FERBENTAFEZEERGS

ABHEREERSE
Adaptive Sarch of Mobile Agents

S RN R

®ox ®BY

A&

Yao-Nan Lien, Fuhan Liu, Wen-Shyen Chen, Chun-Wu Leng

* Department of Computer Science, Natinal Chengchi University
B Z38e X ERAMNEZ
** Department of Computer Science, Natinal Chung-Hsing University
BaFRXETRAHNEZ

iH &

EAHFEREF ERETH N —BEBHE
EAWEE LRBLBERFFEPARE LRIGFRE B
o TERBEEZRE, ARRECETHANES
M EEER ERABEHFRERET » KMBh—
BEAMBKE—AHEFTXOLHES o AFEE
PERFHENMIRBSEFRLAERKE ALY E
HAAMEN WEHETERBEHELMEN
MREEGOFR » ABHESEBRFENRES » T
HEHREHERMAA UERERTHRE S
BeAHBMNEFX REAREHIIRHE AR
TS THERARAREEATNAR BN TSR
BRI F L THBIL eyt o

MAEF T ARHE

Abstract

In a mobile computing environment that supports mobile
agents, a client can send an agent to visit a sequence
of servers in the network. Tracking the location of
agents becomes a critical problem in managing a
mobile agent service network. In this research, we
propose a new search strategy that can change the
basic algorithm during the search of a mobile agent.
This strategy makes use of the up-to-date information
obtained form the servers that have been visited by the
target agent. By knowing the departure time of the
target agent from a server, the search agent can either
recalculate the location prediction or simply switch from
the original search strategy to the sequential search.
When applying this strategy to the previously proposed
blind and intelligent searches, we can obtain a
significant improvement on the search efficiency.

Keywords: Mobile Computing, Mobile Agent.

§ This work is partially supported by [TRI/CCL gramt under MOEA
Distributed Information Processing Program (Contract number: G3-
87064).

F-95

1. Introduction
1.1 Agent and Agent Mobility

A ubiquitous information service network provides
information to the users any time anywhere [1,8,9].
Client users can access to the network through a
wireless mobile communication network. In addition, the
service network must provide some mechanisms
allowing client users access to various information
resources conveniently, which is referred to as mobile
computing [1,2,3].

Because the distributed computing technology is not
sufficiently mature to support mobile computing in such
a scale, client users have to access network resources
in a prescriptive fashion by interacting with individual
servers one by one to accomplish a complicated task.
However, in most mobile computing environments, the
nature of communications is intermittent and the battery
energy is limited so that it is very difficult and expensive
to accomplish a complicated task. The mobile agent
paradigm, which allows clients to interact with multiple
servers in a dynamic fashion has been brought up to
cope with this problem [1,2,3,8,10].

Simply speaking, a mobile agent is an electronic
message that carries a computer program, whether
procedural or declarative, which can be executed by the
receiving servers on behalf of the originating client. The
program in the message can also instruct a receiving
server to forward automatically the message itself to
another server, on which the program is executed
continuously in a pipeline fashion. Good examples can
be found in [3).

Since an agent may move continuely in a service
network, the originating client may not be able to trace
or control its operation directly. A service network must
provide some mechanisms allowing its clients to trace
and control these agents. This probler is referred to as
the agent mobility management.

1.2 Open service network architecture

To establish a large scale service network that can
support mobile agents, we proposed an open service
network architecture in [3], which separates service
networks from transport networks. L also allows

TERE\AF R RS

services of any scale and any quality to be iniroduced
into the network easily. Readers are referred to [3] for
details.

On the top of the open drchitecture mentioned
above, we also proposed a hybrid operation mode in [2]
that allows a service provider to offer both centralized
and distributed operation modes to its subscribers.
Subscribers can choose to use their own Intemnet
“facility, called Home Base Node (HBN), to share the
OA&M (Operation, Administration, and Maintenance)
duties, (Typical OA&M functionalities are billing, client
location register, agent tracking and control, agent
status holder, etc.) At their own expense, subscribers
can also designate some OA&M duties to the
centralized facility managed by the service providers. In
this paper, we assume that a service network that
supports mobile agents is established based on the
proposed open architecture and managed using the
proposed operation infrastructure [2,3,5].

