針對醫學影像之可逆資訊隱藏技術

A Reversible Data Hiding Scheme for Medical Images

黄樹乾 屏東教育大學資訊科學系

schuang@mail.npue.edu.tw

林明順 屏東教育大學資訊科學系 bm096109@mail.npue.edu.tw

摘要—在本研究中,我們將針對醫學灰階影像先利用前置處理使得0至255的像素值範圍影像轉成範圍為1至254像素值影像,再使用奇數行與偶數行的分類,利用歐基里德距離算出鄰近像素之權重提出預測方法,使用於直方圖之可求。 資訊隱藏技術。本研究中,利用預測方式求出像素值,再以預測值與原像素之差值來產生直方圖,然後將差值分為正數含0及負數兩部分,我們以醫學影像作測試,實驗結果顯示,本提出方法具有高容量及低失真的特點。

關鍵詞-預測式、可逆式資訊隱藏

一、 緒論

近年來,隨著資訊技術的進步,網際網路廣 泛運用,而且任何資訊都可以轉換成數位資料, 透過網路廣泛地傳播與散佈,不論是在法律、軍 事、媒體、醫學...等,在數位科技所帶來的便利 中,卻藏有潛在問題,例如隱私權、智慧財產權 保護;著作的竄改或偽造;資訊的竊取、監聽... 等,如何避免在傳輸過程中遭到任意的竄改、偽 造、監聽...等,因此資訊隱藏技術備受注視。資 訊隱藏技術為將訊息隱藏於多媒體之中而產生 偽裝多媒體,這些偽裝多媒體具不易察覺性而達 到安全的資訊傳送及有效的保護資訊。而現今的資訊 隱 藏 技 術 以 數 位 浮 水 印 (Digital Watermarking) 及偽裝學 (Steganography) 為兩大熱門技術。

數位浮水印讓影像藏入認證資訊,避免遭受 修改。所以數位浮水印著重於藏入的資訊之強韌 性,通常此技術將資訊隱藏到預保護影像中,當 需要時再萃取出,以達認證效果。然而藏入資訊 的 偽 裝 影 像 , 影 像 具 有 不 可 察 覺 性 (Imperceptibility),但是通常在過程中,造成影 像不可回復。

偽裝學探討影像資訊隱藏 (Data Hiding)為 重點,強調對原始影像能維持不錯品質的情況 下,能儘量在影像中藏入更多訊息,產生偽裝影 像 (Stego-image),使這些偽裝影像於傳輸過程 中,不會引起其他人的懷疑。但是在強調高容量 的情況下,又希望影像品質不受太大影響,因此 如何去平衡提高負載度容量 (Capacity) 和不可 察覺性兩種特性的議題極為重要。

在這些影像資訊隱藏技術中,有些技術往往 於擷取資訊完後,仍使原始影像失真,無法完全 回復,雖然只是些微的被破壞與失真,以肉眼看 不出差異性,但是在某些特定專門領域上,例如 醫學影像診斷,是不被允許的。因此可逆的資訊 隱藏技術,改善影像不回復問題,和必需滿足高 容量及不可察覺性,如何在兩者之間取得平衡, 是目前可逆式資訊隱藏相關研究的最大課題。

二、文獻探討

目前大部份可逆式資訊隱藏 [1-12],是以灰階影像作輸入,也有一些是以二元影像或彩色的影像作輸入,以下將探討 Ni 學者等人[7]的方法。

Ni 學者等人提出以直方圖 (Histogram)方式,統計出每個灰階值的出現次數,再針對出現次數最高之灰階值作為可逆式資訊隱藏技術。其演算法如下:

步驟 1: 先將圖的各個 pixel 的灰階值以直方圖統 計次數,然後找出最高點及 0 點,設分別為 a,b。

步驟 2:若 a > b,將介於 a,b 的 pixel 之灰階值均減 1,pixel 之灰階值範圍將變為 [b,a-1],若 a < b,將介於 a,b 的 pixel 之灰階值均增加 1,pixel 之灰階值範圍將變為 [a+1,b]。

步驟 3:針對最高點之 pixel 的灰階值進行嵌入, 假設欲嵌入資訊為w, $w \in \{0,1\}$ 。當a > b,

藏入資訊 w=1 時,pixel 的灰階值不變,否則 pixel 的灰階值加 1;當 a < b,藏入資訊 w=1 時,pixel 的灰階值不變,否則 pixel 的灰階值減 1。

