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Abstract

Although the side-match vector quantizer (SMVQ)
is efficient in reducing the bit rate, the image coding
quality is in general degenerates. The reason is that if the
gray level transition across the boundaries between the
neighboring blocks is increasing or decreasing, SMVQ may
not encode the block well. In this study, we proposed a
smooth side-match method to select the state codebook
according to the smoothness of the gray levels berween the
neighboring blocks. This method achieves the higher PSNR
and the better visual perception guality than SMVQ does
while the bit rate is the same. Moreover, a genetic
clustering algorithm that can automatically find the proper
number of clusters is proposed to design the codebooks
because the well-known algorithm LBG has the
shortcoming of requiring the user to supply it with the
number of clusters. Therefore, the proposed: smooth
side-match classified vector quantizer (SSM-CVQ) is the
combination of three techniques: classified vector
quantization, variable block size segmentation and the
smooth  side-match method. As indicated by the
experimental results, SSM-CVQ has the higher coding
quality and the lower bit rate than other methods have. The

Lena image can be coded by SSM-CVQ with 0.172 bpp and
32.49 dB.
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* Author to whom correspondence should be sent.

C-19

1. Introduction
Vector quantization (VQ) is a useful technique for

image data compression. Since the distortion measure, such
as mean square error (MSE), is not good at preserving the
property of edges, the edge degradation has been a problem
in VQ. In [1], [2] and [3], DCT coefficients were used as
edge oriented features. The performance of CVQ in the
DCT domain is better than that of CVQ in the spatial
domain. In [2], the variable block-size coding method was
proposed to achieve the higher coding quality and the lower
bit rate. In this study, the proposed SSM-CVQ consists of
three codebooks for low-detail 16x16, 8x8 and 4x4 blocks
and twenty-eight codebooks for high-detail 4x4 blocks. In
all conventional CVQ’s, the designer gives the number of
codebooks before designing CVQ. For example, nine edge
classifiers and sixteen edge classifiers are used to classify
the high-detail blocks in [2] and [4] respectively. However,
these numbers are in general not sufficient for the accurate
edge classification. In real images, edges are more
complicated than the synthetic ones. Since the genetic
algorithm is good at searching ([5], [6]), the geneiic
clustering algorithm had been applied to the vector
quantization problem ([7]-{9]). In SSM-CVQ, a genetic
clustering algorithm is proposed to find the number of edge
classifiers for high-detail blocks and then the genetic
clustering algorithm is applied again to find the codebook
for each edge classifier. This genetic clustering algorithm
will search for a proper number of cfuster centers and do

the clustering simultaneousty so the user need not bother



the number of clusters at all. The clusters obtained will be
more natural in accordance to the characteristics of the data
set. Although the LBG algorithm [10] had been widely used
in the designing of the codebook, it suffers the drawback
that the user must provide the number of clusters in
advance while the user in general has no idea about how
many clusters there should be in the data set.

SMVQ [11] is a well-known class of finite-state
vector quantizers (FSVQ) and several variants of SMVQ
had been proposed (e.g. [12], [13D). In [4], the combination
of the CVQ and SMVQ is proposed and it has better coding
quality than SMVQ. However, the above SMVQ’s use the
fixed block size and thus the bit rate can not be further
reduced. Moreover, SMVQ selects the codewords such that
the gray levels of pixels right across the boundaries of the
neighboring blocks are as near as possible. However, if the
gray levels of pixels across the boundaries of the
neighboring blocks is increasing or decreasing, SMVQ may
fail to select the codeword nearest to the currently encoded
block. In this study, the smooth sicle-match.method with
variable block size is proposed and it achieves the better
coding quality and visual perception quality than SMVQ
does at the same bit rate. The smooth side-match method
selects the state codebook according to the smoothness of
the gray levels of pixels between the neighboring blocks.
Therefore, SSM-CVQ, a combining the CVQ, the variable
block size segmentation and the smooth side-match method,
improves the coding quality, the visual perception quality
and the bit rate,

The remaining parts of this paper are organized as
follows. The genetic clustering algorithm is described in
Seciton 2. The design of smooth side-match method is
described in Section 3. The design of SSM-CVQ is stated
in Section 4. Experimental results are given in Section 5

and the conclusions are described in Section 6.