1.3 Search of a mobile agent

After an agent is dispatched into a service network, the
client or the network manager may need to know its
current location in order to inquire its status, or to
control its execution, etc. A simple way is to send
another agent, called search agent, to search the
original agent along the original path, or to broadcast a
message to every server wherg the agent might have
visited. There are some problems associated with
these straightforward solutions:

1. Sending many messages over a wireless network

may be too expensive.
2. A sequential search may take too much time.

Therefore, better ways to locate an agent are in need.
In [4], we proposed and analyzed several search
strategies, which will be described in the next section.
Among the proposed strategies, the intelligent search is
the most promising one if the service time of each
individual task can be estimated using prior statistics.
To reduce the computation time that is required to
estimate the best possible location of a target agent, we
studied various ways based on the aggregated
statistical properties to improve the computational
performance of the intelligent search strategy (IBS)
proposed in [4]. They will be summarized in Section 2.

1.4 Adaptive Search

The search strategies previously proposed are all static,
which means that the search strategy is fixed when the
search agent is dispaiched to the network. For a
particular search strategy, - the search route s
completely determined by the path taken by the target
agent. They do not make use of other information,
such as the depariure time when the target agent left a
server, to adjust the search sequence.

One way to improve the proposed search strategies
is to recalculaie the residing probability, based on the
departure time when the target agent left, each time
after a search agent probes a server. For instance, if

F-96

an 1BS search agent finds out that the target agent has
already visited and left the currently probed server, it
will know that the estimation is not accurate. The
search agent can use this departure time information to
recalcuiate the Most Probable Server (MP8). This may
be balter than blindly searching forward along the
original planed patb o

The rest of this paper 1. organized as follows:
Section 2 will review the cearch strategies proposed in
[4,6,7]; Section 3 will dizcusz the various adaptive
search strategies; Section 4 will illustrate our
experiments; finally, Section 5 will discuss some
complicated issues and future research directions.

2. Previous Work‘

The strategies proposed in [4] can be categorized into
two types: blind and intelligent searches. The intelligent
search strategies make use of prior knowledge about
the execution of all tasks, while blind search strategies
don't.

The following notations will be used in the following
sections:

« 8$={84,S,...,5} the set of distinct servers
visited by an agent.

« T: the elapsed time since the target agent was
originated.

Ty the time duration that the target agent stayed at
server Sg. It is called the service time at server Sy.

In this paper, we assume that the target agent visits
{81,582, ...,8,} sequentially and nonrecursively.
Further, the time for the target agent to move from one
server to another is considered nominal and is
neglected.

Note that a recursive execution sequence can be
easily expanded to a nonrecursive one by treating each
visit (i.e. the target agent visits a server) a new server
rather than a revisit. Further, if the time for an agent to
move from one server to another is too long to be
ignored, the agent migration can be modeled as a
server so that our algorithms and analytical results can
be applied without any modification.

2.1 Chase-from-holder Algorithms

In the hybrid operational infrastructure we proposed in
[2], users are encouraged to use their own HBNs to
participate in the management of their agents. One
possible usage of HBNs is to store the current status of
agents, including agents’ locations. Thus, the current
reported location of an agent can be obtained right in
the status holder (i.g. HBN) of its originating user. If the
accurate current location is needed, the search agent
can visit the reported location first and proceed with a
sequential search right from there if the target agent
had passed that server. This type of algorithms is called
the Chase-from-holder algorithms. In face, it is a

hERE\AE TR s

combination of tracking and searching methods.

