(b). Third, using the advancing-front method,

we place two fronts of points near the boundary as
shown in Figure 4-(c). The second front of points al-
lows the algorithm to do local refinements but does
not destroy the well-shaped quality of the first front
of triangles. Therefore, the first front of triangles can
guarantee the boundary integrity.

3.1 Algorithm Kernel

The algorithm kernel includes the following six steps.

Step 1: We perform basic Steiner point insertion
based on the circumcircle-center point plecement sirai-
egy. When the radius of the circumcircle of a triangle
is greater than or equal to the density edge length (as
defined in the second column in Table 1) w.r.t. the
center, we insert one point in the center.

When the mesh quality needs to be improved, we
iterate from Step 2 to Step 6.

Step 2: The first optimization tries to improve the
well-spaced quality. Because three apexes of a trian-
gle may lie in different cells of the background den-
sity quadiéree, when the radius of the circumcircle is
greater than or equal to the minimum density edge
length w.r.t. three apexes, we insert one point in the
cenker,

B-553

Step 3: The second optimization tries to improve
the edge ratio. Afier performing Step 1 and Step 2,
it may happen that even when all three apexes of a
triangle lie on the same cell, the minimum edge length
of the triangle is still less than the density edge length
w.r.t. the center. In this case, the minimum edge
length is at least greater than or equal to the density
edge length of one of the adjacent cells. When the
radius of the circumcircle is greater than or equal to
the minimum edge length of that triangle, we insert
one point in the center. Step 3 ensures that the edge
ratio is less than 2, the minimum angle is greater than
30°, the maximumn angle is less than 120°, and the
aspect ratio is less than 4.31.

Step 4: The third optimization tries to improve
the arvea ratio. It may happen that the radius R of
the circumcircle of one adjacent triangle Apipsps is
greater than or equal to the minimum edge length e of
the current triangle Ap)pops; then, we insert one point
po in the center of the circumcircle of the adjacent
triangle Apipsps as shown in Figure 2-(a).

Figure 2: (a) When the circumcircle radius of
Ap1p3ps is greater than or equal to the minimum edge
length of its adjacent triangle Apipops, 2 point po can
be inserted in the circumcircle center. (b) When |paps|
is greater than or equal to ¢ + h, where e is the mini-
mum edge length and & is the height both of Apipaps,
a point po can be inserted. The dotted circle is cen-
tered at po with a radius of e; the dashed circle is
the circumcircle of Apipgpa. (¢) When point po is the
center of a circle, Lpspopz = 2Lpapips.

Step 5: The fourth optimization further tries to
improve the area ratio. Suppose the height of the cur-
rent triangle Apipaps is b, and that the minimum edge
length is e. Let point pg lie in the adjacent triangle
Apipaps and lie on the perpendicular bisection line
(w.r.t. Dips) which passes through the central poing
s = (p1 +p3)/2. In addition, the distance between po
and ps is h as shown in Figure 2-(b). Then, if the dis-
tance between ps and the opposite apex p, is greater
than or equal to e + h, we insert one point py. Note
that |Popi|, |Popa], and |Popa]| are greater than or equal
%0 e. Step b ensures that the area ratio is less than 3.

The advantage of using Steiner point insertion is
that, amortizely, it only requires a constant amount of
time to identify which triangle contains the inserted
point. Thus, the time complexity of each Step 3, for
1'< ¢ £ 6, hag the same order as the number of poinis
inserted.

From Step 1 to Step 5, each constraint is finer than
the previous one. This is because we want to improve

_ the well-spaced quality gradually, we so try to min-

imize the number of inserted points. However, each
optimization may couflict with other optimizations;



therefore, we have to iterate from Step 2 to Step 5 un-
til the mesh quality is satisfactory. Even so, this algo-
rithm eventually will terminate because the minimum
edge length does not change throughout the execution,
and the simulation domain is finite, which implies that
we only can insert a finite number of points. Thus, the
total time complexity of the algorithm kernel, which
depends on the requirement of the mesh quality, is
O(rN), where N is the number of points and r is the
pumber of iterations from Step 2 to Step 5.

