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Abstract

This work proposes a novel idea, called SOIL, for
reducing the computational complexity of the maximum a
posteriori optimization problem using Markov random
field by exploiting the local characteristics so that the
searching in a virtually infinite label space is confined in a
small finite space. Globally the number of labels allowed is
as many as the number of image sites while locally the
optimal label is sampled from a space consisting of the
labels assigned to the 4-neighbour plus a random one.
Neither the prior knowledge about the number of classes
nor the estimation phase of the class number is required in
this work. The proposed method is applied to the problem
of texiure segmentation and the result is compared with
those obtained from conventional methods.

Keywords: Markov Random Field, Stochastic Relaxation,
Simulated Annealing, Texture -Segmentation, Bayesian
Estimation.

1. Imtroduction

Due to its local characteristics, also known as Markovianity,
Markov Random Field (MRF) has become one of the most
popular approaches to optimization problems in a wide
variety of areas in general [6][7])[10][12], and texture
segmentation in particular [1]{3][8][9][11][13]. The main
attraction of the local characteristics of MRF resides in its
merit allowing a global optimization problem to be
simplified and solved locally, whereby the computational
cost is minimized. In the context of texture segmentation,
the optimization is basically a process seeking the optimal
labeling of the image pixels/sites. Markovianity allows the
label selection of a site to be conditioned explicitly on the
local interaction between the sit¢ and its neighbors within a
well-defined neighborhood system without involving all the
sites of the images.

For an image of size M X M pixels/sites, if we define
some symbols as follows:

s={(, ) (i, j)is the coordinate of a site in the
image; 1<i, j<M}

T'={ylyisaclasslabel;l< y <L}

A=1{A, Ise Sand A, e T,isa class label of site 5.}

A=1{11 Aisa label configuration of the image},

then the image can be seen as a sequence of Markov
Random Fields, i.e., a family of random variables
A={A 1se S} with respect to a neighborhood system N,
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in which each random variable /?,S takes a value in T, if

and only if the following two properties are satisfied:

P(A)>0 VieA (1)
PO 1 As) = P4, 1 2) @
where },S_m is the configuration of the set §—{syand

2, is the local configuration of neighborhood N, ofsite

§ . Besag [2] reasoned that if Equation (1), the prior, is
satisfied, the joint probability p(¢1) of any random field is

uniquely determined by its local conditional probability.
This is characterized by Equation (2), which is the local
characteristic of Markov Random Fields, called
Markovianity. From Equation (2) we can see that a Markov
Random Field is a conditional probability measure of a
random variable at a site depending only on the interactions
with its neighbors. This local characteristic implies that the
statistical structure of the image is essentially localized
within the neighborhood system.,

The Hammersley and Clifford expansion [2] has
established the theorem of MRF-Gibbs equivalence that 1
is a sequence of Markov random fields on S with respect to
N, if and only if A is a set of Gibbs random fields on S

with respect to N,. Readers are referred to [2] for the

proof of the theorem. The importance of this theorem is that
it provides a simple way of formulating the joint
probability by specifying the clique potential functions
appropriately chosen for desired behavior of the sysiem. In
the context of texture segmentation, we can treat an image
as a sample of a set of Gibbs random fields with respect to
a neighborhood system N, if and only if its label

configuration obeys a Gibbs distribution [4][10]. A Gibbs
distribution is denoted, for a given set of observed data X,
as

U(4,x)
1 -

P()= —¢ T €)

where T is the pseudo temperature and
factor Z is the partition function defined as
UML)

T 4

the normalizing

Z= e
deA
For each configuration 1, associated interaction energy
U(A,X) isdefined as
UAX)= V.(4,X) (5)
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where V.(4,X), called potential, is the interaction among

the sites in clique C. The higher the potental is, the more
repulsive the sites within the clique are against each other,
i.e. it is more likely that they belong to different classes,
and vice versa.

