TERE/ A/ FEEE AR

Integrating Relational and Object-Oriented Databases in Multidatabase Systems

Ching-Ming Chao

Department of Computer and Information Science, Soochow University

chao@cis.scu.edu.iw

Abstract .
A multidatabase system maintains a global schema that is
the in;egration of component database schemas. This paper
proposes an approach to database integration between
relational and object-oriented databases in multidatabase
systems. We first define correspondence assertions that
specify semantic correspondences between schema objects
of two component databases. The correspondence asser-
tions are in the form of predicates in the first-order logic.
We then present integration rules that describe how to con-
struct the integrated schema according to the specified
correspondence assertions. The integration rules consist of
algorithmic steps and use primitive integration operators to
restructure, transform, and integrate component databases.
The primitive integration operators are algebraic operators.
The primary objective of our approach is to facilitate the

automation of database integration.

Keywords: Database Integration, Multidatabase Systems,

Heterogeneous Databases, Distributed Databases.
1 Introduction

A multidatabase system (MDBS) is a database system that
resides unobtrusively on top of existing component data-
base systems (CDBSs) and presents a single database illu-
sion to its users [2,8). An MDBS usually maintains a single
global database schema, which is the integration of all
component database schemas and against which its users
issue queries and updates. Note that the MDBS maintains
only the global schema and the CDBS actually maintain all
user data. Creating and maintaining the global schema,
which requires the use of database integration technique, is
a critical issue in muliidatabase systems.

According to {1], the term schema integration can be used

in two contexts: view integration in the process of database

C-353

design and database integration in the process of integrat-
ing existing databases. A variety of approaches to schema
integration have been proposed; e.g., [3,4,5,7]. Early ap-
proaches are mainly concerned with traditional and seman-
tic data models. Today, as relational and object-oriented
databases are the majority of databases, it is vital to have
approaches to database integration for muliidatabase sys-
tems with both relational and object-oriented component
database systems. Database integration in such a multida-
tabase system includes integrating two relational databases,
integrating a relational database and an object-oriented
database, and integrating two object-oriented databases.
Integration of relational databases and integration of ob-
ject-oriented databases have been investigated a lot. How-
ever, research on integrating a relational database and an
object-oriented database is rarely seen in the literature.

In this paper, we propose an approach to database integra-
tion between a relational database and an object-oriented
database. We first define correspondence assertions that
specify semantic correspondences between schema objects
of two component databases. We then present integration
rules that provide algorithmic steps for comstructing an
integrated schema from two component databases accord-
ing to the specified correspondence assertions. These inte-
gration rules use primitive integration operators to restruc-
ture, transform, and integrate component databases.

Our approach is similar to that proposed in [7]. However,
our approach is concerned with the integration between
relational and object-oriented databases while theirs is
concerned with the integration of object-oriented databases,
In [6], Kim et al. provided a classification of schematic
conflicts that may arise when integrating relational and
object-oriented databases. They also gave a classification of

conflict resolution techniques. Our approach extends their

classification of schematic conflicts and specifies the cor-
respondence between component databases based on the
semantic domain of schema objects. Besides, our approach
uses primitive integration operators to construct the inte-
grated schema while theirs uses a multidatabase language
called SQL/M to define the integrated schema.

We adopt an object-oriented data model as the data model
of the multidatabase system. The global schema is a virtual
schema because no actual data are stored for this schema.
Thus, the classes in the global schema are called virfual
classes and the objects associated with the virtual classes
are called virtual objects. Note that we assume an inheri-
tance model in which the objects in ;a superclass are those
that do not belong to its subclasses.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the correspondence assertions between
relational and object-oriented databases. Section 3 defines
the primitive integration operators for restructuring, trans-
forming, and integrating component databases. Section 4
presents the integration rules for constructing the integrated
schema. Section 5 gives an example to illustrate the data-

base integration process. Section 6 concludes this paper.
2 Correspondence Assertions

