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Abstract

Fuzzy classification is one of the important applications
of fuzzy logic. The most important task to accomplish a
fuzzy classification system is to find a set of fuzzy rules
suitable for the specific classification problem. In this paper,
we present a new method for generating fuzzy rules form
numerical data for handling fuzzy classification problems
based on the fuzzy subsethood values between decisions to
be made and terms of attributes by using the level threshold
value o and the applicability threshold value [, where
0e[0,1] and Be[0,1). The proposed method has a higher
classification accuracy rate and generates fewer fuzzy rules
than the existing methods.

Keywords: Fuzzy Classifications, Fuzzy Rules, Fuzzy
Subsethood Values, Level Threshold Values, Applicabi lit
Threshold Values.

1. Introduction

Fuzzy classification is one of the important applications
of fuzzy logic [21], [22). Fuzzy classification systems are
capable of handling perceptual uncertainties, such as the
vagueness and ambiguity involved inthe classification
problem {19]. The most important task to accomplish a
fuzzy classification system is to find a set of fuzzy rules
suitable for the specific classification problem. Usually, we
have two methods to complete this task. One approach is to

obtain knowledge from experts and translate their
knowledge directly into fuzzy rules. However, the process
of knowledge acquisition and validation is difficult and
time-consuming. It is very likely that an expert may notbe
able to express his orher knowledge explicily and
accurately. Another approach is to generate fuzzy rules
through a machine learning process [1], [3], [5], [7]1, [9],
[14], [17], [19], [20], with which knowledge can be
automatically extracted or induced from sample cases or
examples. In [3], we have presented a method for
generating fuzzy rules from relational database systems for
estimating null values. In [17], we have presented a method
for constructing membership functions and fuzzy rules
from training examples.

A commonly used machine learning method is the
induction of decision trees [16] for a specific problem. The
method of decision trees induction has been expanded to
induce fuzzy decision trees proposed by Yuan and Sha
[19], where fuzzy entropy is used to lead the search of the
most effective decision nodes. However, the method
presented in [19] has some drawbacks, i.e., (1) It generates
too many fuzzy rules. (2) Its classification accuracy rate is
not good enough.

In this paper, we present a new method based on the
filtering of the fuzzy subsethood values [12], [19] between
decisions to be made and terms of attributes by the level
threshold value o and the applicability threshold value B
for generating fuzzy rules from the numerical data in a
more efficient manner, where 0c[0,1] and f<[0,1]. The
proposed method has higher classification accuracy and
generates fewer fuzzy rules than the one presented in [19].

This paper is organized as follows. In Section 2, the basi
concepts of fuzzy sets are reviewed from [12], [19], and [21].
In Section 3, we briefly review Yuan-and-Shaw’s fuzzy rules
generation method from [19]. In Section 4, we propose a
fuzzy learning method based on the fuzzy subsethood values
between decisions to be made and terms of attributes b
using the level threshold value ¢ and the applicabilit
threshold value B to directly generate fuzzy rules fro
numerical data to deal with the fuzzy classification problem,
where oe[0,1] and Be[0,1]. Furthermore, we also use the



example shown in [19] to illusirate the fuzzy rules generation
process. The conclusions are discussed in Section 5.

2. Fuzzy Set Theory

The theory of fuzzy sets was proposed by Zadeh in
1965 [21]. Roughly speaking, a fuzzy set is a set with fuzzy
boundaries. A fuzzy set can be characterized by a
membership function in a universe of discourse. A fuzzy
set A in the universe of discourse U can be characterized b
a membership function # 4 as follows

Hyt U=[0,1],

where the degree of membership 1 A(u) of an element u in
the fuzzy set A is between zero and one and ueU.

efinition_2.1: Let A and B be two fuzzy sets of the
universe of dascourse U with membership functions 4
and g g, respectively. The union of the fuzzy sets A and B
is defined b

e avs (W) =max{ g a(w), e} VuelU. (1)

The intersectionof A and B, N B, isdefinedb

#anp(u) =min{ g A(u), psw}, VueU (2)

The complement of A, denoted as A, is defined b

}l;\.(u) =1 —ﬂA(u)7 Vue U (3)

Definitiop 2.2: Iet A and B be two fuzzy sets of the

universe of discourse U. Then, Ais a subset of Bifand
only if

#a) £ gp(u)forallue U, (C))
Definition 2.3; Let A and B be two fuzzy sets defined on

the universe of discourse U with membership functions
M, and Uy ,respectively. The fuzzy subsethood S(A, B
[12], [19] measures the degree in which A is a subset of B

EMin(/.tA(u), U (1))
ke
= Z#A(”) , 5)

ugl

M(ANB)

S(A, B) = MR

where S(A, B) € [0, 1].