While a Gibbs random field is characterized by its global
property, the Gibbs distribution, a MRF model is
characterized by its local characteristic in Equation (2).
With the theorem of MRF-Gibbs equivalence and
markovianity, instead of formulating P(A | ﬂs_m), the

optimization problem is approached with a MRF model
specified as
1 _U(’L'AN, X, )
Py )=e T )

where the partition function z, is defined as
Uddy Xy )

7z = e T N

and

U(/ls’lll‘/.’XN‘) =

ce

VC (ﬂ_; );LNS ,XNS ) (8)
C

where x y, fTepresents the observed data at the sites within
the neighborhood N, - Equation (6) suggests that the
estimate of the class label, 1 _, at site s is determined

locally through the interaction between site s and its
neighborhood .

MRF models are often used in conjunction with statistical
estimation, such as stochastic relaxation, so as to formulate
objective functions in terms of established optimization
principles, e.g., Maximum a Posteriori (MAP). Relaxation
is an iterative process for reducing the ambiguity of
labeling by minimizing an energy function in which
contextual constraints are encoded {14]. MAP is one of the
most often adopted statistical criteria for optimization and
in fact, has been the most popular choice in MRF texture
analysis [1]{3]{4]{71{9]{13]. Equation (6) also suggests that
the distribution function depends on temperature 7. At low
temperatures, the posterior distribution concentrates on the
label which associates with the lowest interaction energy

U(A,, 2, X, ), whereas at high temperature the posterior

distribution is essentially flat and no specific label is
particularly favored.

Stochastic relaxation, in a sense of simulated annealing, is
carried out by reducing the temperature T iteratively.

According to Equation (6), as the temperatre 1
decreases at each iteration, the probabilities of the
configurations associated with lower energy become larger
and those with higher energy are reduced. Eventually
(hopefully), the system will settle in the configuration with
lowest energy. Geman and Geman [4] suggested
7S 9)
log(1+1)
as the annealing schedule, where i is the number of
iterations, C is a sufficiently large constant and T is the
temperature function of . Since the “energy landscape'’ over
Markov random fields is usually non-convex, in order to
avoid local minima it is preferable to start at high
temperature and as the relaxation proceeds, 7 is decreased
gradually in the manner of physical annealing. This
MAP-MRF labeling scheme is known as Gibbs Sampler
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when employed in conjunction with simulated annealing
[41.

Despite the advantages of Markov Random Fields, when
they are used in conjunction with stochastic relaxation
scheme, the convergence rate requires a serious
consideration, because slow convergence rate incurs high
computational complexity. Therefore, it is our intention to
investigate this problem and propose a solution to it. The
rest of the work is organized as follows. Issues regarding
the computational complexity of MRF’s are addressed in
Section 2. Section 3 reviews two related works and
discusses their advantages and drawbacks. A new approach
to reducing the computation complexity of MAP-MRF
framework is also proposed and the performance of it is
compared with those of the related two. Application of the
proposed approach to texture segmentation is demonstrated
in Section 4, Section 5 concludes the work.

2. Issues about the Computational Complexity of

MRFE's

As far as the convergence rate is concerned, there are two
major issues call for attention:

Issue 1: Siarting temperature T

There is a dilemma regarding the choice of the starting
temperature T of Equation (6). To avoid converging to local
minima, higher starting temperature is preferred since it
provides a more moderate cooling schedule. However, this
incurs computational penalty and slows the convergence
rate down. On the other hand, to accelerate convergence,
lower starting temperature is more desirable since it
provides a more rapid cooling schedule. However, this is
more likely to make the algorithm premature and get
trapped in local minima. Therefore, trade-off has to be
made between fast convergence rate and high segmentation
quality by choosing an appropriate starting temperature. In
the context Gibbs sampling, the starting temperature is
dictated by the constant C in Equation (9). Unfortunately,
deciding the best value of C is non-trivial and heuristic, and

the range of the interaction energy U("h”l”: Xy ) and the

number of labels have to be taken into account so that C
can be better chosen. -

Issue 2: Size of label space L

From the partition function in Equation (7), we know that
the posterior probability has to be calculated for all L
texture class labels in /7. Also from Equation (6), it is
easy to see that the larger L is, the smaller the probability of
each label to be selected is. When L is relatively large, even
for the label with lowest interaction energy (cost), its
opportunity of being selected is slim because the posteriori
probability of it is overwhelmed by the big population of
labels. This means that if L is large, the algorithm takes
more iterations or longer time before the optimal
configuration can gradually emerge from the rest. In its
extreme case when L — 0 | the distribution in Equation (6)
becomes exactly uniform and none of the labels is preferred,
therefore, the label of each site will change randomly. On
the other hand, if L is given a value smaller than the

" actual number of texture regions, the image will inevitably

be under-segmented.
Another observation we made is that when a single site s is



significantly different from all its neighbors, all the labels
not assigned to-any of its neighbor will have the same
probability which is significantly larger than those of the
labels assigned to any of its neighbor. As a result, the label
of s will be very likely to change randomly among the
labels not assigned to any neighbor of s and the
convergence rate is therefore retarded.