步驟 4:輸出偽裝影像。

在 Ni 學者等人所提出的方法,在擷取及回復原影像時,需要有最高點的 pixel 之灰階值 a、 0 點的 pixel 之灰階值 b 以及藏入資訊的大小,其擷取與影像回復演算法如下:

步驟 1:讀取 a,b 及藏入資訊的大小。

步驟 2:判斷 a,b 之大小:

 w=0,pixel 之灰階值不變;當 pixel 之灰階值為a-1時,表示藏入w=1,並將 pixel 之灰階值加 1 回復;當 pixel 之灰階值介於 [b,a-1)時,表示沒有藏入任何資訊,並將 pixel 之灰階值加 1 回復;其餘 pixel 之灰階值,表示沒有藏入任何資訊,pixel 之灰階值不作任何改變。

步驟 3:輸出藏入的資訊及還原後的影像。

例如影像資訊如圖1(a)所示,可得直方圖見圖1(b)。由直方圖可找出最高點a=157,及0點b=162,將介於[157,162]之間pixel之灰階值加1,得到圖1(c)及圖1(d)。假設欲藏入資訊 w為00001111010110,由左而右,由上而下,逐一對pixel為158作嵌入動作:若w=0,則pixel之灰階值變為157;若w=1,則pixel之灰階值保持不變,仍為158,最後可以得到偽裝影像圖1(e)和直方圖圖1(f)。

在擷取與影像還原時,由於知道最高點pixel之灰階值為157及0點pixel之灰階值為162,而且157 < 162,表示在偽裝影像中,pixel之灰階值若為157,表示藏有資訊w=0,其原始pixel為157;若pixel之灰階值為158,表示藏有資訊w=1,其原始 pixel為157;若 pixel之灰階值為157;若 pixel之灰階值為157;若 pixel之灰階值為157;若 pixel之灰階值為157;

(158,162],則表示沒有藏入任何資訊,並將pixel之灰階值減1,即為其原始的pixel之灰階值;其餘pixel之灰階值,表示沒有藏入任何資訊,並且不作任何變動。當擷取完畢,即能得到藏入資訊為0000 1111 0101 10,以及原始影像為圖1(a)。

三、 我們提出的方法

本研究針對醫學灰階影像提出可逆式資訊 隱藏技術,希望能達到高容量的藏量及高品質的 偽裝影像,使得醫學影像中能藏入更多資訊,且 不易被發現嵌有資訊。關於嵌入方法、擷取與影 像回復方法的流程,詳見圖 2 與圖 3。

(一) 嵌入方法

初始化:設evod=1表示從奇數行開始。

步驟 2:如圖 4(a) 所示,利用歐基里得距離給予 pixel x 鄰近 6 個 pixel 權重 k,其中權重值

k 將 滿 足
$$\sum_{i=1}^{6} k_i = 1$$
 , 且

 $k_1 = k_3 = k_4 = k_6 = \sqrt{2}k_2 = \sqrt{2}k_5$ 。經由計算後可 得各權重值 k 如圖 4 (b) 所示。例如圖 4(c) 所示,可求出預測值 \hat{x} :

$$\hat{x} = \left[\frac{2 - \sqrt{2}}{4} \left(59 + 64 + 58 + 62 \right) + \frac{\sqrt{2} - 1}{2} \left(64 + 62 \right) \right]$$

$$= 61$$

本方法對第一行、第一列、最後一行及最後 一列不作預測及嵌入動作:若evod=1則預測 所有奇數行,evod=0則預測所有偶數行。求 出預測值後,計算預測值 x 與原值 x 的差 d=x-x,並以直方圖顯示各差值出現次數。 步驟 3:將差值 d 分為正數含 0 及負數兩部分,

分別找出最高點及0點,將資訊嵌入於最高點,並將具有最高點(peak)之差值 p_1, p_2 和0(zero)點之差值 Z_1, Z_2 記錄在 oh_2 。然後分別將差值介於 $[P_1+1, Z_1-1]$ 及 $[Z_2+1, P_2-1]$ 之間的差值d位移,得到新的差值d',即

$$d' = \begin{cases} d+1 & \text{, if } d \in [p_1+1, z_1-1] \\ d-1 & \text{, if } d \in [z_2+1, p_2-1] \end{cases}$$
 (1)