3. A Review of Yuan-and-Shaw’s Method [19] for
Fuzzy Rules Generation

In a fuzzy classification problem, a collection of cases
U = {u} is represented by a set of atiributes A = {A,, ...,
Ay}, where U is called the object space [19]. Each attribute
Ay depicts some important feature of a case and is usuall
limited to a small set of discrete linguistic terms T( ) =

(T) ... TE ). In other words, T(A)) is the domain of the

attribute Ay. Each case u in U is classified into a class C ;,
where C; is 2 member of classes CandC = {C ,...,C.}. In
our discussions, both cases and classes are fuzzy. The class
Ciof C,i=1, ..., L,is afuzzy set defined on the universe

of cases U. The membership function W, (u) assigns a

degree to which u belongs to class C;. The attribuie 1 is a
linguistic variable which takes linguistic values from T( )

= (T{, .., TL ). The linguistic values & are als

fuzzy sets defined on U. The membership value Bos (u)
J

depicis the degree to which case u’s attribute A | isT ff A

fuzzy classification mule (or abbreviated into fuzzy rule) can
be written in the form

k
IF(AisT }} VAND ... AND (AisT ;) THEN (Cis G, (6)

Using a machine learning method from a training set of
cases whose class is known can induce a set of
classification rules. An example of a small training data set
of the Saturday Morning problem [19] with fuzzy
membership values is shown in Table 1. In the Saturda
Morning Problem, a case is a Saturday morning’ s weather
which can have four attributes

Attribute = {Outlodk, Temperature, Humidity, Wind},
and each attribute has linguistic values

Outlook = {Sunny, Cloudy, Rain},
Temperature = {Hot, Mild, Cool},
Humidity = {Humid, Normal},
Wind = {Windy, Not-windy}.

The classification result (i.e., Plan) is the sport to be taken
on that weekend day,

Plan = {Volleyball, Swimming, Weight-lifting}.

The fuzzy decision tree induction method presented in

[19] consists of the following steps:

(1) Fuzzification of the training data.
(2) Induction of a fuzzy decision tree.
(3) Conversion of the decision tree into a set of rules.

(4) Application of the fuzzy rules for classification.

Using the data shown in Table 1, the generated fuzzy
decision tree is shown in Fig. 1. From the fuzzy decision
tree shown in Fig. 1, we can enumerate the number of
routes from root to leaf. Each route can be converted into a
rule, where the condition part represents the attributes on
the passing branches from the root to the leaf and the
conclusion part represents the class at the leaf with the
conclusion part represents the class at the leaf with the
highest classification truth leyel. The generated fuzzy rules
after conversion from the fuzzy decision tree are also
shown in Fig. 1. In [19], Yuan et al. pointed out that Rule
3’: “IF Temperature is Hot AND Outlook is Rain THEN
Weight-lifting” can be simplified into Rule 3’: “IF Outlook
is Rain THEN Weight-lifting”. The truth level of Rule 3’ is
0.89 and is not less than 0.73 (the truth level of the origi nal
Rule 3). With the generated six fuzzy rules shown in Fig, 1,
the classification results for the training data shownin
Table 1 are calculated. Among sixteen training cases,
thirteen cases (except cases 2, 8, 16) are correctly classified
The classification accuracy of the Yuan-and Shaw’s
method is 81%. For more details, please refer to [19].

4. A New Method for Generating Fuzzy Rules
from Numerical Data
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Table 1
A Small Data Set for the Saturday Morming Problem [19]