Based on the above two observations, it is therefore
desirable to keep the size of label space to its minimum
without compromising segmentation quality and reducing
the convergence rate.

Unfortunately, the number of texture classes contained in
the underlying image is usually unknown. This uncertainty
complicates the choosing of value for L. The solution may
be either to pick a relatively large value for L or to perform
an estimation with a pre-process. However for the former,
the drawback has been clearly stated. For the later,
estimating the number of textures in most cases requires
prior knowledge about the textures or hypothesis. Basically,
the estimation itself is an ill-posed problem and usually
heuristic, thus is unreliable. Therefore some measure is
needed to tackle this issue.

As discussed in Issue I, deciding the best value of the
starting temperature involves the consideration of the range

of the interaction energy U (4. 4y, + X, ). This is not the

emphasis of this work. The reason we raise this issue is
because that it is somehow related to Issue 2, and there is
always an uncertainty involved in deciding the starting
temperature T or constant C of Equation (9) for different
values of L. For example, either when L — < while C is

kept constant or when C — ©° while L is kept constant, the
distribution in Equation (6) becomes exactly uniform with
none of the labels preferred. Therefore, for larger L, it may
seem sensible to adopt lower value for C so as to associate
the optimal label with a higher probability. This is because
lower value of C (or T) magnifies the difference between
U¢) ’s of different configuration, therefore, reduces the
influence of the majority of the less favored lables on the
optimal one. However, by doing so, the algorithm is more
likely to premature and gets trapped at local minima. Also,
depending on applications, the value of L may be
image-dependent. This requires a new tuning of C when a
new image with different value of L is presenied. It is
therefore desirable to divorce C and L so that the value of
them can be decided independently. This is achieved in the
present work and will be discussed in Section 3.2.

3. Approach to Reducing the Computational
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Complexity

Although the heavy complexity in calculating the partition
function in Equation (7) is well recognized, few researchers
proposed solutions to the problem [1]{13].

3.1 Previous Approaches and Their Drawbacks

Andrey and Tarroux [1]), in order to reduce the
computational complexity, have proposed a method to
calculate the normalizing factor by summing over all the
terms (energy functions) of the partition function, each
approximated by a simpler mathematical expansion.
However, their approach does not fully exploit the local
characteristics of the MRF's. Instead, their calculation of
the partition function involves all the sites within the
underlying image and all the elements in the label space .
The saving in computational cost is only achieved by
finding a simpler expression of the energy function which
requires less computational operations, not through a
reduced but sufficient set of configurations.

‘Wang proposed a labeling method [13) which restricts the
sampling on a reduced configuration space C(S) consisting
of a set of Partitions with Connected Components (PCC). A
PCC is a configuration in which each region of
homogeneous features is connected. Wang considers an
image grid as a general graph with the image pixels being
the sites of the graph. Figure 1 illustrates three PCCs, each
represents one partition (configuration) of the graph (image
grid). In Figure 1, sites (nodes), representing image pixels,
connected with edges are neighbors. Connected sites
confined in the ellipses form homogeneous regions,
therefore, there are 6 regions partitioned in Figure 1(a)
while there are 7 and 8 regions in Figure 1(b) and (c),
respectively. At the first step of the segmentation process,
Wang'’s algorithm is run directly on the graph of image
pixels S attempting to minimize the energy function over
C(S) — a subset of A, and will arrive at a local minimum
partition PCC,- Then in order to merge and grow the

partitioned regions of PCC,» a new graph S is defined

by considering each connected region (component) of
PCC, as asingle site of §,. The segmentation algorithm

is then repeated on graph S, attempting to minimize the

energy function by searching the minimum partition in the
new and reduced configuration space C(S,) — a subset