Obviously, one major problem with the Chase-from-
holder algorithms is the extra expense to update staius
periodically. The update cost has at least two major

“components: the induced network traffic and the
resource consumption in the status holder. The system
resources could be very expensive if the status holder
is designated to the network management center.
Thus, the trade-off beiween update cost and status
availability must be carefully balanced, Depending on its
status inquiry frequency, a client may choose to
command an agent report its status either completely or
selectively. The following search strategies are useful
when the current location of an agent is not available in
its status holder.

2.2 Binary Search Algorithms

The Basic Binary Search algorithm (BBS) is similar to
the binary search in searching a data object in a sorted
list. The search agent probes the middle server in the
search list and excludes half of the servers out of the
search list at a time. The search is performed
recursively until the target agent is found or the list is
exhausted. In average, the number of probes required
to locate the target agent is in the order of log(n),
where n is the number of servers in the search list.
BBS might be a very good search strategy for blind
searches. However, BBS may fail to locate the target
agent if the target agent continues to move during the
search. During the course of search, some unvisited
servers may be excluded out of the search list after a
server is probed. Unfortunately, the target agent may
slip through the search window so that the servers it
visits afterward are not included in the search list. As a
result, the search agent will fail to locate the target
agent. Although BBS is naive and faulty, it provides a
basis to mutate into other search strategies as well as a
baseline for performance comparison.

The Extended Binary Search (EBS) algorithm
corrects the slip-through problem by not excluding any
unvisited server out of the search list at the cost of
demanding more search probes. Fortunately, the
average number of probes required to locate the target
agent is still in the order of log(n), only with a larger
coefficiency.

In [7], we found a very surptising fact that in
Extended Binary Search algorithm, the best pioint
(server) to probe is not right on the middle of the serach
list. This is because forward and backward probes are
treated differently. Probing a visited server can exclude
some servers out of the search list, while probing an
unvisited server can't. In our simulation study, we found
that the best probing range is between 0.25 and 0.4 of
the search list starting from the head.

Above search strategies are classified as blind
search because they do not use prior knowledge about
the status of the target agent and servers.

F-97

2.3 Intelligent Search

If a client has a good estimation on the service time in
each server, he/she may be able to guess the
approximate location of an agent. By using this
information in a search, we will be able to reduce the
search time significantly. The term intelligent search
here reflects the fact that these algorithms make use of
service time statistics and thus, is non-blind.

We assume that an agent visits a set of servers,
84,85, ...,8,, in sequence and it stays at each
server, says S, for a time duration of T,. At any
elapsed time T, the current location of the agent, S,,
can be determined by the following formula:

e-1 [
STisT<3 T
i=1 i=t

However, it is impractical to know in advance exactly
how long the target agent will stay at each server. The
service time in each server is most likely probabilistic
and can be pre-estimated through either sample
collection or experiments. Furthermore, for security and
privacy reasons, it may be more practical to obtain
statistics rather than detailed execution -time records
from servers. As a result, the location of the agent is
probabilistic. We can calculate the location of the target
agent with the highest probability, next highest, etc,,
and then search the target agent according to the order
of probability. Assuming that the service time of each
task is uniformly distributed, we derived a formula to
calculate for each server the probability that a target
agent might reside [4]. For simplicity, this probability is
called the residing probability. In our proposed
Intelligent Binary Search algorithm (I1BS), the search list
is presorted according to the calculated probabilities.
Then, the search agent probes the servers in the
search list sequentially.

Intelligent search algorithms are much beiter than
blind search algorithms because they make use of prior
knowledge about the service time of each task in each
server. However, it requires the service time to be
predictable. In other words, the algorithm assumes the
target agent and the service network work normally
without any exception. Thus, these algorithms have
better be used under healthy operation conditions. They
may not be appropriate to be used in handiing
exceptional cases.

Another problem associated with the intelligent
search strategy is its quadratic computation time to
calculate each individual residing probability. Even if the
computation overhead can be compensated by using
faster processors, the collection of the entire service
{ime distribution from every server will still consume
significant system and network resources. To reduce
computation time, we proposed to use aggregated
statistical properties to predict the location of a mobile
agent [6]. Our analysis and experiments showed that,
under a variety of circumstances, the mean service tirme
is a reliable index to predici the location of a mobile
agent. Readers are referred to [6] for details.