Correspondence assertions specify semantic correspon-
dences between schema objects of two component data-
bases. Schema objects in relational databases include tables
and columns. Schema objects in object-oriented databases
include classes and attributes. Correspondence assertions
between a relational database and an object-oriented data-
base are classified into the following four categories:

z Correspondences beiween tables and classes

z Correspondences between columns and attributes

z Correspondences between columns and classes

z Correspondences between tables and attributes
The first stage in our approach to database integration is to
specify correspondence assertions as many as possible.
However, there can be some correspondence assertions that

cannot be specified uniil the stage of constructing the inte-

C-354

grated schema. The correspondence assertions are in the
form of predicates in the first-order logic. This facilitates
automatic generation and human validation of assertions.
2.1 Table-versus-Class Correspondences

The correspondence between tables and classes is based on
their semantic domains. The semantic domain of a table (or
class) is the set of real world entities it can represent. Cor-
respondence assertions in this category are further classi-
fied into one-to-one and many-to-one correspondences.

A one-to-one correspondence is one between a table and a
class. Such a correspondence can be distinguished into
equivalent, related, or homonymous. The related corre-
spondence is further distinguished into containment, over-
lap, disjoint, or component.

z A table T is equivalent to a class C, denoted as En-
tity-Equivalent (T, C), if their semantic domains are the
same.

z A table T is contained in a class C, denoted as En-
tity-Containment (T, C), if the semantic domain of T is a
subset of that of C. Similarly, that a class C is contained in
atable T is denoted as Entity-Containment (C, T).

z A table T and a class C overlap, denoted as En-
tity-Overlap (T, C), if the set-intersection of their semantic
domains is not empty.

z A table T and a class C disjoint, denoted as En-
tity-Disjoint (T, C), if the set-intersection of their semantic
domains is empty but their semantic domains are both sub-
sets of a common superset.

z A table T is a component of a class C, denoted as
Entity-Component (T, C), if a real world entity of T is a
component of that of C. Similarly, that a real world entity
of C is a component of that of T is denoted as En-
tity-Component (C, T).

z A table T and a class C are homonymous, denoted as
Entity-Homonymous (T, C), if they are not equivalent or
related but they have the same.

A many-to-one correspondence is one between a set of

tables and a class. Due to normalization or other reasons,

several tables of a relational database together may repre-
sent the same set of real world entities as a class of an ob-
ject-oriented database.

z A set of tables TS is equivalent to a class C, denoted
as Table-Set-Class-Equivalent (TS, C), if the semantic do-
main of 7§ is the same as that of C.

2.2 Column-versus-Aitribute Correspondences
Correspondence assertions between columns and attributes
are specified only when their respective owner table and
class are equivalent or related. The correspondence be-
tween columns and attributes is based on their semantic
domains. The semantic domain of a column (or attribute) is
the set of real world entities it can represent. Correspon-
dence assertions in this category are further classified into
one-to-one and many-to-many correspondences.

A one-to-one correspondence is one between a column and
an attribute. Such a correspondence can be distinguished
into equivalent, related, or homonymous. The related cor-
respondence is further distinguished into containment or
overlap.

z A column C is equivalent to an attribute A, denoted as
Attribute-Equivalent (C, A), if their semantic domains are
the same.

z A column C is contained in an attribute A, denoted as
Attribute-Containment (C, A), if the semantic domain of C
is a subset of that of A. Conversely, that an attribute A is
contained in a column C is denoted as A#rib-
ute-Containment (A, C).

z A column C and an attribute A overlap, denoted as
Attribute-Overlap (C, A), if the set-intersection of their
semantic domains is not empty.

z A column C and an attribute A are homonymous,
denoted as Attribute-Homonymous (C, A), if they are not
equivalent or related but they have the same name.

A many-to-many correspondence is one between a set of
columns and a set of attributes. Two component databases
may use different numbers of columns and attributes, re-

spectively, to represent the same set of real world entities.