步驟 4: 讀取欲藏入的資訊w,在 $d' = p_1$ 或 $d' = p_2$ 嵌入資訊,若 w = 0,差值保持不變;若嵌入 資 訊 w = 1 , 那 麼 $d' = p_1 + 1$ 或 $d' = p_2 - 1$,如下算式所示,直到最高點之差值 d 均使用過或是資訊藏完。

$$d' = \begin{cases} d & \text{, if } w = 0, d = p_1 \\ d + 1 & \text{, if } w = 1, d = p_1 \\ d & \text{, if } w = 0, d = p_2 \\ d - 1 & \text{, if } w = 1, d = p_2 \end{cases}$$
(2)

步驟 5:將預測值 \hat{x} 與新的差值相減,即可得到 偽裝影像的像素灰階值。計算 evod=(evod+1) mod 2,如果 evod=0,返回步驟 2,否則下一步。

步驟 6: 將 oh, 當為金鑰, 並輸出偽裝影像。

以圖 1 (a) 為例,先預測奇數行,得到圖 5

(a)。算出預測值 \hat{x} 與原值x之差值d,並作出其直方圖,分別為圖 5 (b)、圖 5 (c)。假設欲藏入資訊w為0000 1111 0101 10 ,為了方便舉例,在此亦假設奇數行藏完後所剩之w已包含奇數行的 p_1, p_2, z_1, z_2 。正數含0 部份 $p_1 = 0, z_1 = 5$,

將差值介於[1,5]部份均加1,即d'=d+1;負數 部份 $p_2=-1,z_2=-3$,將差值d=-2部份減1,即 d'=d-1=-3,經嵌入後可得新的差值d',如圖 5 (d)。然後利用預測值 \hat{x} 減掉新的差值d',即 可得到藏於奇數行的偽裝影像,如圖 5 (e)。再來利用圖 5 (e) 預測偶數行部份,可得圖 5 (f),並算出差值d 及其直方圖,分別為圖 5 (g) 和圖 5 (h)。由直方圖可得正數含 0 部份 $p_1=0,z_1=1$;

負數部份 $p_2 = -2, z_2 = -7$,所以差值介於 [-3, -7]

均減 1,即 d'=d-1,再經由嵌入式後,可得新的差值 d',如圖 5 (i) 所示。最後利用預測值 \hat{x} 減掉新的差值 d',即可得到藏完一次後的偽裝影像,如圖 5 (j) 所示。

(二) 擷取與影像回復方法

初始化:evod = 0。

步驟 2:由金鑰可以得知 p_1, p_2, z_1, z_2 。若差值 $d' = p_1$ 或 $d' = p_2$,表示嵌有 w = 0,原始差值 d = d';若差值 $d' = p_1 + 1$ 或 $d' = p_2 - 1$,則表 示嵌有 w = 1, 原始差值分別為 $d = p_1$ 及

 $d = p_2$;將介於 $[p_1 + 2, z_1]$ 及 $[z_2, p_2 - 2]$ 之差值

d'分別減1與加1位移得到d;其餘d=d'。 步驟 3:預測值 \hat{x} 與差值d相減,回復影像像素 值,即 $x=\hat{x}-d$ 。

步驟 4: 計算 evod=(evod+1) mod 2, 若 evod =1,

返回步驟1,否則下一步。

步驟 5:輸出所得灰階影像與藏入的機密資訊, 再從機密資訊中取出 ohl 以得到有灰階是 0 或 255 的原始影像。

以圖 5 (j) 為例,由金鑰可以得知 $p_1=0,p_2=-2,z_1=1,z_2=-7$ 。因為evod=0,表示最後藏入為藏入偶數行,所以先預測所有偶數行,再計算差值 d' 。然後利用最高點及 0 點將差值 d' 回復回原始差值 d ,並擷取出機密資訊 w ,再用預測值 \hat{x} 和回復後的差值 d 回復影像,可以得到圖 5 (e)。因 為evod=0,所以下一步驟為 $evod=(evod+1) \mod 2=(0+1) \mod 2=1$,表示再來 要還原奇數行部份。再以類似偶數行的還原步驟,逐一擷取出資訊 w 並回復影像,最後可得到影像圖 5 (a) 及所藏入的資訊。