Outlook Temperature Humidit Wind Plan
Case [Sunny [Cloudy|Rain |Hot [Mild [Cool |Humid [Normal|Windy [Not-windy|Volleyball Swimming|W-liftin
1 0.9 0.1 0 1 0 0 0.8 0.2 0.4 0.6 0 0.8 0.2
2 0.8 0.2 0 06 |04 |0 0 1 0 1 1 0.7 0
3 0 0.7 03 0.8 {02 |0 0.1 0.9 0.2 0.8 0.3 0.6 0.1
4 0.2 0.7 0.1 03 0.7 |O 0.2 0.8 0.3 0.7 0.9 0.1 0
5 0 0.1 09 (0.7 103 |0 0.5 0.5 0.5 0.5 0 0 1
6 0 0.7 03 |0 0.3 0.7 0.7 0.3 0.4 0.6 0.2 0 0.8
7 0 0.3 0.7 |0 0 1 0 1 0.1 0.9 0 0 1
8 0 1 0 0 -j0.2 0.8 |02 0.8 0 1 0.7 0 0.3
9 1 0 0 1 0 0 0.6 0.4 0.7 0.3 0.2 0.8 0
10 10.9 0.1 0 0 03 10.7 |0 1 0.9 0.1 0 0.3 0.7
11 0.7 0.3 0 1 0 0 1 0 0.2 0.8 0.4 0.7 0
12 |02 0.6 0.2 {0 1 0 0.3 0.7 0.3 0.7 0.7 0.2 0.1
13 |08 0.1 0 02 0.8 |0 0.1 0.9 1 0 0 0 1
14 |0 0.9 0.1 |0 0.9 ]0.1 0.1 0.9 0.7 0.3 0 0 1
15 10 0 1 0 0 1 1 0 0.8 0.2 0 0 1
16 |1 0 0 0.5 105 |0 0 1 0 1 0.8 0.6 0
A. Fuzzy decision tree
Temperature? (G (Temperature) = 0.48)
" Hot (G (Hot) = 0.45): Outlook? (G (Qutlook | Hot) = 0.42)
Sunny: Swimming (S = 0.85)
Cloudy: Swimming (S =0.72)
Rain: Weight-lifting (S = 0.73)
Mild (G (Mild) = 0.83): Wind? (G (Wind | Mild) = 0.36 )
Windy: Weight-lifting (S = 0.81)
Not-windy. Volleyball (S =0.78)
Cool(G (Cool) = 0.20): Weight-lifting (S = 0.88)
Note: G is the classification ambiguity measure at the decision node.
S is the classification truth level at the leaf.
B. Fuzzy rules converted from the fuzzy decision tree
Rule 1: IF Temperature is Hot AND Outlook is Sunny THEN Swimming (S = 0.85)
Rule 2: IF Temperature is Hot AND Outlook is Cloudy THEN Swimming (S = 0.72)
Rule 3: IF Temperature is Hot AND Outlook is Rain THEN Weight-lifting (S = 0.73)
Rule 4: IF Temperature is Mild AND Wind is Windy THEN Weight-lifting (S = 0.81)
Rule 5: IF Temperature is Mild AND Wind is Not-windy THEN Volleyball (S = 0.81)
Rule 6: IF Temperature is Cool THEN Weight-lifting (S = 0.88)
Note: Rule 3 can be simplified to Rule 3°:
Rule 3': IF Qutlook is Rain THEN Weighi-lifting (S = 0.89)
Fig. 1. The induced fuzzy decision tree and fuzzy rules of Yuan-and-Shaw’s method [19).
In this section, we present a new method for generatin Table 2
fuzzy rules from numerical data. The data set we use to A Data Set for Ilustrating the Proposed Fuzzy Rules
introduce the concepts of fuzzy rules generation is sh own Generation Method
in Table 2. InTable 2, we have nine cases with three A B C Plan
attributes for each case and three kinds of decisions for Case == A2 |A3 IBL B2 IB3 L IC2 IX ¥ 1Z
each plan 1 03 07 [o_[02 [07 [0 [03 [0.7 [0.1 |09 [0
. — 2 1 0 10 1 0 fo 107 103 108 |02 [0
Attribute = {4, B, C}, 3 0 103 107 |0 0.7 {0.3 {0.6 [0.4 10 0.2 10.8
and each attribute has linguistic terms 4 08 102 [0 |0 |07 03 [0.2 ]0.8 0.6 [0.3 |01
5 0.5 10.5 |0 1 0 0 {0 1 0.6 0.8 |0
A={Al, A2, A3}, 6 0 _Jo2fosfo 1 Jo Jo 1o Jo7 o3
B={B1,B2,B3}, 7 1 _fo Jo Jo7 o3 o joz jos [0.7 |04 |0
C={C1,C2}. 8 0.1 0.8 10.1 [0 (09 0.1 [0.7 [0.3 |0 0 1
The classification is the decision to be made on a case with 2 03 10710 fosdorlo it jo jo [o It
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attributes Ai, Bj, and Ck, respectively, to camry out one of
the plans X, Y or Z:

Plan = {X, Y, Z}.

We want to generate fuzzy classification rules from the
given numerical data in Table 2. The generated fuzzy
classification rules are in the form of formula (6).