C-355

z A column set CS§ is equivalent to an atiribute set AS,
denoted as Attribute-Set-Equivalent (CS, AS), if the seman-
tic domain of CS is the same as that of AS.

2.3 Column-versus-Class Correspondences

The same set of real world entities can be represented as
one or more columns in a relational database and as a class
in an object-oriented database.

z A set of columns CS of a table T is equivalent t0 a
class C, denoted as Column-Set-Class-Equivalent (T, CS,
C), if the semantic domain of CS is the same as that of C.
2.4 Table-versus-Attribute Correspondences
The same set of real world entities can be represented as
one or more attributes in an object-oriented database and as
a table in a relational database.

z A set of attributes AS of a class C is equivalent to a
table 7, denoted as Astribute-Set-Table-Equivalent (C, AS,

T), if the semantic domain of AS is the same as that of 7.

3 Primitive Integration Qperators

Constructing an integrated schema is achieved by applying
primitive integration operators to component schemas. It
should be noted that component schemas do not change in
the process of constructing the integrated schema. Primitive
integration operators for integrating a relational database
and an object-oriented database are classified into three
categories: restructuring, transforming, and integrating
operators. These operators are algebraic to facilitate the
automation of constructing the integrated schema.

3.1 Restructuring Operators

Restructuring operators are used to rename or restructure
schema objects of component databases to resolve conflicts
between them.

z The Rename operator renames a table, column, class,
or attribute. It uses the following syntax to rename a table
or class: Rename (entity, new-entity) where new-entity is
the new name for the table or class entity. It uses the fol-
lowing syntax to rename a column or attribute: Rename
(entity, old-artribute, new-atiribute) where new-attribute s

the new name for old-aitribute in entity.

z The Coerce operator changes the domain type of a
column or atiribute. It has the following syntax: Coerce
(entity, attribute, new-type) where new-type is the new do-
main type for artribute in entity.

z The Concatenate operator concatenates several col-
umns (or atiributes) to a column (or atribute). It has the
following syntax: Concatenate (entity, ({attribute-list},
new-attribute, new-type) where columns (or atiributes) in
attribute-list of entity are replaced by a new column (or
attribute) whose name is new-artribute and whose type is
new-type. Types of concatenated columns (or attributes)
and the resulied column (or attribute) must all be character
strings.

z The Upgrade-T operator creates a table from a set of
columns. It has the following syntax: Upgrade-T
{owner-table, {column-list], new-column, new-table) where
columns in column-list belong to owner-table. Columns in
column-list are replaced with a single column new-column
that serves as a foreign key that references new-table. A
new. table new-table is created that includes columns in
column-list. If new-table does not have a simple candidate
key, new-column will be included as its primary key.

z The Upgrade-C operator creates a class from a set of
attributes. It has the following syntax: Upgrade-C
(owner-class, {attribute-list}, new-attribute, new-class)
where atiributes in attribute-list belong to owner-class.
Attributes in atrribute-list are replaced with a complex
attribute new-attribute whose domain class is new-class. A
new class new-class is created that includes attributes in
attribute-list.

z The Join operator joins two tables into a table. It has
the following syntax: Join (tablel, table2, new-table)
where tablel and table2 are the operands and new-table is
the result. The semantics of the Join operator is similar to
that of the natural join operator in the relational algebra.
3.2 Transforming Operators
Transforming operators are used to transform schema ob-

jects of relational databases into those of object-oriented

C-356

databases.

z The Transform operator transforms a table into a
class. It has the following syntax: Transform (table) where
table is the table to be transformed. The table is trans-
formed into a class while its columns are transformed into
attributes. The resulted class and its attributes have the
same names as those of table and its columns.