四、 實驗結果

我們將針對三張醫療影像作實驗如圖 6,其 直方圖見圖 7,並以 PSNR (Peak Signal-to-Noise Ratio)驗證偽裝影像品質,求 PSNR 值其算式如 下式所示:

$$PSNR = 10 \times \log_{10} \left(\frac{255^2}{MSE} \right) \tag{3}$$

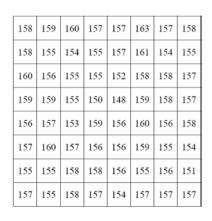
其中 $MSE = \frac{1}{N} \sum_{i=0}^{N-1} (p_i' - p_i)^2$, p_i 表示原始影像之第i個 pixel 的灰階值,共有N 個 pixel,p'表示偽裝影像之第i個 pixel 灰階值。一般而言,當PSNR 高於 35,以人的肉眼是幾乎看不出偽裝影像與原始影像的差異。

本研究將與Ni學者等人方法作比較。由表 1 可明顯看出圖 6 (a) 與 6 (b) 的數據容量本方 法均比Ni學者等人方法好,PSNR 值則很相近。 另外觀察圖 6 (c) 的數據,可以發現圖 6 (c) 影像大多數的像素灰階值非常接近於 0,因此使用本法在前處理過程,導致 PSNR 降低較多。但是整體而言,本法所提出之方法,改善了 Ni 學者等人所提出的方法。

五、 結論與未來方向

本研究中,在嵌入過程,加上了影像前處理,移除灰階值為 0 或 255 的灰階醫學影像的像素點,避免掉 overflow 或 underflow 的情形。我們使用分別對奇數行與偶數行的方式作權重預測,利用差值的直方圖修正作資料的嵌入,由實驗數據中,說明容量高於 Ni 學者等人提出之方法,且 PSNR 均高於 47。

未來亦可考慮將影像切割成多種區塊,然後在特定的區塊上做預測嵌入的動作。例如將影像分成邊區域(edge area)及平滑區域(smooth area),對於邊區域的嵌入,在視覺上,比較不易被察覺,但在嵌入容量上往往會比平滑區域少;平滑區域部份,通常可嵌入容量非常高,但是嵌入後,容易被發現藏有資訊。因此利用區塊的分類,如何在容量以及可察覺性上取得平衡,在未來方面,可以實驗驗證。


六、 參考文獻

- [1] A.M. Alattar, "Reversible Watermark Using the Difference Expansion of Generalized Integer Transform", IEEE Transactions on Image Processing, Vol. 13, No. 8, pp. 1147-1156, 2004.
- [2] H.L. Jin, M. Fujiyoshi and H. Kiya, "Lossless Data Hiding in the Spatial Domain for High Quality Images", IEICE Trans. Fundamentals, Vol. E90-A, No. 4, pp. 771-777, 2007.
- [3] S. Lee, C.D. Yoo, and T. Kalker, "Reversible image watermarking based on integer-to-integer wavelet transform", IEEE

- Transactions on Information Forensics Security, Vol. 2, No. 3, pp. 321-330, 2007.
- [4] C.C. Lin, W.L. Tai and C.C. Chang, "Multilevel Reversible Data Hiding Based on Histogram Modification of Difference Images", Pattern Recognition, Vol. 41, No. 12, pp. 3582-3591, 2008.
- [5] C.L. Liu, D.C. Lou and C.C. Lee, "Reversible Data Embedding Using Reduced Difference Expansion", IEEE Intelligent Information Hiding and Multimedia Signal Processing, Vol. 1, pp. 433-436, 2007.
- [6] D.C. Lou, M.C. Hu and J.L. Liu, "Multiple Layer Data Hiding Scheme for Medical Images", Computer Standards & Interfaces, Vol. 31, No. 2, pp. 329-335, 2009.
- [7] Z. Ni, Y.Q. Shi, N. Ansari, and W. Su, "Reversible Data Hiding", IEEE Transaction on Circuits and Systems for Video Technology, Vol. 16, No. 3, pp. 354-362, 2006.
- [8] J. Tian, "Reversible Data Embedding Using a Difference Expansion", IEEE Transactions on Circuits and System for Video Technology, Vol. 13, No. 8, pp. 831-841, 2003.
- [9] P. Tsai, Y.C. Hu, and H.L. Yeh, "Reversible Image Hiding Scheme Using Predictive Coding and Histogram Shifting", Signal Processing, Vol. 89, Issue 6, pp. 1129-1143, 2008.
- [10] H.W. Tseng and C.C. Chang, "An Extended Difference Expansion Algorithm for Reversible Watermarking", Image and Vision Computing, Vol. 26, No. 8, pp. 1148-1153, 2008.
- [11] S.W. Weng and Y. Zhao, "Lossless Data Hiding Based on Companding Technique and Difference Expansion of Triplets", IEICE