As shown in Table 2, we have nine cases, where each
case has three attributes to describe it. For each attribute,
we have two or three terms to choose. In addition to the
atiribute part, we have to decide on a plan. One of decisions
X, Y™ or “Z” is the plan to be decided for a specific case
The value accompanying each term or decision of plan is in
the range [0, 1]. For each case, we can decide which
decision of plan (with the highest possibility value) is mos t
likely to be chosen, For example, in Case 6, the possibility
to choose decision “X” is 0, to choose decision “Y” is 0.7,
to choose decision “Z” is 0.3, and the final decision is plan
“Y™

From the possibility values of decisions “X”, “Y”, and
“Z”, for each case, we can decide which decision to be
made for a specific case. If we divide the nine cases int
three subgroups according to the classification results, i.e.,
“X”, “Y”, and “Z”, we can get another table as shown in
Table 3. As Table 3 depicted, there are three instances for
“X”, three instances for “Y”, and three instances for “Z”,
respectively. After carefully examining the table, it seems
that there are close relationships between classification
results (decision of plan for that subgroup) and some terms
of the attributes. Making use of the fuzzy subsethood
concept [12], [19], we can getinformation aboutthe
relationship between the decision of the plan and every
distinct term of the attributes.

Table 3
Three Subgroups According to the Decision to be Made

) B C Plan

Subgroup Case
Al{A2 |A3 [B1 (B2 |B3 |Cl1 |C2|X |Y |Z

2 110 j0 Jt |0 |0 (0.7]0.3[0.8]0.2]0
Subgroup_1

4 0.810.2]0 [0 0.7 |0.3 [0.2 ]0.810.6]0.3]0.1

7 1 |0 |0 J0.7]03 |0 ]0.2]0.8]0.7]04]0

1 0.310.7]0 ]0.2]0.7 |0.1 0.3 }0.710.1 [0.910
Subgroup_2 |5 0.5(05]0 1 |0 {0 j0 |1 |0.6{0.8{0

6 0 {02080 |1 J0 |0 |1 jO [0.7]0.3

3 0 [0.3]0.7 {0 ]0.7 [0.3 {0.6 [0.4[0 [0.2[0.8
Subgroup_3 |8 0.110.8[0.1 [0 0.9 |0.1 |0.7 }0.3j0 [0 |1

9 0.3[0.7]0 }0.9§0.1 {0 {1 |0 [0 o |1

In each subgroup, we calculate the fuzzy subsethood
values between decisions of that subgroup and every term
of each attribute. After the computations of subsethood
values, we can get a set of subsethood values for each
decision. In this set of values, the larger the value, the
closer the relationship between the decision of the plan and
the term. For each subgroup, we can attain the most
important factors that result in the decision of the plan of
that subgroup. We can use these terms to form the
condition part of the classification rule for that decision of
the plan. The consequent part of the rule is the decision of
the plan for that subgroup.

From Table 3, we can see that there are three subgroups
of cases. In each subgroup, the decision to be made is fixed.
To find the closeness between the deci sion and each term
of the three attributes, we first calculate the subsethood
values for them. The meaning of fuzzy subsethood value is
defined by using formula (5), A is a subset of B, defined b

M(AmB).
M(A)

S(A,B)=

Take Subgroup_1 as an example (“X” is the decision of
Subgroup_1), the denominator and the numerator of the
subsethood formula for S(X, A1) are as follows

M(X)=08+0.6+0.7=2.1,

M(X N Al) =Min(0.8, 1) +Min(0.6, 0.8) + Min(0.7, 1)
=0.8+0.6+0.7
=2.1.

The value of S(X, Al) is

S(X, Al) = M(X n A1)/M(X)
=2.1/2.1
=1,
where S(X, Al) stands for the subsethood of “X™ to “Al1”
of “A” in Subgroup_1.

Using the same formula (i.e., formula (5)), we can
compute all the subsethood values as summarized in Fig. 2.
From Fig. 2, we can find that some terms are closel
related to the decision to be made in that subgroup and
some are not.We need a standard to distinguish close or not
close enough between the decision and terms of atiributes.
We use the level threshold value o as the standard to
measure close enough or not on fuzzy subsethood values
between the decision of the subgroup and all terms of
attributes, where o € {0, 1]. Assume that the value we
assigned to the level threshold o is 0.9. For each attribute,
we can select at most one term. If there are two or more
terms belonging to the same attribute which have a fuzzy
subsethood value not less than 0.9, the one with the largest
fuzzy subsethood value will be chosen. If there are two
terms with subsethood values not less than 0.9 at the same
time, the term which is the original term of the attribute
will have privilege over the one which is a complemented
term of the same attribute.

Subgronp _1(X):
A:
S(X, Al)=1 S(X,A2)=0.1
B.

S(X,B2)=043 S(X,B3) = 0.14

S(X, A3) =0
S(X, B1) = 0.71
C.