3.3 Integrating Operators

Integrating operators are used to construct schema objects
of the integrated schema from those of component data-
bases.

z The Create operator creates a virtual class in the in-
tegrated schema. It has the following syntax: Create (class)
where class is a class from some component schema. The
name, attributes, and virtual objects of the resulted virtual
class are the same as those of class. Beside, the relation-
ships (i.e., the inheritance and composition hierarchy) of
the resulted virtual class remain the same.

z The Combine operator combines two classes into a
virtual class. Only the resulted virtual class will appear in
the integrated schema. It has the following syntax: Com-
bine (classl, class2, new-class) where classl and-class2 are
combined into the virtual class new-class. The Combine
operator is similar to the outer-join operation in relational
databases. The attributes of new-class are the set-union of
those of class! and class2. The virtual objects of new-class
are the set-union of those of class! and class2.

z The Inherit operator builds an inheritance hierarchy
between two classes. It has the following syntax: Inherit
(subclass, superclass). Two virtual classes are produced in
the integraied schema. One virtual class corresponds t
subclass and is denoted as virtual-subclass. The other vir-
tual class corresponds to superclass and is denoted as vir-
tual-superclass. The atiributes of virtual-superclass are the
same as those of superclass. The atiributes of vir-
tual-subclass are the same as those of subclass; besides, it
inherits the attributes of superclass. The virtual objects of

virtual-subclass are the same as those of subclass. However,

if there are objects in superclass, whfch represent the same
real world entities as some objects in subclass, these ob-
jects have to be virtually integrated in virtual-subclass. The
virtual objects of virtual-superclass are the set-difference
between superclass and subclass.

z The Generalize operator creates a cornmon superclass
of two classes. It has the following syntax: Generalize
(classl, class2, superclass) where the virtual class super-
class is the common superclass of class] and class2. The
attributes of superclass are the set-intersection of those of
class] and class2. The set of virtual objects of superclass is
empty. Two more virtual classes are produced in the inte-
grated schema as subclasses of superclass, whose attributes
and virtual objects are the same as those of class/ and
class2, respectively.

z The Specialize operator creates a common subclass of
two classes. It has the following syntax: Specialize (classl,
class2, subclass) where the virtual class subclass is the
common subclass of classl and class2. The attributes of
subclass are the set-union of those of classl and class2.
The virtual objects of subclass are the set-intersection of
those of classl and class2. Two more viriual classes are
produced in the integrated schema as superclasses of sub-
class. The attributes of these two virtual classes are the
same as those of classl and class2, respectively. The virtual
objects of each of these two virtual classes are the
set-difference between each of the virtual objects of class/
and class2 and the virtual objects of subclass.

z The Compose operator builds a composition hierar-
chy between two classes. It has the following syntax: Com-
pose (component, composite, link-attribute). Two virtual
classes virtual-component and virtual-composite are pro-
duced in the integrated schema such that virtual-component
is the domain class of the atiribute link-attribute in
virtual-composite. The attributes and virtual objects of
virtual-component and virtual-composite are the same as

those of component and composite, respectively.

4 Integration Rules

According to the specified correspondence assertions be-

tween two component databases, integration rules describe

how to construct the integrated schema. Each integration

rule consists of algorithmic steps and invokes primitive

integration operators. In this way, our integration rules

facilitate the automation of database integration. We clas-

sify integration rules into the following four categories:

1. Integration rules for equivalent tables and classes

2. Integration rules for related tables and classes

3. Integration rules for column-set-class-equivalent and
attribute-set-table-equivalent

4. Integration rules for other tables and classes

During the construction of the integrated schema, these

four categories are applied in the following order: the third

category, the first category, the second category, and the

last category. For integration rules of the same category,

they are applied to classes in an inheritance hierarchy in the

top-down order. Besides, the same virtual class cannot be

produced more than once in the integrated schema by dif-

ferent applications of integration rules.

4.1 First Category

Integration rule 1: This rule is applied when a correspon-

dence assertion Entity-Equivalent (T, C) is specified.