Trans. Fundamentals, Vol. E90-A, No. 8, pp. 1717-1718, 2007.

[12] C.C. Lin and N.L. Hsueh, "A Lossless Data Hiding Scheme based on Three-pixel Block Differences", Pattern Recognition, Vol. 41, No. 4, pp. 1415-1425, 2008.



圖 1 (b)

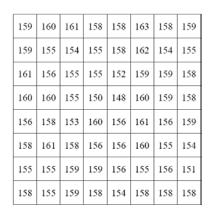
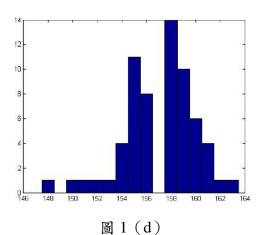



圖 1 (c)

159	160	161	157	157	163	157	159
159	155	154	155	157	162	154	155
161	156	155	155	152	159	159	158
160	160	155	150	148	160	159	158
156	158	153	160	156	161	156	159
158	161	157	156	156	160	155	154
155	155	159	159	156	155	156	151
158	155	159	157	154	158	158	157

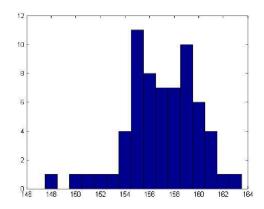


圖 1. Ni 學者等人方法的範例

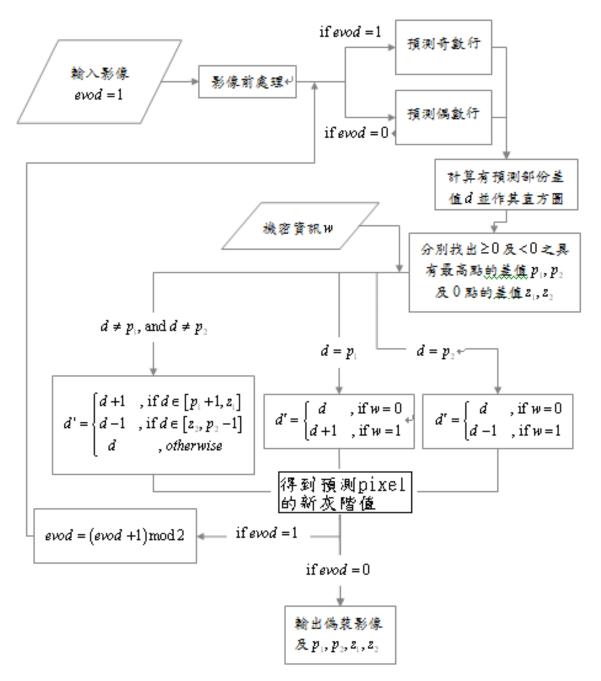


圖 2. 本方法嵌入的流程圖

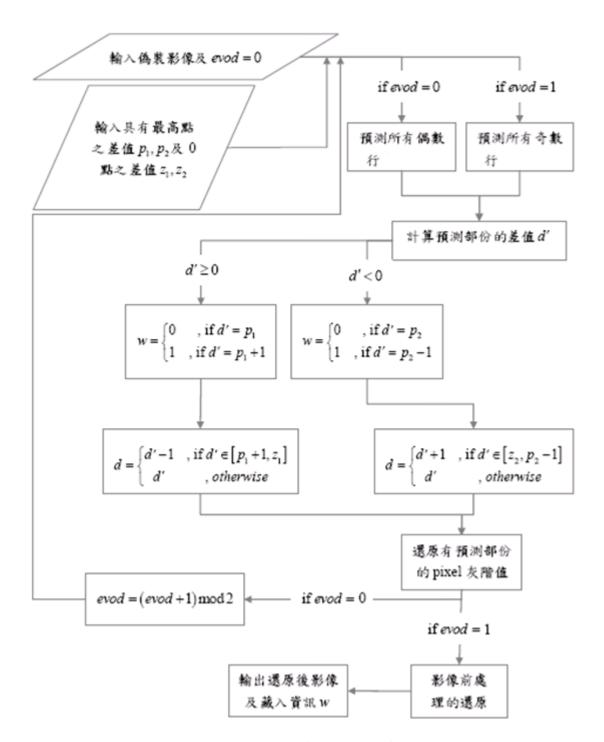


圖 3. 本方法擷取與影像回復流程圖

k_1		k_4		2	$\frac{-\sqrt{2}}{4}$		$\frac{2-\sqrt{2}}{4}$		59			58					
k_2	x	k ₅		2	$\frac{\sqrt{2}-1}{2}$	x	$\frac{\sqrt{2}-1}{2}$		64		x	62					
k_3		k_6		2	$\frac{-\sqrt{2}}{4}$		$\frac{2-\sqrt{2}}{4}$		64			62					
	圖 4 (a) ■ 4 (b) ■ 4 (c) ■ 4. 使用權重預測之圖示																
158 159 158 155 160 156 159 159 156 157	156 155 155 155 155 150 156 159	156 159 157 160	158 157 157 158		0 8	1 4 4 -1 8 0 1 1	5 45 - 4 - 35 - 25 - 2 - 15 -					, ,		3 0 0 4	2 5 8 2	5 -1 0 2	