S(X.Cl)=052 S(X,C2)=0.76
Subgroup_2(Y) :
A.

S(Y,Al)=033 S(Y,A2)=058 S(Y,A3)=029
B:
S(Y,Bl)=042 Y, B2) =058 S(Y,B3)=0.04
C‘

S(Y.CD)=0.13 S(Y,C2)=0.92
Subgroup_3(Z) :
A.

§Z, Al)=0.14 S(Z,A2)=064 S(Z,A3)=029
BA

S_(Z, B1)=032 S(Z,B2)=061 S(Z,B3) =014
C.

S(Z,C1)=082 $§(Z,C2)=025

Fig. 2. The list of the f uzzy subsethood values for small
data set.
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Referring to Fig. 2, the fuzzy subsethood values (includin
those for the complemented terms) not less than the level
threshold value @, where o = 0.9, in Subgroup_1 are S(X,
A =1, (X, NOT A2) = 0.9 and S(X, NOT A3) = 1.
Because “Al”, “A2” and “A3” are all terms of atiribute
“A”, only one of them will be chosen. In this condition,
“Al” is the only original term that belongs to attribute “A”,
and it is the one we choose among them. From this term we
can generate the first fuzzy rule as follows

Rule 1: IF A is Al THEN Plan is X.

Likewise, the fuzzy subsethood values that are not less than
0.9 in Subgroup_2 are S(Y, NO B3) = 0.96 and S(Y, C2)
=(.92. The generated fuzzy rule is as follows

Rule 2: IF B is NOT B3 AND Cis C2 THEN Planis Y.

From Subgroup_3, we can see that the subsethood values
are quite average. In this condition, no term is outstandin
among them (no term has a value not less than 0.9). This
means that for decision “Z”, those terms of attri butes are
average and no terms are representative enough. Thus, Rule
3 is unable to be generated at this time.

We use MF(Rule i) = MF(condition part of Rule i), where 1
<1 £ 2, and MF means membership function value [19]. If
we want 1o classify Case 3 of Table 3, then we can get

MF(condition part of Rule 1) = MF(A1) = 0,
MPF(condition part of Rule 2) = MF(NOT B3 n C2)
=(1~03)n04=04,
MF(Rule 1) = MF(condition part of Rule 1) =0,
MF(Rule 2) = MF(condition part of Rule 2) =0.4.

Because both membership values of the existing rules are
not high enough to choose decision “X” or decision “Y?, it
is very possible that decision “Z” is more appropriate than
the other two decisions. In this situation, we need another
applicability threshold value B, where B e [0, 1], to judge
the applicability of the existing rules. The existing rules are
applicable to a case if MF(Rule i) 2 B, whereie {1,...,n
and n is the number of existing rules.

As an alternative, we can conclude that a case thatis
not well classifiedby Rule 1 and Rule 2 will be classified
into the plan with decision “Z”. Thus, the third fuzzy ruleis
generated as follows

Bule 3: IF MF(Rule 1) < B AND MF(Rule 2) < B
THEN Plan is Z,

where MF(Rule i) = MF(con dition part of Rule i), where 1

<1 £ 2, and MF means membership value {19),and Bis a
applicability threshold value that MF(Rule 1) or MF(Rule 2)
must exceed if that rule is applicable to a case, where f§ €

[0, 1]. For Case 3, assume that the applicabilit y threshold
value 8 is 0.6, then we can get

MF(condition part of Rule 1) = MF(Al) = 0,
MF(condition part of Rule 2) = MF(NOT B3 n C2)
=(1-03)N04=04,
MF(Rule 1) = MF{condition part of Rule 1) =0,
MF(Rule 2) = MF(condition part of Rule 2) = 0.4.

Because MF(Rule 1) < B and MF(Rule 2) < B, where § =
0.6, and according to Rule 3, we can see that the decision t
be made for Case 3 is plan “Z".

To apply the generated fuzzy rules to each case of the

data set shown in Table 2, we must assign the applicabilit

threshold value B in advance, where §§ & {0, 1]. For each
case, calculate MF(Condition part of Rule 1) and

MF(Condition part of Rule 2), respectively, and then assign
MF(Rule 1) = MF(Condition part of Rule 1), MF(Rule 2) =
MF(Condition part of Rule 2). The applicability threshold
value B is used to compare MF(Rule 1) and MF(Rule 2),
respectively, for the specified case. If both MF(Rule 1) and
MF(Rule 2) are less than f3, then we let MF(Rule 3) =1.

- Otherwise, we let MF(Rule 3) = 0.