PERE\+AFEEH B GS

3. Adaptive Search

As mentioned in Section 1.4, the search strategies
proposed so far are all stafic. An adapiive search
strategy makes use of the information. available in all
servers that have been probed to improve the search
efficiency. Considering the situation that the target
agent just left a server when the search agent is
probing the server, the search agent can go directly to
the "next" server instead of continuing the original blind
search. There is a high probability catching the target
agent within a few sequential probes. Further, in an
intelligent search, the search agent can recalculate the
residing probability, based on the departure time when
the target agent left, each time after the search agent
probes a setver. For instance, if an IBS search agent
finds out that the target agent has already visited and
left the currently probed server, it will know that the
estimation of the MPS is inaccurate. The search agent
can use this departure time information to recalculate
the MPS. This may be better than blindly searching
forward along the original planed search sequence.

This adaptive technique may improve the
performance of blind search strategies by a significant
margin. In this paper we will focus on applying this
adaptivity to the blind searches.

3.1 Binary-Sequential Search (BSS)
Algorithm

We assume that every server maintains an execution
log that stores various execution status including the
departure time when the target agent moved to the next
server, By making use of this information, a search
agent can choose the best search strategy dynamically.
We first investigate the performance impact on the EBS
when the adaptivity is applied. In the following Binary-
Sequential Search algorithm, the search is divided into
two phases: binary phase and sequential phase. The

search agent first uses EBS to search the target agent

in the binary phase, and then switches to the sequential
phase using a sequential search if the target agent
“just” left the currently probed server not long ago.

Binary-Sequential Search (BSS) Algorithm

Main {
Srhset = {54,8;...,8,}
S; = Middle Server in the SrhSet
BSSrh(target, SrhSet, S,)
}
Procedure BSSrh (target, SrhSet, S,)
(1) if (SrhSet = empty)
(2) then return (NOT_FOUND)
(3) if (target in S;) return (S,)
(4) if (target had visited 8,)
(
(
(
{

5) then {)
6) SrhSet = {Su4,-..,S,}
7) if (target is near)
2) then {
while (SrhSet is not empty) {
(9) S, = head of SrhSet

(10) if (target in S,) return (FOUND)
(11) SrhSet -= &,
Y}y
(12) else {
(13) h = index of head of SrhSet
(14) ¢ =h+ 12x(c-h+1)
}
(15) return (BsSrh(target, SrhsSet, S,))

There are some parameters yet to be determined.
The most critical one is the proper condition to have the
search agent switch from a search strategy to another
(Line 7 of BSS). One simple condition is to use the
elapsed time since the target agent left the currently
probed server as a measure. It requires an intensive
experiment to determine the proper values.

The second parameter to be investigated is the best
probing range to be used in EBS. As mentioned in
Section 2, the best server to probe may not be right on
the middle of the search list due to the different
treatment of forward and backward probes. Intuitively,
the adaptivity may have impact on the probing range as
well. Because the search agent can make use of the
log information to obtain a more accurate prediction, it
may prefer probing a visited server. Therefore, we could
adjust the range of search probes further to increase
the possibility of probing a visited server.

3.2 The ABSS algorithm
The above BSS algorithm is then modified as follows to
take this idea (asymmetric probing range) into account:

Asymmetric Binary Sequeniial Search (ABSS)
Algorithm

Main {
SrhSet = {81,82, ooy Sn}
¢c=nx0
ABSSrh(target, SrhsSet, S,)
}

Procedure ABSSrh (target, SrhSet, S,)
(1) if (SrhSet = empty) return (NOT_FOUND)
(2) if (target in S;) return (S,)
(3) elseif (target had visited S,) {
(4) srhset = {S.,...,S,}

(5) 1if (target is near) SeqgSrh(target, SrhSet)

(6) else {

(7) c=c+n-c+l)=x 0
1}

(8) else {

(9) h= index of head of SrhSet
(10) ¢ =h +6x{c-h+1)
}
(11) return (ABSSrh(target, SrhSet, S,))

The parameter & in ABSS is a value to be
researched. The procedure SegSrh is a sequential
search algorithm. (The details are ignored. It is the
same as the block from line (6) to (11) in BSS). Similar
to BSS, the most critical decision is fine (5) which is to
decide the proper condition o switch to the sequential
search.