of C(S§), until it converges to a new minimum partition
PCC, -This process repeats until the algorithm can no

longer obtain any change. The main idea of this algorithm
is that, by considering each region of pcC, formed at

site §




step k as a single site at step &k +1.
Now let us look at how C(§ L )s are formed. Like most

segmentation algorithms, Wang’s method also updates the
configuration a single site at a time. Therefore, for each
visit 1o a site, the candidate configurations, called the set of
elementary moves (SEMs) by Wang, varies slightly only on
the position of the site being visited. Wang defines two
types of set of elementary moves: SEM of the first type
referred to as SEMI and SEM of the second type referrred
to as SEM2.To define SEM1 and SEM 2, Wang first defines
a particular partition [}] , associated with partition 1, as

follows. Letsite se S and A=(R,R,R,,A,R, }€C(S),
where R is the region containing s. If isolating s divides R
into connected components {s}» Cps Cyoeeos C,» then

[, is
(A, ={{s},C,,C,,A ,C,,R,,R,,A ,R,}. Figure 1(b)
and {(c) are two different partitions [A] s associated with
partition A in Fgiure 2(a). Now SEMI and SEM2 can
be defined as follows.

Definition of SEMI: for site s § and de S(C), let R

denotes the region containing site s,
a) if R contains only s or R—{s} is connected (as shown

in Figure 1(b)), then SEMI is the set consisting of [ﬂ,]x
and the PCCs obtained from [1] by combining s with the

defined as

regions adjacent to s in [A]  and leaving other regions
unchanged (e.g., Figure 1(b)).

b) if R-{s} is not connected (as shown in Figure 1(c)),
then SEM1={A} [

Definition of SEM2: for sitt S€S and Ae S(C),
SEM?2 is the set consisting of [A]  and the PCCs obtained
from [A]; by combining s with the regions in [A],

adjacent to s, such that there is no paﬁr of regions among
them which are neighbors, and leaving other regions
unchanged.

For example, let ([A],,{R,R,,R,,A ,R}) denotes the
PCC obtained from {1] by combining s with the regions

R,,R,,A ,R, . and leaving other regions unchanged, then
the SEM2 of Figure 1(c) is

SEM2={2, ([A],,{s,C\}), ([A),.{5,C. ), ([A;,
{8, R31), (A5, R, (A, 4s, €, R D), ([AT,,
{s,Cp, R D, (AL, {5, Co, R D, ([A),.{5,C,. R, ),
(IA;. 15, €L Gy Ry D, (1A),,45,C,, CL R DY

Therefore, when a site is being visited, instead of sampling
the Jabel of site s over L labels, only the labels such that,
for all PCCs, PCC € SEM1 U SEM 2, are involved in
the sampling. However, although SEM/ is small, which
incurs less computational cost, the relatively limited
choices is likely to vield undesirable partitions. On the
other hand, although SEM2 provides more choices which
allows the algorithm to avoid undesirable partitions, it is
relatively large and its construction is complex as shown in
the above example, which certainly imposes more overhead
on the algorithm. It is important to note that the interaction
energy function depends not only on the configuration but
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also on the observed data (features). However, when the
shape of regions changes, the regional features (e.g., mean
gray level, variance, eic.) have to be re-evaluated. This
fequirernent consumes computational resources too.
Therefore, apart from the complication of constructing its
configuration elements, another problem regarding the use
of SEM2 1is that each element of it adds an additional
computation load for feature re-evaluation on the algorithm.
To optimize the performance, at the early steps of the
segmentation when the number of sites is large and the size
of the connected regions is small, only SEM! is considered
so as to form bigger regions and reduce the number of sites
for the next graph as soon as possible. After a few steps
when the number of sites in the new graph is reduced to
some extent, SEM2 is used to replace SEMI to offer more
choices so as to bring out more changes and better
segmentation.

To further reduce the computational complexity, based on
the conjecture of four-color problem that four colors are
sufficient to color a planar map of any number of regions
[5], Wang suggests to allow only five labels being used
throughout the segmentation process, therefore, the label
space is reduced from L (L > 5) to 5.The reason he allows
five, instead of 4, labels is because the conjecture of
four-color problem has not been proved mathematically
(although it has been proved by means of an intricate
computer analysis in 1976 by Appel and Hagen {5]. This
idea does set an upper bound of 5 on the number of labels
to be involved in the segmentation process, however, the
drawbacks are obvious: First, it does not attempt to assign
the same label to the disjoint regions of the same features.
Secondly, it does not try to avoid assigning the same label
to the disjoint region of the different features. For example,
if there are six significantly different regions contained in
the image, at least two of the distinct regions will be
assigned the same label.