In the example of Table 2, the classification results of
Rule 1, Rule 2, andRule 3 are “X”, “Y", and “Z7,
respectively. The possibility values of the classification
result for a specific case with respect to “X”, “Y”, and “Z”
are represented by ‘Plan(X)”, “Plan(Y)”, and “Plan(Z)”,
respectively. After the calculations of MF(Rule 1),
MF(Rule 2), and MF(Rule 3) for a specific case, we can
assign

Plan(X) = MF(Rule 1),
Plan(Y) = MF(Rule 2), (N
Plan(Z) = MF(Rule 3).
The generated fuzzy rules at the level threshold value o =
0.9 are listed as follows
Rule 1: IF A is Al THEN Plan is X.
Rule 2: IF B is NOT B3 AND Cis C2 THEN Plan is Y.
Rule 3: JF MF(Rule 1) < § AND MF(Rule 2) < § THEN
Planis Z.

Assume that the applicability threshold value f§ in the
explained example is 0.6 (i.e., § = 0.6), then
(1) From Case 1 of Table 2, we can get

MF(condition part of Rule 1) = MF(A is A1) =0.3,

MF(condition part of Rule 2) = MF(B is NOT B3 AND

Cis C2)
=MFBisN&® B3InC
is C2) .
= MFB is NO B3) n
MF(C is C2)
=Min{(1 -0.1),0.7}
=0.7,

MF(Rule 1) = MF(condition part of Rule 1) = 0.3,
MF(Rule 2) = MF(condition part of Rule 2) = 0.7.
Because MF(Rule 1) < and MF(Rule 2) > B, where p
= (0.6, thus MF(Rule 3) = 0.
From formula (7), the possibility values of the
decisions of plan for Case 1 are
Plan(X) = MF(Rule 1) = 0.3,
Plan(Y) = MF(Rule 2) = 0.7,
Plan(Z) = MF(Rule 3) =0,
and we fill Plan(X), Plan(Y), and Plan(Z) (.., 0.3, 0.7,
0) into the last three columns of Case 1 in Table 4.
Because Plan(Y) is the one with the highest possibility
value among the values of Plan(X), Plan(Y), and
Plan(Z), the decision to be made for Case 1 is “Y™.
(2) From Case 2 of Table 2, we can get
MF(condition part of Rule 1) = MF(A is Al) = 1,
MF(condition part of Rule 2) = MF(B is NOT B3 AND
Cis C2)
=MFB is NOTB3nC
is C2)
=MF(B is NOT B3) N
MF(CisC2) .
=Min{(1 -0), 0.3}
=0.3,
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MF(Rule 1) = MF(condition part of Rule 1) =1,
MF(Rule 2) = MF(condition part of Rule 2) =0.3.
Because MF(Rule 1) > B and MF(Rule 2) <, where §
= 0.6, thus MF(Rule 3)=0.

From formula (7), the possibilityvalues of the
decisions of plan for Case 2 are

Plan(X) = MF(Rule 1) =1,

Plan(Y) = MF(Rule 2) = 0.3,

Plan(Z) = MF(Rule 3) = 0,

and we fill Plan(X), Plan(Y), and Plan(Z) (i.e., 1, 0.3,
0) into the last three columns of Case 2 i Table 5.
Because Plan(X) is the one with the highest possibilit
value among the values of Plan(X), Plan(Y), and
Plan(Z), the decision to be made for Case 2 is “X".

The other cases are treated in a similar way. We summarize
the result in Table 4.

Based on the generated fuzzy classification rules, the
classification results for the training data inTable 2 are
shown in Table 4. Among nine training cases, all cases are
correctly classified. The classification accuracy rate is
100%.

Table 4
Results after Applying the Generated Fuzzy Rules to Table 3
B C Plan

Case

Al JA2 JA3 |B1 |B2 |B3 |C1 |C2 |X Y |Z
1 0.3 0.7 |0 ]0.2 ]0.7 |0.1 |0.3 [0.7 0.3 |0.7 {0
2 1 {0 10 1 |0 0 07 |03 |1 [03 [0
3 0 103 107 |0 ]0.7 |03 |06 |04 [0 (04 |i
4 08 (02 |0 [0 0.7 (03 |02 |0.8 0.8 |0.7 {0
5 05 (05 0 {1 (0 (0 {0 {1 05 {1 |0
6 0 |02 080 1t |0 0 {1 0 J1 10
7 1 [0 |0 07 |03 |0 {02 |08 1 [0.8 [0
8 0.1 [0.8 |0.1 [0 0.9 [0.1 |0.7 {0.3 (0.1 ]0.3 |1
9 03 (0.7 [0 [09 J0.1 [0 I 0 103 [0 |1

In the following, we use an example [19] (ie., the
Saturday Morming Problem) to illustrate the fuzzyrules
generation process.