[Step 1] If T and C have different names (i.e., they are

synonymous), we apply the Rename operator to T or C 10

make them have the same name.

{Step 2] For each pair of column CN in T and attribute A in

C such that a correspondence assertion Attribute-Equivalent

(CN, A) is specified, we do the following two substeps.

[Step 2-1] If CN and A have different names, we apply the

Rename operator to CN or A to make them have the same

name.

[Step 2-2] If CN and A have different atomic types, we

apply the Coerce operator to either CN or A to make them

have the same type. If the type of A is a class, we apply the

Coerce operator to CN to coerce its type to that of A.

[Step 3] For each pair of column CN in T and attribute A in

C such that an assertion Attribute-Containment (CN, A) is
specified, we do the following two substeps.

[Step 3-1] If CN and A have different names, we apply the
Rename operator to CN to change its name to that of A.
[Step 3-2] This substep is the same as step 2-2.

Similar process is performed for Attribute-Containment (A,
CN) except the roles of CN and A are interchanged.

[Step 4] For each pair of column CN in T and attribute A in
C such that a correspondence assertion Attribute-Overlap
(CN, A) is specified, we do the following two substeps.
[Step 4-1] If CN and A have different names, we apply the
Rename operator to both CN and A to make them have the
same name that semantically contains the old names of CN
and A.

[Step 4-2] This substep is the same as step 2-2.

[Step 5] For each pair of column CN in T and attribute A in
C such that a correspondence assertion Attrib-
ute-Homonymous (CN, A) is specified, we apply the Re-
name operator to CN or A to make them have different
names,

[Step 6] For each pair of column set CS in T and attribute
set AS in C such that a correspondence assertion A#trib-
ute-Set-Equivalent (CS, AS) is specified, we apply the Con-
catenate operator to both CS and AS to make the resulted
column and attribute have the same name and type.

[Step 7] Apply the Transform operator to T to transform it
into a class.

[Step 8] Apply the Combine operator to T and C to produce
a virtual class in the integrated schema.

Integration rule 2: This rule is applied when an assertion
Table-Set-Class-Equivalent (TS, C) is specified.

[Step 17 Apply a sequence of Join operations to tables in TS
to integrate them into a single table (called TJ).

[Step 2] Apply a process similar to that of steps 2 to 6 in
integration rule 1 to resolve conflicts between the columns
of 77 and the attributes of C.

[Step 3] Apply the Transform operator to T/ to transform it

into a class.

C-358

[Step 4] Apply the Combine operator to TJ and C to pro-
duce a virtual class in the integrated schema.

4.2 Second Category

Integration rule 3: This rule is applied when a fable T is
related to a class C.

[Step 1] If T and C have the same name, apply the Rename
operator to T or C to make them have different names.
[Step 2] Apply a process similar to that of steps 2 to 6 in
integration rule 1 to resolve conflicts between the columns
of T and the attributes of C.

[Step 31 Apply the Transform operator to T to transform it
into a class.

[Step 4] This step is different for various correspondence
assertions between T and C.

[Step 4-1] If an assertion Entity-Containment (I, C) is
specified, we apply the Inherit operator to T and C to make
T a subclass of C. Similarly, if Entiry-Containment (C, T) is
specified, we invoke the Inherit (C, T) operation.

[Step 4-2] If an assertion Entity-Overlap (T, C) is specified,
we apply the Generalize and Specialize operators to T and
C to create their common superclass and subclass.

[Step 4-3] If a correspondence assertion Entity-Disjoint (T,
C) is specified, we apply the Generalize operator to T and
C to create their common superclass.

[Step 4-4] If a correspondence assertion Entity-Component
(T, C, A) is specified, we apply the Compose operator 1o T
and C to build a composition hierarchy between them.
Similarly, if Entity-Component (C, T, CN) is specified, we
invoke the Compose (C, T, CN) operation.