In the nexi section, aiming at overcoming the
aforementioned drawbacks of Wang’s algorithm, a simpler,
yet more flexible method, which fully exploits the local
characteristics of the MRF’s, is proposed to minimize the
computational complexity within an infinite label space.

3.2 Our Method Using SOIL

To enable the algorithm to execute without supervision and
to avoid estimating the number of textures contained in the
underlying image, we allow as many labels as the number
of sites to be used, ie., in our method, L = 1S). This is
virtually equivalent to adopting an infinite label space.
However, for any neighborhood system N, (4- and
8-neighborhood, etc.) employed, it is observed that actually,
for all },x not used in the 4-neighborhoods of site s,

P(A, 1A, )'s are all equal. It does not matter what label ,

which is not in the 4-neighborhood of site s, is assigned to s.
Therefore, there is no need to calculate P(A A, ) for

more than one ,’Ls which are not used in the

4-neighborhood of site s. Thus, for any site §, we only
calculate the probabilities of the current labels in the
4-neighborhoods of s and one randomly picked from the
rest of the labels which are not assigned to the 4-neighbors.
That is to say that the candidate Tabels to be assigned to any
site Sis sampled from the Set Of Indispensable Labels
(SOIL) denoted as



SOIL=},, W{anyoned, & A, } (10)

where 4N, stands for the 4-neighborhood of site s and
A,y 18 the set of the current labels  in the 4-neighborhood

of 5.

Although, globally, there are IS 1abels available, labels over
any specific homogeneous region will unify through local
interactions among sites as relaxation proceeds.

The advantages of this idea is threefold:

= It saves computational cost and solves the second issue
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Figure 3. The average number of labels used at
each iteration,

mentioned in the previous section by minimizing the
number of labels to be involved. For example, for the
worst case in the first order neighborhood, assuming ail
the four neighbors have different labels from each other,
there are only five (four used by the 4 neighbors plus a
random one) labels involved. For the best case wherein all
the neighbors are associated with the same label, only two
labels are involved. This idea minimizes the
computational complexity in two aspects: locally, the
number of labels involved is reduced to the minimum,;
globally, the convergence rate is minimized because the
growing rate of the optimal labels at different site is
higher than the methods involving more than one labels
which are not used in the neighborhood.

« Knowing the maximal number (five) of labels to be
involved also helps us in deciding an appropriate value of
constant C in Equation (9), since now C can be decided
independent of L and based purely on the range of the

interaction energy U(4,, 4, '+ X, ). Therefore, Issue 1

mentioned in the previous section is partly solved.

» This idea makes the prior knowledge about the number of
textures or estimation phase of the classes number
unnecessary, and enables the algorithm to work without
supervision.

3.3 Performance Comparisons between PCC and

50IL

The performance comparisons between Wang's PCC
method and our SOIL approach can be made as follows.
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« Allowing at most 5 labels to be used locally in Wang’s
algorithm reduces computational cost, however the
maximal number of labels allowed globally is also fixed
at five. This limits the flexibility of the algorithm in 1)
differentiating disjoint regions of different features and 2)
assigning the same label to the disjoint regions with
homogeneous features. For our SOIL method, the
maximal number of labels allowed locally is five while it
is L (L = 181) globally. The superiority of SOIL to PCC is
obvious: the computational cost is kept minimal while
the flexibility is maintained.

 Apart from the flexibility, the computational cost of
Wang’s PCC algorithm using SEMI is equivalent to that
of SOIL. However, SEMI is only used in the first few
steps while the larger and more complicatedly
constructed SEM2 is used throughout the rest of the
segmentation process. For SOIL, the number of labels
involved at any point of the segmentation process is
always less than or equal to S (actually, as we will see in
the next section, the number of labels involved
approaches 2 as the algorithm using SOIL iterates
toward the final configuration). In addition, SOIL
requires no complicated configuration construction like
SEM?2 does.