3.2 Theorem Proving

In this subsection, we will give proofs for some theo-
retical resulis.

Theorem 1 Suppose that ¢ new point is inserted in
the circumcircle center i the radius is greater than
or equal to the minimum edge length of that triangle.
Then, the -edge ratio is less then 2, the minimum an-
gle is greater than 30°, the masimum angle is less than
120°, and the aspect ratio ¢s less than 4.31.

Proof: Since the circumcircle contains the triangle,
the length of the longest edge is less than or equal
to the diameter, which i8 equal to twice the radius.
Therefore, if the minimum edge length is less than or
equal to one half of the longest edge length, then the
radius is greater than or equal o the minimum edge
length. Thus, we can insert one point in the center.
We conclude that the longest edge length is less than
twice the minimum (shortest) edge length. Hence, the
edge ratio is lesg than 2.

Next, as shown in Figure 2-(c), in Ap1p2ps, Lpsp1p2
is the smallest angle, and po is the center of the circum-
circle. Since Zpspope = 2Lpsp1ps, if Lpsprpe < 30°,
then /pspope < 60°. Therefore, vhe radius is greater
than |pzps|. We thus can insert po at the center.
Hence, the smallest angle is greater than 30°, and this
also implies that the largest angle is less than 120°.

. Next, assume that the center of the inscribed circle
of 2 triangle lies in the intersection of three angle bi-
section lines. An angle is small, which implies that the
radius r¢ of the inscribed circle is small to0, but that
the radius Rr of the circumcircle is large. The worst
case aspect ratio Ry /rr is about 4.31, which arises in
the case where the three angles are 30°, 30°, and 120°,
respectively. O

Theorem 2 Suppose thai the height of the current
triangle Apipaps is h, end thei the minimum edge
length is e. Let point po lie in the adjacent triangle
and lie on the perpendicular bisection line (w.r.t. P1P3)
which passes through the central point ps = (P1+p3)/2.
In eddition, the distance between po and ps is h as
shown in Figure 2-(b). If the distance between ps and
the opposite apez ps is greoter than or equal to e+ b,
then, i is feasible to insert point po; in addition, the
ares ratio is less than 3.

Proof: First, we will show that it is feasible to insert
Po, such that the distance between po and any other
point ig at least e. Because po lies on the perpendicular
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bisection line (w.r.t. Pips) which passes through the
central point ps = (p1 + p3)/2, and the distance be-
tween po and ps is k, it follows that [Popi| = |PePa] In
addition, they are greater than or equal to the shorter
length between [pipz| and [paps|; thus, they are greater
than or equal to e. Next, from the triangulation in-
equality, |Fops| + [Popal > [PsPi) 2 e + R, we have
|Popa] = e¢. Thus, the distance between po and any
point on the circumcircle of Apipspy is at least e. For
example, as shown in Figure 2-(b), the doited circle,
which represents the circle centered at po with a radius
of e, is within the dashed circle, which represents the
circumcircle of Apipapa.

Next, we will show that the area ratio is less than 3.
From Theorem 1, the minimum angle i3 greater than
30°; therefore, the height h is greater than one half of
the minimum edge length e because h > esin30° =
3e. In addition, since |paps| is less than ¢ + h (other-
wigse, we can insert one point po 23 mentioned in the
last paragraph), the height from pa to the edge Fips
i less than e + h. Therefore, the area of Apipsps is
less than three times that of Apyp2ps. Hence, the area
ratio is less than 3. [

Theorem 3 The time complezity of each Step i in the
algorithm kernel, for 1 £ ¢ < 8, 43 lincar with respect
to the number of points.

Proof: The time complexity of Delaunay triangulation
algorithm includes the time for finding point locations
for all inserted points and the time for creating trian-
gles [8]. According to Lemma 9.11 in [8], the expected
number of triangles created by Delaunay triangulation
algorithm ig at most 9N + 1, where N is the number
of points. Therefore, the time for creating triangles is
linear w.r.4. the number of points. Thus, it is enough
t0 show that the time for finding point locations is also
linear w.r.t. the number of points.