F-98

FERENATAFEEAERGS

it is not difficult to figure out that it is more beneficial
switching from the EBS to the sequential search if the
target agent is within the range of logy(length of the
search list) since the average number of search probes
for the EBS is in the order of O(logoN). In other
words, if the target agent is within the range of
logz(length of the search list) away from the currently
probed server, the search agent had befter switch to
the sequential search. The main problem to carry out
this idea is that the search agent might not know
exactly whether the target agent is within that range or
not. One possible way is to make a prediction and
accept the possible penalty caused by the estimation
errors. Thus, it is a challenge to find a practical method
that can minimize this penalty. Since the theoretical
analysis is non-trivial, we proceeded with a simulation
study for the initial observation.

3.3 Gambling Range

Although the elapsed time is a good measure to
determine whether to switch from the EBS to the
sequential search, it depends on the execution time of
the target agent in each server and, thus, is
inconvenient to be used in simulation studies.
Therefore, we propose the following model to facilitate
the simulation study. We first define the following
terms:

- target distance:
the distance (number of servers) between the
currently probed server and the server where the
target agent currently resides;

- estimated target distance:
the target distance that the search agent estimates;

e gambling range:
the farthest estimated target distance that the search
agent is willing fo switch from EBS to the sequential
search.
Since there is no practical way to know exactly the
target distance, a search agent can only estimate it and
make a "gamble". The choice of gambling range
depends on the accuracy of the estimation and the
trade-off between the "win" and "lose". A winning
gamble will reduce the number of search probes, while
a losing gamble will increase it. An aggressive search
strategy could take a longer gambling range, while a
less aggressive search strategy could take a shorter
one. In the following section, we will present a series of
simulation studies that, hopefully, can offer some
knowledge to help users in determining their best
gambling strategies.

4. Simulation Experiments

In our simulation experiments, two types of gambling
strategies are compared. A static gambling strategy
uses a fixed gambling range regradless the length of
the search list; while a dynamic gambling strategy
changes iis gambling range according to the current
length of the search list. To simplify the simulation, the

F-99

search agent doesn’t make any prediction. Instead, it
switches to the sequential search directly when the
target agent is within the gambling range. In other
words, the decision is made by the simulator, not the
search agent in the simulation. Thus, the performance
of a search algorithm that uses a dynamic gambling
range represents a theoretical upper bound, in which no
penalty is incurred due to any estimation error. On the
other hands, a search algorithm that uses a static
gambling range will be closer to the reality since it uses
a less aggressive gambling strategy for its lack of
prediction accuracy.

4.1 Binary-Sequential Search

We first studied the performance of symmetric BSS
where the search agent always probes the middle
server of the search list in the binary search phase.
The number of servers is set at 30. The BSS was
simulated with the following gambling ranges: 0, 1, 2, 3,
and dynamic. When the gambling range is set at 0, the
BSS is actually a regular EBS without any adaptivity at
all. The simulation results are shown in Figure 1. As
we can see that the performance of the one with
dynamic gambling range is the best representing an
upper bound, while the one with 0 gambling range is
the worst. The performance of those with a non-zero
gambling range are all better than EBS. The adaptivity
actually offers a significant performance enhancement.