2. The Genetic Clusiering Algorithm
The proposed algorithm CLUSTERING consists of
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two stages. The first stage is a pair nearest neighbor (PNN)
algorithm [14]. The algorithm starts with the whole training
data set and iteratively reduces it to smaller ones by
combining the two closest vectors until the proper size of
data set m is reached. Therefore, for the second stage, the
initial training data set contains m small sets B, B, ..., B,
Let the center of each set B; be denoted by V; for
1 <1< m. Clearly, m is less than the size of the
original data set. The objective of using PNIN algorithm in
the first stage is to reduce the computation time required in
the second stage. Therefore, the clustering algorithm can
process the large data set efficiently.

The sets By, By, ..., By, obtained in the first stage
are taken as the initial clusters in the second stage. The
second stage is a genetic algorithm, which will merge some
of these B;'s if they are close enough to one another. The
genetic algorithm consists of an initialization step and the
iterative generations with three phases in each generation.
They are described in the following.

Initialization step:

A population of N strings is randomly generated.
The length of each string is m, which is the number of the
sets obtained in the first stage. N strings are generated in
such a way that the numbers of 1’s in the strings almost
uniformly distributes within [1,m]. Each string represents a
subset of {B;, B, ..., Bn}. If B, is in this subset, the ith
position of the string will be 1; otherwise, it will be 0. Each
B; in the subset is used as a seed to generate a clusier.

Before describing three phases, let us first describe

how to generate a clustering from the seeds. Let

T={ T), Ta,...., Ty } be the subset corresponding to a
string. Let initial clusters C; be T, for i=1,2, ...,s. Let
initial centers S; of clusters C; be V; fori=1,2, ...,s and

the size of cluster C; is defined as lCi' ='Ti| for

i=1,2,..

.+ S, where ,Ti , denotes the number of objects

belonging to the set T;.



The generation of the clusters proceeds as follows.
The Bi’s in { By, By, ...., By, }-T are taken one by one and
the distance between the center of the taken B; and each

center §; is calculated. Then we have
B,C G if ”Vi —Sj”s IV.-S.|  for

1<k<s and k#j.
If B; is classified as in the cluster C;, the center S; and the

size of the cluster C; are recomputed as follows when B; is

added to C;.
_S*[C|+ v #[B|
: Ic;|+ ]
Ici| =lc;|+[Bi.

After By’sin { By, B;, ...., By }-T all have been considered,
we will obtain the cluster C; with center S; generated by the
seed T; for j=1, 2. .., s. We define {C;, Cy, ...., C;} as the
set of clusters generated by this string.

Reproduction phase:

Let C; be one of the clusters generated by string R.

In the following, we define D, to represent the

intra-distance in the cluster C; and D.

mer 1O TEpresent the

inter-distance between this cluster C; and the set of all other

clusters.

D "Vk ”Si”*lBkl

B, cC;

(Cy =

intra

D, .. (C)=

nter

; - *
(min|V, =5, *[B,
By, cC; 4
where the summation is over all B,’s that are in the cluster

C;. Then we can define the fitness function of a string R as

follows.

Fitness(R)= Dinter (Cl ) *w - Dintrn (Cl )

where w is a weight. If the value of w is small, we

emphasize the importance of D. (C;). This tends o

ntra

produce more clusters and each cluster tends to be compact.
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If the value of w is chosen to be large, we emphasize the

importance of D (C). This tends to produce fewer

inter

clusters and each cluster tends to be loose. If R contains

only 0’s, Fitness(R) is defined to be 0. If R contains exacily

one 1, D.

inter (G is defined to be 0. After the calculation

of fitness for each string in the population. the reproduction
operator is implemented by using a roulette wheel with
slots sized according to fitness.

Crossover phase:

If a pair of strings R and Q are chosen for applying
the crossover operator, two random numbers p and q in
[1,m] are generated to decide which pieces of the strings
are to be interchanged. Suppose p<q, the bits from position
p to position q of string R will be interchanged with those
bits that are in the same position of string Q. For each
chosen pair of strings, the crossover operator is done with
probability p..

Mutation phase:

In the mutation phase, bits of the strings in the
population will be chosen with probability pg,. Each chosen
bit will be changed from 0 to 1 or from 1 to 0.

The user may specify the number of generations
that he or she wants the genetic algorithm to run. The
genetic algorithm will run this number of generations and
retain the string with the best fitness. The user may specify
the value of w used in calculating fitness function in order
to emphasize on either the compactness of clusters or the

enlargement of the distances among clusters.