We first show that the initial triangulation for
boundary points can be done in a linear time. In
two-dimensional space, the boundary of an object is
either a (closed) curve or a polygon or a line. Because
adjacent boundary points are placed according to the
density distribution, the next boundary point inserted
is either within the current triangle or within one of
the current three neighboring triangles. Thus, except
for the first boundary point which we use a sequen-
tial search, each of other point locations for adjacent
boundary points can be found in a constant amount
of time.

The proofs for all Step ¢, where 1 € ¢ <5, ave gimi-
lar. Suppose that there hes been some Delaunay trian-
gulation. We check each triangle in sequence whether
a point should be inserted at the circumcircle center
(for Steps 1, 2, 3, and 4) or at other location within
that triangle (for Step 5). According to the Bowyer-
Watson Delaunay triangulation algorithm, we have to
know which triangle contains the circumcircle center
because the circumcircle center of a triangle maybe
is not within the triangle itself. However, if the cir-
cumcircle center ig not within its triangle, we can use
the right-hand rule to decide a direction to which the



circumcircle center is beyond one of three edges.

Suppose that after ¢ adjacent triangles, we finally
find a triangle which contains that circumcircle center
po. Then all corresponding circumcircles of these ¢ tri-
angles contain po. After applying the point insertion
by the Bowyer-Waison Delaunay triangulation algo-
rithm, all these ¢ triangles are destroyed. Thus, the
total time to identify all point locations is bounded
by the number of triangles created. According to
Lemma 9.11 in [8] again, it is 9V 4 1. This implies
that Step ¢ can be finished in a linear time w.r.t. the
number of points.

Theorem 4 The number of triangles generated in the
mesh has the same order es the optimal one.

Proof: The background quadiree, which is used to
represent the density distribution of the computing
domain, can be treated as a coarse-grain mesh. The
quadtree method implicitly controls the area ratio such
that the area ratio between two adjacent triangles is
not greater than 2. If we require that for the opti-
mal mesh, all triangles have no obtuse angles and the
area ratio ig bounded by 2, then each cell (leaf) of the
quadtree should contain at least one point. Therefore,
the number of triangles for the optimal mesh has at
least the same order ag the number of cells (leaves) in
the quadiree.

However, as each cell can contain only a constant
number of points (for a reference number, please refer
to the fifth column of Table 1), the total number of
points placed has the same order as the number of cells
in the quadtree. From the Euler equation, the number
of triangles is about twice the number of points [8].
Hence, the number of triangles generated in the mesh
by our algorithm bas the same order as the number of
cells in the quadtree; thus, it also has the same order
as the number of triangles for the optimal mesh. [

4 TLocal Refinements

Delaunay triangulation satisfies the empty circumcir-
cle criterion, which states that no circumcircle of any
triangle can contain a mesh point other than its form-
ing points [8, 18, 19]. When the empty circumcircle
criterion is not violated, we can apply local refine-
ments to improve the mesh quality. However, in order
to guarantee that the algorithm eventually will termi-
nate, the minimum edge length among triangles can
not be less than the minimum density length Az as
defined in Table 1.

When the aspect ratio or area ratio is bad or when
there are obtuse angles, we will perform the following
three local refinements.

Laplacian filter [24]: Suppose that point po has
edges connected to poinis py, p2, ..., Pn. Then,

55 =8 + w(Biaapi — 23 /m,

where w i3 a factor and 0.05 < w < 0.25. The Lapla-
cian filker tries to maintain the well-spaced quality.

Reduce the obtuse angle: When a triangle has
an obtuse angle /pi1pops as shown in Figure 3-(2), we

try to reduce the obtuse angle by 26, where 5° <0 <
10°, such that p; is moved to p} and p3 is moved to
ph. Note that, because Zpipaps — 20 > 60°, |p{p}|
is still greater than the minimum edge length. This
optimization can improve the aspect ratio and area
ratio when a triangle contains an obtuse angle. Of
course, it also reduces obtuse angles.
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Figure 3: (2) The obtuse angle Zpip2ps is reduced to

Lpipaps. (b) The shared edge p1ps is moved to pp}.