4.3 Third Category

Integration rule 4: This rule is applied when an assertion
Column-Set-Class-Equivalent (CS, C) is specified.

[Step 1] Apply the Upgrade-T operator to CS to create a
new table (called 7).

[Step 2] Specify the correspondence assertion En-
tity-Equivalent (T, C) and correspondence assertions be-
tween the columns of T and the attributes of C.

Integration rule 5: This rule is applied when an assertion

Attribute-Set-Table-Equivalent (AS, T) is specified.

[Step 1] Apply the Ubgrade‘C operator (0 AS to create a
new class (called C). A

[Step 2] Specify the comespondence assertion En-
tity-Equivalent (T, C) and correspondence assertions be-
tween the columns of 7 and the attributes of C,

4.4 Fourth Category

Integration rule 6: This rule is applied when a correspon-
dence assertion Entity-Homonymous (T, C) is specified.
(Step 11 Apply the Rename operator to T or C {o make them
have different names.

[Step 2] Apply the Transform operator to T to transform it
into a class.

[Step 3] Apply the Create operator to both T and C to pro-
duce two virtual classes in the integrated schema.
Integration rule 7: This rule is applied for each table and
class without any correspondence assertion. For a table, we
apply the Transform operator followed by the Create op-
erator to it to produce a virtual class in the integrated
schema. For a class, we apply the Create operator to it to

produce a virtual class in the integrated schema.

5 An Integration Example

We now give a simple example to illustrate the process of
database integration. Figure | shows schemas of two com-
ponent databases DBI and DB2. DBI is a relational data-
base and DB2 an object-oriented database. First, corre-
spondence assertions between schema objects of these two
component databases are specified as follows.
¢ Entity-Equivalent (Person@DBI1, People@DB2)

— Attribute-Equivalent (ss#, ssn)

— Antribute-Equivalent (nationality, nationality)

— Attribute-Set-Equivalent ({f-name, I-name}, name)
% Entity-Equivalent (Employee @ DB1, Employee@DB2)

- Attribute-Equivalent (salary, salary)
¢ Entity-Equivalent (Course@DBI, Course@DB2)

— Attribute-Equivalent (c#, c#)

- Attribute-Equivalent (credit, credit)

¢ Table-Set-Class-Equivalent ({Student, Enroll-

C-359

ment]@DB1, Student@DB2)
— Attribute-Equivalent (c#, courses)
- Attribute-Containment (father, parent)
4, Column-Set-Class-Equivalent (Person@DBI, {national-

ity}, Country@DB2)

Person
Pash <

f-naﬁe (@A relation;ll schema

sex

nationality
[Employee Studpnt Enrollment Course
Sst ss#t | < ss# || ot
salary father cH / credit

People — Country

ssn name

name poplation

age area

nationality— (b) An object-oriented schema

Employee l—&—, Student — Course
Salary parent c#
courses credit

Figure 1 Schemas of Two Component Databases
Then, according to the specified correspondence assertions,
integration rules are applied in the following order.

" Col-

1. Apply integration rule 4 for

umn-Set-Class-Equivalent (Person@DBI, {nationality),
‘Country@DB2).
— Upgrade-T (Person@DBI, {nationality}, nationality,
Country)
~ Specify correspondence assertions Entity-Equivalent
{ Coz;ntr_v@DB] R Country@DB2) and Attrib-
ute-Equivalent (nationality, name).
2. Apply integration 1 for Eniity-Equivalent (Person@DB],
People@DB2).
"~ Rename (People@DB?2, Person)
— Rename (Person@DB2, ssn, ss#)

— Coerce (Person@DRB], nationality, Country)

— Concatenate (Person@DBI, {f-name, l-name}, name,

strz'ng{vpe*) ‘

— Transform (Person@DBI)

— Combine (Person@DBI, Person@DB2, Person)
3. Apply integration rule 1 for Entity-Equivalent (Em-
ployee@DBI, Employee@DB2).