3. The Design of Smocth Side-Match Method
SMVQ tries to make the gray levels of pixels right

across the boundaries of the neighboring blocks as near as
possible. In SMVQ, the selection algorithm selects a subset
of the codewords with the smallest side-match distortions
in the supercodebook as the state codebook. However, if

the gray levels of pixels across the boundaries between the



neighboring blocks is increasing or decreasing, SMVQ
usually does not encode a block well. In this study, a
“smooth side-match method is proposed to select the state
codebook according to the smoothness of the gray levels of
pixels between the neighboring blocks. The conventional
side-match method is described in Subsection 3.1 and the
smooth side-match method is depicted in Subsection 3.2.
3.1. The conventional side-match method
Let x be the mxn block to be encoded. Let the state
space S be defined as S={uxA: u is the codeword for some
x’s upper block and A is the codeword for some x’s left
block}. The vertical correlation of state u and the horizontal
correlation of state A define the state s of x. The vertical
side-match distortion of a codeword y in the supercodebook

is defined as

. 2
vdy)= (Y —Up;)
i=l
and the horizontal side-match distortion is defined as

m

hdy= (¥, —A)°

j=1

Then, the side-match distortion corresponding to the
codeword y is defined as

D(y)=vd(y)+hd(y).
The selection algorithn for the state s selects N, codewords
in the supercodebook with the smallest N, side-match
distortions D(y;)'s for i=1,..., N; as x's state codebook.
SMVQ sorts the selected codewords in the state codebook
according to the side-match distortions of codewords. Then,
SMVQ picks the codeword nearest to x from the state
codebook to replace x and the index of this codeword is
regarded as the code of x.
3.2. The smooth side-match method with variable block
size

The blocks coded by the conventional SMVQ are of
size 4 x 4. SMVQ selects the first row of blocks and the
first column of blocks in an image as its basic blocks.
These basic blocks are directly encoded by the full search

vector quantization using the supercodebook. In smooth
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side-match method, we select the basic blocks as follows.
The image of size m X n is first divided into the blocks of
size 16 x 16 and the diagonal blocks are selected for further
deciding whether these blocks are basic blocks or not. Let
B be a diagonal block of size 16 x 16. If B is a low-detail
black, then B is defined as a basic block. Otherwise, B is

divided into four blocks of size 8 X 8 as follows.

bl bZ_I
B:
b, b,

where b; for 1 <i<4 indicate the blocks of size 8 % 8 and
the diagonal blocks b, and by are selected for further
deciding if they are basic blocks or not. If b;, for i=1 or 4, is
a low-detail block, then the block is defined as a basic
block. Otherwise, the block is further divided into four

blocks of size 4 x 4 as follows.

[} bf]

b;
b) b/

where bg for 1 <j<4 are blocks of size 4 x 4. Finally,
the blocks bi] and bi4 are defined as the basic blocks.

All the basic blocks with different sizes are directly
encoded with the supercodebooks and the other blocks are
encoded by SSM-CVQ. Figure 1 shows an example of the
basic blocks in block B. In [13], the number of the basic
blocks in an image is about one half of that of SMVQ. In
SSM-CVQ, the number of the basic blocks required in an
image is usually less than 30% of that of SMVQ. The bit
rate of SSM-CVQ is therefore further reduced.

Figure 2 shows an example of the gray levels of the
pixels in the encoded block x and it’s upper block u. The
side-match distortion selects the codeword y such that the
gray levels of y; ; and u,,; are as near as possible. However,
the gray level of y;; thus selected may deviate from the
gray level of x;, significantly as revealed by the example
shown in Figure 2. In real images, the changing of gray

levels is in general smooth among the neighboring pixels.



We use this property to define the smooth side-match
distortion. We firsi define the variation, var(u, v), between
the pixels u and v as follows.
var(u, v)=u-v.