4.2 Asymmetric Binary-Sequential Search

We then repeated the simulations for the ABSS. Al
parameters but the probing range are the same. The
probing ranges are first set at 0.4 as suggested by our
previous study {7]. The simulation results are shown in
Figure 2. The adaptivity actually offers some
performance enhancement to ABSS. As we have
expected, the performance of ABSS is better than BSS
due to the performance gain obtained from the
asymmetric probing range. The comparison is shown in
Figure 3 where the probing range is set at 0.4,

4.3 Observations

From the simulation results shown above, we can see
that the adaptivity actually reduces the number of
search probes for the EBS. It also prefers an
asymmetric probing range in the binary phase because
probing a visited server may obtained some helpful
information in predicting the location of the target agent.
Furthermore, an aggressive search strategy that
chooses a longer gambling range may not always better
than a less aggressive one due to the estimation errors.

-

5. Concluding Remarks

To locate an agent in a mobile agent service network is
a critical problem. In this paper, we demonstrated a
new technique, adaptivity, that can be applied to the
most existing search algorithms to reduce the number
of search probes. An adaptive search strategy will take
different search strategies adapting to the most current

TERENAFE B RS

estimation based on the most current knowledge about
the target agent. In this paper, a search agent can use
the elapsed time since the target agent left a server to
predict the current location of the target agent. Due to a
lack of knowledge about the exact execution time in
each server, this location prediction is restricted within
the near neighborhood of the currently probed server.
Our simulation studies show that the adaptivity actually
reduces the number of search probes for the EBS.

References

1.

10.

. International

T. Imielinski and B. R. Badrinath, “Mobile Wireless
Computing: Challenges in Data Management,”
Communication of ACM, August 1994.

Yao-Nan Lien, “Client and Agent Mobility
Management,” Proc. of the Second Workshop on
Mobile Computing, Hsing-Chu, Taiwan, March
1986, pp. 141-152.

Yao-Nan Lien, “An Open Intelligent Messaging
Network Infrastructure for Ubiquitous Information
Service,” Proc. of the First Workshop on Mobile
Computing, Hsing-Chu, Taiwan, April 1995, pp. 2-
9.

Yao-Nan Lien and Chun-Wu Leng, “On the
Search of Mobile Agents,” Proc. of the IEEE
Personal, Indoor, and Mobile Radio Conference,
Taiwan, Oct. 1996, pp. 703-707.

Yao-Nan Lien, et. al, “FlyingCloud: A Mobile
Agent Service Network”, Proceedings of the
International Conference on Distributed Systems,
Software Engineering, and Database Systems,
Dec. 1996, pp. 177-183.

Yao-Nan Lien, Fuhan Liu, Chun-Wu Leng and
Wen-Shyen Chen, “Intelligent Search of Mobile
Agents”, Proceedings of the 1997 International
Conference on Computer System Technology for
Industrial Applications, April, 1997, pp. 110-116.

Yao-Nan Lien, Fuhan Liu, Wen-Shyen Chen and
Chun-Wu Leng, “Asymmetric Binary Search of
Mobile Agents ", Submitted to the 1997
Symposium on Multimedia
Information Processing.

P. Maes, “Agents that reduce work and
information overload”, CACM, July 1994, pp. 30-
41,

M. Weiser, “The computer for the 21st century”,
Scientific America, 1992, pp. 94-104.

James E. White, “Telescript Technology: The
Foundation for the Elecironic Marketplace”,
General Magic, Inc.

Average Number of Search Probes Average fumber of Search Probes

Average Rumber of Search Probes

F-100

ing Rengaez

s 10 1s z0 25 30
Length of Search List

Figure 1. Simulation results for BBS algorithm

Aambling Rangu=o Auedling Renge=1 3

ad aaa/n:una Ranges3
ra -
I’ - -
P
—
T T T v T
° s 10 1s 20 =5 20

Leongth of Soarch List
Probing Rangem0.4

Figure 2. Simulation results for ABSS algorithm

.
Gamdbling Rengewo(B83) " & D88)
e

-
Gambling Rengeeo(APEBi
-
0

2o Renge=1(aBse)

#lamic Gambling Range{Bes)
ezic Gemdling Range (KBAS)

s 10 as z0 p-23 30
Iength of Soarxrch List

Figure 3. BSS vs. ABSS