157 160 155 155 157 155	156 158	157 159 156 155 154 157	155 151			1 1 0 -1	1-	-3 -2 -1	0 1 2	3 4	5 6	7 B		-3	1	2 -2	
	昌	5 (a)			圖 5	(b)			圖 5	(c)			圖 5	5 (d	1)	
158 159 158 155 160 156 159 159 156 157 157 160 155 155 157 155	153 155 155 155 155 150 152 159 156 156 159 158	148 159 155 160	153 155 158 157 158 157 158 157 155 158 154 154 157 151	157	3 157 0 156 0 156 5 155 7 155 6 157	155 152 152 153 156 155 159 156	156 155 13 151 154 13 148 154 13	53 155 58 157 58 157 55 158 55 154 154 154	2 0 -3 -2 -5 2	0 -2 2 -6 -1 -2	-6 -4 -5 -6 -4	25-	7 -6	5 4	-3 -2		2
	圖 5 (e) 圖 5 (f) 圖 5 (g) 圖 5 (h)																
0		-7 -5				7 163 15 5 162 15											
-4	2	-6				159 15											
-2		-7	156 15	_	60 155	161 15											
-6 2		-5 1	155 15	5 159 1	59 155	154 15 157 15	57 151										
圖	5 (i))		圖 5													

圖 5. 使用本方法之範例

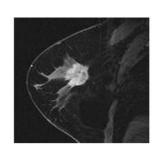


圖 6 (a)

圖 6 (b)

圖 6 (c)

圖 6. 三張實驗影像,影像大小:(a) 450×417,(b) 508×424,(c) 256×256

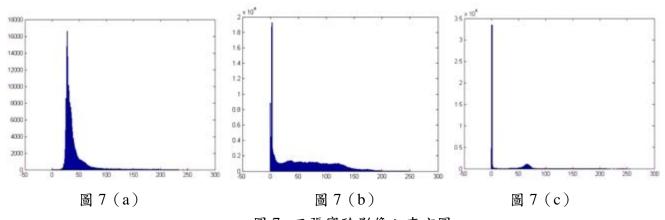


圖 7. 三張實驗影像之直方圖

表 1. 本法與 Ni 學者等人方法之比較

	我們提	出之方法	Ni 學者等人方法				
	容量	PSNR	容量	PSNR			
圖 6	(bit)	(dB)	(bit)	(dB)			
(a)	148,918	50.39	16,591	49.24			
(b)	166, 029	49.09	19, 287	50. 45			
(c)	43,693	47.07	33,501	49.86			