4, Application of SOIL to Texture Segmentation

To demonstrate the merits of the proposed algorithm using
SOIL, the proposed method and two conventional methods
with L = 6 and L = 10, respectively, are applied to segment
the textured image in Figure 2 (The white lines in Figure 2
are the superposed boundaries detected at the coarsest
scale). The only difference among the three algorithms is
the number of labels involved during the sampling at each
site. Since SOIL can be used in conjunction with different
energy functions and the main emphasis of this work is to
demonstrate the advantages of using SOIL, therefore, the
definition of energy function adopted in the three
algorithms is not presented. Readers are referred to [9] for
the detailed description of the definition. The average
number of labels involved at each site with respect to
iteration is plotted in Figure 3. The solid line is the average
number of labels using SOIL while the other two are
associated with the conventional methods. Without
adopting SOIL, the number of labels remains constant
throughout the optimization process, while adopting the
proposed method, the algorithm is adaptive to the local
configurations, therefore, the solid curve in Figure 3

Figure 2. Segmentation results of a textured image at
one scale.



Table 1. Performance of three different algorithms
applied to the image in Figure 2. The number of sites

is 64 (8X8).

Algorithins using SOIL| L=6 L=10
Average iterations 167 2156 5080
Average total number| 31 453 | 897 904 |3 251,200
of labels involved
Times more costly 1 2623 1035

than using SOIL

reflects the declining tendency of the number of labels
involved. As expected, the solid curve approaches 2 when
the segmentation algorithm settles. Note the solid curve
does not converge to 2 because the local configuration of
the sites along texture boundaries consists of more than one
label.

To compare the overall performance, some statistics are
collected in Table 1 after the three algorithms are tested.
Because of the nature of stochastic relaxation, a single run
of the algorithms does not necessarily reveal the
performance difference. Therefore, each algorithm repeats
for 100 runs on the same input image in Figure 2 with the
same values of C and interactive energy function defined in
{9]. In Table 1, the item Average iterations tells that the
third algorithm with L equal to 10 have to scan through the
image for the most iterations in average, thus requires the
longest time. The second algorithm places itself at the
second rank of performance while the first algorithm using
SOIL outperforms the other two. However, Average
iterations does not actually tell us how much cost is saved
because, for different algorithms, the sum of the number of
labels involved in each iteration is different. This is in turn
because, for different algorithms, the number of labels
involved at each site is different. The item Average total
number of labels involved in Table 1 tells the total number
of labels involved throughout a single run of the algorithms
in average. Note that involving more labels requires more
time of calculation of Equation (6). Item Times more costly
than using SOIL in Table 1 indicates how many times more
costly of each methods than SOIL,

The above experiments are conducted at a single scale or
the coarsest scale of a multiple-scale structure, where the
initial configuration is set randomly. Within a
multiple-scale structure, segmentation at finer scales is
usnally conditioned on the segmentation result of the
coarser scales, i.e., the initial configuration is the coarse
segmentation of the previous scale. For the conventional
methods, the number of the segmented regions at the
coarser scale can now be used as the value of L. For the
proposed method using SOIL, the average ISOILI is close to
2 from the first iteration at finer scale because the initial
configuration is not random. So the advantages of using
SOIL is still significant at finer scales.

5. Conclusions

in this work, two issues about the computational
complexity of a maxinuun a posteriori (MAP) optimization
problem using Markov random field (MRF) are addressed.
Some previous approaches to reducing the computational
complexity are reviewed and their advantages and
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disadvantages are also analyzed. A new novel idea, called
SOIL, for reducing the computational complexity, which
fully exploit the local characteristics of MRF’s, is proposed.
Application of the idea to image segmentation shows the
merits and feasibility of it.

In summary, the main contributions of this method are:

« It requires neither prior information about the number of

texture classes in the underlying image nor the
estimation phase of class number.
The searching for the global minimum in a virtually
infinite label space (arbitrarily large number of labels) is
confined in a small finite space without losing flexibility.
The convergence rate is therefore significantly
accelerated.

It is simple and straightforward, thus, requires no
complicated construction of the .set of candidate
configurations.
it allows the starting temperature T to be decided
independent of the size of label space L.

°
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