Example 4.1; Assume that the small data set we use here is
the same as [19} and shown in Table 1. From Table 1, we
can see that there are four attributes for each case and there
are three kinds of sport for each plan

Attribute = {Outlock, Temperature, Humidity, Wind},
and each attribute has terms shown as follows

Outlook = {Sunny, Cloudy, Rain},

Temperature = {Hot, Cool, Mild},

Humidity = {Humid, Normal},

Wind = {Windy, Not-windy}.
The classification result is the sport plan to be played on
the weekend day:

Plan = { Volleyball, Swimming, Weight-lifting }.

Assume that the values for level threshold value ¢ and
applicability threshold value § are 0.9 and 0.6,
respectively,(ie., o = 0.9 and §§ = 0.6). From Table 1, w
divide the sixteen cases into three subgroups according to
the sport plan with the highest possibility value in each case
The result of the division is as follows (refer to Table 5):

(1) Subgroup_1 with “Volleyball” as the activity to be taken
Cases 2,4, 8, 12, and 16.

(2) Subgroup_2 with “Swimming” as the activity tobe
taken: Cases 1, 3,9, and 11.

(3) Subgroup_3 with “Weight-lifting” as the activity to be
taken: Cases 5, 6, 7, 10, 13, 14, and 15.

According to formula (5), the calculations for subsethood
for all three subgroups are shown in Fig. 3 for the Saturday
Morning Problem.

According to the previous discussions, there are three
fuzzy rules to be generated for oo = 0.9 and B = 0.6 which
are summarized as follows
Rule 1: IF Outlook is NOT Rain AND Humidity is Normal

AND Wind is Not-windy THEN Plan is Volleyball.
Rule 2: IF Outlook is NOT Rain AND Temperature is Hot
THEN Plan is Swimming.
Rule 3: IF MF(Rulel) < B AND MF(Rule2) < § THEN
Plan is Weight-lifting.
Based on the previous discussions, we can apply the
generated fuzzy rules to Table 1, The classification results
of the application of the generated fuzzy rules are
summarized in Table 6. From Table 6, we can see that
among sixteen training cases, fifteen cases (except Case 3)
are correctly classified. The classification accuracy rate is

l—S—x 100% = 93.75%.
16

A comparison of the number of generated fuzzy rules
and accuracy rate between the proposed method and
Yuan-and-Shaw’s method [19] is listed in Table 7. From
Table 7,

Table 5
Three Subgroups According to the Sport tobe Taken
Sub- Case Quilook Temperature Humidity Wind Plan
group Sunny |Cloudy {Rain {Hot (Mild {Cool |Humid [Normal |Windy Not-windy | Volleyball {Swimming | W-lifting
2 0.8 0.2 0 06 |04 |0 0 1 0 1 1 0.7 0
Subgroup._ 1 4 0.2 0.7 0.1 {03 |07 |0 0.2 0.8 0.3 0.7 0.9 0.1 0
- 8 0 { 0 0 0.2 (0.8 {02 0.8 Q 1 0.7 0 0.3
12 0.2 0.6 02 |0 1 0 0.3 0.7 0.3 0.7 0.7 0.2 0.1
16 1 0 0 05 jos5 |0 0 1 0 1 0.8 0.6 0
[ 0.9 0.1 0 { 0 0 0.8 0.2 04 0.6 0 0.8 0.2
Subgroup_2 3 0 0.7 0.3 0.8 02 |0 0.1 0.9 0.2 0.8 03 0.6 0.1
- 9 1 0 0 1 0 0 0.6 0.4 0.7 0.3 02 0.8 0
i1 0.7 0.3 4] i 0 0 1 0 0.2 0.8 04 0.7 0
Subgroup_3 |3 0 0.1 05 07 o3 |o 0.5 0.5 0.5 0.5 0 0 1
[ 0 0.7 0.3 0 03 0.7 0.7 0.3 0.4 0.6 0.2 0 0.8
7 0 0.3 0.7 0 0 i 0 1 0.1 0.9 [4] G 1
10 0.9 0.1 0 0 03 j0.7 0 1 0.9 0.1 0 0.3 0.7
13 0.9 0.1 0 02 Jo.8 |0 0.1 0.9 1 0] 0 0 1
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14

0.9 0.7 0.3 0

o

15

0 0.8 0.2 0 0 1

we can see that the accuracy rate of the proposed method is
better than that of Yuan-and-Shaw’s method under o = 0.9
and f§ = 0.6. The number of rules generated by the proposed

method is less than the number of rules generated by
Yuan-and-Shaw’s method.