Move the shared edge: When the area ratio of
two adjacent triangles is large, for example, when the
area of Apipsps is small and the area of Apipsps is
large as shown in Pigure 3-(b), we move the shared
edge pip3 toward the large-area triangle a distance of
h/10 to piph, where h is the height from ps to the
shared edge Pips. Note that, under this refinement,
all edge lengths are still greater than or equal to the
original minimum edge length. This optimization can
improve the area ratio.

5 Experimental Studies

We now continue the running example (as mentioned
in Figures 1 and 4 in Sections 2 and 3, respectively,)
that of dealing with the sample blunt body in some
flow domain. The computing domain includes the pla-
nar coordinate which ranges within [~32 : 32,-32 :
32]. The minimum density edge length is 1. Initially,
as shown in Figure 4-(a), points are placed on the
boundary according to the density distribution. Fig-
ure 4-(b) shows the initial triangulation for the bound-
ary points. Figure 4-(c) shows the triangulation after
placing two fronts of points near the object boundary
and the domain boundary.

Figure 4-(d) shows the triangulation for the firs¢
round after Step 1. The solid circle marks the trian-
gle having the worst aspect rasio; the dashed circle
marks the triangle having the worst area ratio; and
the dash-dotted circle marks the triangle having the
worst edge ratio. Then we recursively implement the
optimizations from step 2 to step 5 in the kernel al-
gorithms without the local refinement and show the
result in Figure 4-(e). The aspect ratio, area ratio and
the edge ratio of the resulting triangulation are 4.02,
2.84 and 1.96, which are all within the theoretical val-
ues of 4.31, 3.0 and 2.0. But there are still 148 obtuse
triangles in the unstructured mesh.

If we include the local refinements during the mesh
generation, the quality of the final mesh can be further
improved, as shown in figure 4-(f). The aspect ratio
of final triangulation is 3.78, the area ratio is 2.39,
and the edge ratio is 1.94. In addition, the amount of
obtuse triangles is reduced to 74.

The next example is a three elements airfoil for the



WASA energy efficient transport(EET). The comput-
ing domain is defined within {16 : 16, —6 : 16] and the
minimum density edge length is 8.001. The mesh spac-
ing is concenirated in the leading and trailing edge of
each elements and varies substantially. Without local
refinements, the generated mesh has the quality that
agpect ratio ig 4.23; area ratio is 2.93 and edge ratio is
1.99. In compariaion, the mesh with all the optimiza-
tions contains 33040 triangles and has the quality that
agpect ratio is 4.19; area ratio is 2.88 and edge ratio
is 1.94. The obtuse triangles are reduced from 3880 to
1806. The local refinements clearly provide improved
quality. Figure 5-(a-c) show the finally generated un-
structured mesh with local refinements.

¢ Concluding Remarks

We have presented in this paper a new method to
generate high-quality two-dimensional unstructured
mesh. In order to guarantee well-spaced point place-
ment;, we require a smooth change of the density dis-
tribution, which can be represented by a quadiree. We
can also prove that under our constraints, for Delau-
nay triangulation by means of Steiner point insertion,
the aspect ratio is less than 4.31, the avea ratio is less
than 3, the edge ratio is less than 2, the minimum an-
gle is greater than 30°, and the maximum angle is less
than 120°. We have also proposed procedures for per-
forming local refinements. Thesge allow us o reduce
obtuse triangles and improve the aspect ratio and the
area rakio.
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Figure 4: Delaunay triangulation by means of Steiner point insertion for the blunt body. (2) Initially, 125 points
are placed along the object boundary and the domain boundary. (b) Initial triangulation for boundary points.
(¢) Triangulation after placing two fronts of points near the object boundary and the domain boundary. (d)
Triangulation after Step 1 in the first round. (e) The final triangulation without local refinements. (f) The final
triangulation with local refinements. The solid circle marks the triangle having the worst aspect ratio; the dashed

circle marks the triangle having the worst area ratio; and the dash-dotted circle marks the triangle having the
worst edge ratio.
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Figure 5: Delaunay triangulation by means of Steiner point insertion and local refinements for the three elements
airfoil. (a) Mesh over view. (b) Mesh near front slat. (c) Mesh near rear flap.
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