Since the diagonal blocks are selected as the basic blocks
and they are encoded first in SSMVQ, the encoded image is
therefore divided into two parts, the upper triangular region
and the lower triangular region. In the upper triangular
region, the neighboring blocks of the currently encoded
block are defined to be its left block and its ‘lowér block.
An example is shown in Figure 3(a). The vertical smooth
side-match distortion is defined as

Upper_vd(y)=

n

(var(d,;,d, )+ var(y,,;, V)
=l I 2

—var(d,;,¥;)

and the horizontal smooth side-match distortion is defined
as
Upper_hd(y)=

m|(var( Ay, 0 A ) + var(y 1, y;0))
| 2

— var( lj'n,yj‘,)l

Then, the smooth side-match distortion of the codeword y
is defined as

D(y)=Upper._vd(y)+Upper_hd(y).
In the lower triangular region, the neighboring blocks of
each encoded block are defined to be its right block and its
upper block. An example is depicted in Figure 3(b). The
vertical smooth side-match distortion is defined as
Lower_vd(y)=

n

(var(u ;. u,,,) + var(y . y,;)
ot | 2

—var(u ., ¥,;)

and the horizontal smooth side-match distortion is defined
as
Lower_hd(y)=

@ l(var( LT )+ var(y  , Y a0 ))

=1 | 2

— var( LA yj'n)

Then, the smooth side-match distortion of the codeword y
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is defined as

D(y)=Lower_vd(y)+Lower_hd(y).
The selection algorithm selects N; codewords from the
supercodebook as x’s state codebook. These codewords yi’.s
have the smallest smooth side-match distortions D(y;)’s for

i=1,..., N,

4. The Design of SSM-CVQ

In SSM-CVQ, three codebooks corresponding to
the block size 16 x 16, 8 x 8 and 4 X 4 are built for
low-detail  blocks and  twenty-eight codebooks
corresponding to block size 4 x 4 are built for high-detail
blocks. The advantage of SSM-CVQ is that the bit rate for
low-detail blocks can be reduced and the coding quality for
high-detail blocks can be improved. The bit rate for
low-detail blocks can be reduced because they are encoded
by smaller sized state codebooks and also the block size is
selected as large as possible. The coding quality of
high-detail blocks can be improved because these blocks

are classified into more edge classifiers and larger sized

state codebooks are used. In SSM-CVQ, the coding quality

is also improved by replacing the LBG algoroithm with the
proposed algorithm CLUSTERING and the visual
perception quality is enhanced by using the smooth
side-match method.

In the following, Subsection 4.1 describes the
segmentation strategy. The designé of the codebooks for
low-detail blocks and for high-detail blocks are described
in Subsection 4.2 and Subsection 4.3, respectively.

Subsection 4.4 describes the coding method in SSM-CVQ.

4.1. The segmentation strategy
Each training block of size 16 x 16 is first classified

as a low-detail block or a high-detail block. The variance of
each block of size 16 x 16 is calculated. If the variance of
the block is less than the given threshold, this block is
classified as a low-detail block. Otherwise, this block is
divided into four blocks of size 8 x 8. This splitting process

is continued until the blocks of size 4 x 4 are reached. We



use the quadtree [15] to address the blocks of different sizes.

That is, if the block is divided into smaller blocks, the
quadtree code is “1”. Otherwise, the quadiree code is “0”.
When the size of the block is 4 x 4, if this block is a
high-detail block, the quadtree code is “1”. Otherwise, the
quadtree code is “0”. Figure 4(a) shows an example of a 16
x 16 block and Figure 4(b) depicts the corresponding
quadtree. Figure 4(c) describes the quadiree code for this
block.
4.2. The design of codebooks for low-detail blocks

In the design of the low-detail codebooks, a few
DCT coefficients are enough to capture the property of the
block. Figure 5 shows an example of the DCT coefficients
with the block size mxn. For low-detail blocks, three
codebooks for three different sizes of blocks are designed
separately. Since the gray levels of pixels in the low-detail
block do not vary much, the higher frequency coefficients
are not significant and only a few DCT coefficients are
required to represent the block. The use of fewer
coefficients does reduce the complexity of designing the
codebooks. The selected coefficients for a block of size
mxm are c(i, j)’s where 0<i<m/2 and 0<j< (M/2)-i.
These DCT coefficients are viewed as a vector for
representing the block. Use the algorithm CLUSTERING
to cluster these vectors and then, the inverse DCT (i.e.
IDCT) transforms the center of each cluster into a spatial
vector. These spatial vectors constitute the codewords of

the codebook.