Subgroup_1 (Vdleyball) :

Outlook:

S(Volleyball, Sunny) =049
S(Volleyball, Rain) = 0.07
Temperature:

S(Volleyball, Hot) = 0.34
S(Volleyball, Cool) =0.17
Humidity:

S(Volleyball, Humid) = 0.17
Wind:

S(Volleyball, Windy) = Q15

Subgroup_2 ( Swimming) :

Outlook;

S(Swimming, Sunny) = 0.79
S(Swimming, Rain) = 0.10
Temperature:

S(Swimming, Hot) = 1
S(Swimming, Cool) =0
Humidity:

S(Swimming, Humid) = 0.76
Wind:

S(Swimming, Windy) = 0.52

Subgroup_3 ( Weight-lifting) :

Outlook:

S(Weight-lifting, Sunny) =025

S(Volleyball, Cloudy) = 0.54
S(Volleyball, Mild) = 0.61

S(Volleyball, Normal) = 0.98

S(Volleyball, Not-windy) = 0.95
S(Swimming, Cloudy) = 0.35
S(Swimming, Mild) = 0.07

S(Swimming, Normal) = 0.41

S(Swimming, Not-windy) =0.76

S(Weight-lifting, Rain) = 0.46

Temperature:
S(Weight-lifting, Hot) = 0.14

S(Weightlifting, Mild) = 0.4

S(Weight-lifting, Cool) = 0.54

Humidity:

S(Weight-lifting, Humid) = 0.37  S(Weight-lifting, Normal) = 0.66

S(Weight-lifting, Windy) = 065 S(Weight -lifting, Not-windy) = 0.4

S(Weight-lifting, Cloudy) = 0.34

Fig. 3. The list of the fuzzy subsethood values.

Table 6
Learning Result of the Saturday Morning Problem with Generated F uzzy Rules
Case Classification Known in Training Data Classification with Learned Rules
Volleyball |Swimming | W-lifting Volleyball Swimming  |W-lifting

1 0.0 0.8 0.2 0.2 1 0

2 1.0 0.7 0.0 1 0.6 0

3 0.3 0.6 0.1 0.7 0.7 0

4 0.9 0.1 0.0 0.7 0.3 0

5 0.0 0.0 1.0 0.1 0.1 1

6 0.2 0.0 0.8 0.3 0 1 -—
7 0.0 0.0 1.0 0.3 0 1

8 0.7 0.0 0.3 0.8 0 0

9 0.2 0.8 0.0 0.3 1 0

10 {00 0.3 0.7 0.1 0 1 —
11 |o4 0.7 0.0 0 1 0 o
12 0.7 0.2 0.1 0.7 0 0

13 0.0 0.0 1.0 0 0.2 1

14 100 0.0 1.0 0.3 0 1

15 0.0 0.0 1.0 0 0 1

16 {08 0.6 0.0 1 0.5 0

a Wrong classification.
b Cannot distinguish between two or more classes.

Table 7

A Comparison of the Number of Generated Fuzzy Rules and Accuracy Rate between
the Yuan-and-Shaw’s Method

19} and the Proposed Method

[Yuan-and-Shaw’s Method [19]

The Proposed Method (under o, = 0.9 and § = 0.6)|
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Number of Rules 6

3

Accuracy Rate 81.25%

93.75%

5. Conclusions

In this paper, we have presented a new method for
generating fuzzy rules from numerical data for handlin
fuzzy classification problems based onthe fuzzy
subsethood values between the decisions to be made and
terms of atiributes of subgroups by using the level
threshold value ¢ and the applicability threshold value J3,
where ae[0,1] and Be(0,1]. Weapply the proposed
method to deal with the Saturday Morning Problem [19].
The proposed method is better than the one presented in [19]
due to the fact that

(1) The proposed method gets a better accuracy rate than
the one presented in [19). From the experimental resulis,
we can see that the accuracy rate of the proposed
method is 93.75% (under o = 0.9 and § = 0.6), while
the accuracy rate of the Yuan-and-Shaw’s method is
81.25%.

(2) The proposed method generates fewer fuzzy rules than
the one presented in {19]. From the experime ntal results,
we can see that the number of fuzzy rules  generate
by the proposed method is 3, but the number of fuzzy
rules generated by Yuan-and-Shaw’s method is 6.

(3) The proposed method needs less calculations than the
one presented in [19].
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