— Transform (Employee@DBI)

~ Combine{Employee@DB1,Employee@DB2, Employee)
4. Apply integration rule 1 for Entity-Equivalent
(Course@DBI, Course@DB?2).

— Transform (Course@DB1)

- Combiije (Coz;rse@DBJ, Course@DB2, Course)
5. Apply integration rule 1 for Entity-Equivalent (Coun-
try@DB1, Country@DB2).

— Rename (Country@DB 1, nationality, name)

— Transform (Country@DBI)

— Combine (Couniry@DBI, Country@DB2, Country)
6. Apply integration rule 2 for Table-Set-Class-Equivalent
({Student, Enrollment}@DBI, Student@DB2).

— Join (Student@DB1, Enrollment@DBI, Student)

— Rename (Siudent@DBI, c#, courses)

~ Coerce (Student@DBI, courses, Course)

— Rename (Student@DB1, father, parent)

— Transform (Student@DB1)

— Combine (Student@DB1, Student@ DB2, Student)

The integrated schema is shown in Figure 2.

Person —— Country

ssn name

name poplation

SeX area

age

nationa]ityj—
Employee I——L-\ Student —— Course
Salary parent c#

courses credit

Figure 2 The Integrated Object-Oriented Schema

6 Conclusion

' string-type is the domain type of the attribute name in
Person@DB2

C-360

This paper proposes an approach to database integration
between relational and object-oriented databases in multi-
database systems. In our approach, correspondence asser-
tions between schema objects of component databases are
specified first. Then integration rules are applied to con-
struct the integrated schema. Our approach has three salient
features that facilitate the automation of database integra-
tion. First, the correspondence assertions are in the form of
predicates in the ﬁrst-ofcler logic. Second, the integration
rules consist of algorithmic steps and use primitive integra-
tion operators. Last, the primitive integration operators are
algebraic operators. In the future, we plan to address the

issue of schema mapping in such multidatabase systems.
REFERENCES

[1] C. Batini, M. Lenzerini, and S.B. Navathe, “A Com-
parative Analysis of Methodologies for Database
Schema Integration,” ACM Computing Surveys, Vol.
18, No. 4, pp. 323-364, December 1986.

[2] M.W. Bright, A.R. Hurson, and S.H. Pakzad, “A Tax-
onomy and Current Issues in Multidatabase Systems,”
IEEE Computer, Vol. 25, No. 3, pp. 50-60, March 1992.

[3) B. Czejdo and M. Taylor, “Integration of Database Sys-
tems Using an Object-Oriented Approach”, in Proceed-
ings of 1* International Workshop on Interoperability in
Multidatabase Systems, April 1991, pp. 30-37.

[4] W. Gotthard, P.C. Lockemann, and A. Neufeld, “Sys-
tem-Guided View-Integration for Object-Oriented Da-
tabases,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 4, No. 1, pp. 1-22, February 1992.

[5] M. Kaul, K. Drosten, and E.J. Neuhold, “ViewSystem:
Integrating Heterogeneous Information Bases by Ob-
ject-Oriented Views,” in Proceedings of 6™ Interna-
tional Conference on Data Engineering, 1990, pp. 2-10.

[6] W. Kim, L. Choi, S. Gala, and M. Scheevel, “On Re-
solving Schematic Heterogeneity in Multidatabase Sys-
tems,” in Modern Database Systems: The Object Model,
Interoperability, and Beyond, Addison-Wesley, 1995,
pp. 521-550.

{71 JL. Koh and A.L.P. Chen, “Integration of Heterogene-
ous Object Schemas,” in Entity-Relationship Approach,
Springer-Verlag, 1994, pp. 297-314.

[8] E. Pitoura, O. Bukhres, and A. Elmagarmid, “Ob-
ject-Oriented in Multidatabase Systems,” ACM Com-

puting Surveys, Vol. 27, No. 2, pp. 141-195, June 1995.

C-361