4.3. The design of codebooks for high-detail blocks
In the design of the high-detail codebooks, the size

of all training blocks is 4 x 4. Six DCT coefficients were
used for edge classification in [2]. ¢(0, i)’s represent the
horizontal features and c(i, 0)’s represent the vertical
features for 1 i< 3. These six coefficients Viewéd as a
vector are also used for edge classification in the proposed
SSM-CVQ. In SSM-CVQ, instead of attempting to
predefine the number of edge-oriented classifiers, we apply

the algorithm CLUSTERING to the whole high-detail
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training blocks and the number of clusters is automatically
obtained. Let there be q clusters for high-detail blocks. The
center of each cluster is regarded as an edge classifier. That
is, there are q codebooks for high-detail blocks. The
algorithm CLUSTERING is then applied again to build the
codebook for each edge classifier. We use ten DCT
coefficients, c(i, j) for 0<i<3 and 0 <j <344, as features
to do the clustering. Then, the center of each cluster is
transformed into a spatiai vector by IDCT and this vector
represents a codeword in the codebook. Therefore, when a
high-detail block is encoded, this block is first classified
into one of the edge classifiers and then encoded by a

codeword in this edge classifier’s codebook.

4.4. The coding method in SSM-CVQ
In SSM-CVQ, there are three codebooks for

low-detail blocks and q codebooks for high-detail blocks.
Each codebook is regarded as a supercodebook. Hence,
there are g+3 supercodebooks in SSM-CVQ. When we
want to encode a low-detail black, SSM-CVQ selects the
supercodebook according to the block size and then, this
block is encoded by the smooth side~rhatch method using a
smaller sized state codebook. So, we may use fewer bits to
encode the low-detail regions that occupy large areas of an
image and the bit rate is therefore reduced. When we want
to encode a high-detail block, SSM-CVQ selects the
supercodebook according to the characteristics of edges in
this block. This high-detail block is then encoded by the
smooth side-match method using a larger sized state
codebook. The coding quality of the high-detail region is
improved because the high-detail block is further classified

into q classes and the use of larger sized state codebooks.

5. Experimental Results

In our experiments, five images, each of size 512
x 512, were used as the training images. The parameters
used in the second stage of CLUSTERING are described as
follows. The population size was 50, the crossover taie was

80% and the mutation rate was 5%. 200 generations were



rn and the best solution was retained. The 486 personal
computer was used in the experiments. At first, we
searched the number of edge classiﬁefs for high-detail
blocks. The various values of w's were separately used in
the second stage of the algorithm CLUSTERING. If w was
chosen to be large, CLUSTERING produced fewer clusters
and the average distortion tended to be large. The center of
each cluster was regarded as an edge classifier and edge
classifier indices were coded by the Huffman code based
on the sizes of clusters. In Figure 6, several values of w,
namely, 1.5, 2, 2.5, 3, 3.5, 4 and 4.5, were used separately
in algorithm CLUSTERING and 98, 72, 58, 37, 28, 16 and
10 clusters were obtained, respectively. As indicated by
Figure 6, when the values of w were larger than 3.5, the
average distortion increased dramatically. Therefore,
twenty-eight edge classifiers were selected for designing
high-detail codebooks.

“Lena” image and “F-16" image that were not in the

training set were used (o test the performance of SSM-CVQ.

In SSM-CVQ, the sizes of three low-detail codebooks were
68, 72, 78 for 16 x 16, 8 x 8 and 4 x4 blocks respectively
and the average codebook size for high-detail blocks was
128. The state codebook size was defined as 16 for
low-detail blocks and 32 for high-detail blocks. Table 1 and
Table 2 lists the coding quality and the bit rate of these two
images coded by SSM-CVQ. In Table 3, there are several
combinations of the various techniques used in designing
the CVQ’s. The clustering algorithm (PNN+LBG) indicates
the combination of PNN and LBG algorithms ([14], [16]).
To compare the various combinations in Table 3, each
CVQ was designed with the same structure. The
CLUSTERING algorithm was first used to find the number
of edge classifiers and designed each codebook, then the
LBG algorithm and the (PNN+LBG) algorithm were
applied separately to obtain the same number of edge
classifiers and the same size for each codebook. As
indicated in Tzble 3, using of the CLUSTERING algorithm

has better coding quality than the LBG algorithm or the
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(PNN+LBG) algorithin. The reason is that the algorithm
CLUSTERING in general finds a better clustering than the
LBG algorithm and the (PNN+LBG) algorithm do. In
Table 3, the smooth side-match method also has bettér
coding quality than the side-match method. Figure 7 shows
a magnified portion of the image “Lena”. The image
encoded by the smooth side-maich method has better visual
perception quality than that encoded by the side-match
method when the bit rate is the same. This is because the
smooth side-match method is based on the smoothness of
the gray level transitions across the boundaries of the
neighboring blocks. Table 4 shows the average training
time of designing the codebooks by the three clustering
algorithms. The algorithm CLUSTERING has better
performance than the LBG algorithm and the (PINN+LBG)
algorithm. The entropy coding was used to reduce the bit
rate in [4] and {11], we also used the entropy coding for the
indices of state codebooks to further reduce the bit rate.
Table 5 lists a comparison of the performances of several
coding methods. The SSM-CVQ outperforms the other
methods in both the PSNR and the bit rate.

6. Conclusions

In SSM-CVQ, the algorithm CLUSTERING is
applied to find the number of edge classifiers for
high-detail blocks and to design the codebooks. The
;algorithm CLUSTERING searches for a proper number of
cluster centers and does the clustering simultaneously. As
indicated by the experimental results, the coding quality is
improved in SSM-CVQ because the algorithm
CLUSTERING can obtain better clustering than the LBG
algorithm. The application of the smooth side-match
method also achieves the higher coding quality and the
better visual perception quality than the conventional

side-match method when the bit rate is the same. We apply

the smooth side-match method to SSM-CVQ to lower the

bit rate. Moreover, the low-detail blocks are encoded by a

smaller sized state codebook and the block size is selected



as large as possible, hence, the bit rate for low-detail blocks

can be further reduced. Classifying high-detail blocks into

more edge classifiers and using the larger sized state

codebooks also improve the coding quality of the

high-detail blocks. The experimental results have shown

that SSM-CVQ has the higher coding quality, the better

visual perception quality and the lower bit rate.
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Table 1. The PSNR’s by SSM-CVQ.

Class PSHR (dB)
regiomn Lena F-16
Low-detail
16516 35.32 34.47
Low-detail
8% 8 33.48 33.02
Low-detail
4d 32.58 32.13
High-detail
4 d 28.01. 27.72
Overall 32.49 32.08

Table 2. The bit rate by SSM-CVQ.

Class Bit-rate (bpp)

Region Lena F-16
Quadtree "
Code 0.029 0.035
vQ
Index 0.144 0.161
‘E.dgeI classifier 0.023 0.028
ndex

Overall 0.196 0.224

Table 3. The comparison of the ¢oding qualities

by the various combinations.

Lena | F-16

Method PSNR | PSNR

(dB) | @B)

(1) LBG+Side-Match 3161 | 31.24
(3) LBG+Smooth Side-Match 31.0% | 31.56
(3) (PNN+LBG)+Side-Match 31.67 | 31.28
(@) (PNN+LBG)+Smooth Side-Match | 32.01 | 31.70
(5) CLUSTERING+Side-Match 32.14 | 31.75
(6) CLUSTERING+Smooth Side-Match | 32.49 | 32.08

Table 4. The average designing time for each codebook

by three methods.
Algorithm Ave, Training Time
(sec)
LBG 3712
PNN+LBG 3191
CLUSTERING 3028
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Table 5. The comparison of the coding qualities of the

“Lena” image by the various coding methods.

R PSNR Bit-rate
Technique (dB) (bpp)
NewSMVQ [13] 30.97 0.340
QT-CVQ 2] 32.05 0.309
Classified FSVQ [4] 30.44 0.270
DCT-CVQ[17] 31.41 0.32
JPEG 32.01 0.268
SSM-CVQ
(no entropy coding) 32‘49. 0.196
SSM-CVQ 3249 | 0.172
(entropy coding)

Fighre 1. An example of basic b]oclcs:bl, b,! and b, in
B.

B

Gray level

B
Um0 Um,1 X101 X2, Pixel

Figure 2. The neighboring pixels B33, ¥p,1, X1,1 and Xa

in the encoded block x and its upper block w.
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Figure 3. The neighboring blocks used in SSMVQ.
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Figure 4. An example of the guadiree for a block of size 16x16.
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c(1,0) | (1,1) c(1,n-1)
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c(m-1, 0)|c(m-1, V)| ...

Figure 5. The DCT coefficients for the block of size mm.

30

3
W

Figure 6. The relationship between MSE and the values of

parameter w. (c) The original image.

Figure 7. The reconstructed images at 0.172 bpp.

(a) The image encoded by the smooth side-match

method.

C-29



