COOL: A Chinese Object-Oriented Language for Knowledge
Representation of Geometric Figures

Wing-Kwong Wong, Chao-Nan Chiu, and Hsi-Hsun Yang
Institute of Electronic and Information Engineering

National Yunlin University of Science and Technology

Touliu, Yunlin 640, Taiwan
wongwk @yuntech.edu.iw, {chaonan, jimmy} @cane.yuntech.edu.tw

Abstract

In order io provide a user-friendly interfuce for students to
use a computational environment for learning
programming in Chinese and leaming elementary
geometry, we have developed a Chinese Object-Oriented
Language (COOL) for knowledge representation and a
script language for describing geometric figures. COOL is
used to define classes such as line segment and triangle and
is similar in some aspects to other Inowledge
representation languages such as frames and semantic nets.
A user can use the script language to draw geomeiric
figures in a very simple, imtuitive way. The script language
is interpreted as Chinese Logo (CLogo) source code, whose
execution will display the geomeiric figure in a CLogo
drawing environment,

Keywords: Knowledge representation language, Chinese
Logo, compuier-assisted learning environment,
geomeiry education, children education,
Chinese programming

Introduction

Tn many countries children can learn programming as early
as in elementary school [4, 11]. In Taiwan and other regions
using Chinese, children are not so fortunate, They have
few choices---they might learn Visual Basic or Logo [7].
While Visual Basic is quite complicated for children, Logo
is a much better choice. However, most Logo
implementations are in English or other non-Chinese
languages. This poses a problem for children whose first
language is Chinese because they have little or no English
knowledge. Fortunately, now they can learn a fully
Chinese Logo (CLogo) language [9] without

worrying about the English obstacle.

In order to make CLogo more user-friendly, the learning
environment provides on-line help. Such help includes
on-line manual (hitp//plum.yuntech.edu.tw/CLogo/) and
dynamic CLogo code generation from scripts input by user.
This script has a simple syntax and is supported by a
knowledge representation language called the Chinese
Object-Oriented Language (COOL). COOL is developed in
order to provide more interactive and dynamic help for
children to learn CLogo programming and elementary
geometry. COOL provides a simple script language for
students to describe geomeiric figures. The script langnage
will be interpreied by COOL as CLogo code. Hence the
students can juxtapose the generated CLogo code with the
original script. This should help them to learn CLogo with
greater efficiency and with more fun. A better way in this

B-344

direction is to provide a natural language interface so that
textual description of geometric figures will be
“understood” as a COOL script, which is interpreted as
CLogo code. In this way, students need not learn COOL
script. In fact, in a previous project [10], a system is
developed to “understand” short sentences describing
geometric objects as CLogo code without the use of
COOL, which does not exist at that time. But the system
uses some intermediate representation we call “semantic
tree”. This semantic tree is in fact very close to the script

“language of COOL and motivates us 1o design COOL in

the very beginning,

In the rest of this paper, we will present the CLogo learning
environment, the design features of COOL and its script
language, examples of how to use the script language, and
how the script is interpreted as CLogo code. The final
section will discuss the limitations of the current version of
COOL, how it can be improved and in what areas it can be
applied.

CLogo Learning Environment

The Logo programming language and visualization

environment sets a landmark in computer-assisted learning

since the seventies {7} Tt offers an exploratory
programming and visnalization environment for students to
learn programming [1, 2). The main features of Logo

include: .

1. An imaginary turtle, upon moving, draws a visible
polyline on its path in a canvas window.

2. A user can command the turtle to travel with primitive
Logo commands such as moving forward, turning right,
and repeating a set of commands.

3. New procedures can be defined and executed with
different parameter valunes.

4, Procedures can be defined recursively.

5. The language offers a list data structure, similar to LISP.

Logo has attracted a lot of atiention from researchers and

has been controversial since its birth. While some

researchers claim that it stimulates students to explore and
learn about the microworld of turtle graphics [4], others
rebui that unguided learning is inefficient and students
waste a lot of time resulting in little cognitive development

[3]. Moreover, some researchers claim that the learning in

Logo programiming can ransfer to other areas of cognitive

activity resulting in better problem solving and intellecival

ability [11], while others use empirical experiments to
show that no such transfer occurs [8). We believe that with
enough teacher guidance, students can explore the target
concepts efficiently and that with carefully designed
lessons, students can learn interesting and practical



Figure 1: CLogo Learning Environment on WWW

mainstream math curriculum and other related subjects in a
Logo environment.

In order to get rid of the English obstacle for Chinese
children, we have designed and implemented a fully
Chinese Logo (Clogo) {9). CLogo is implemented in Java
so that it is part of our homepage and can be accessed
across the World Wide Web with the Netscape browser
(Figure 1). Because Chinese siring processing is not a
standard feature of Java, the current version of CLogo does
not show Chinese properly with Netscape browser Version
4.0.6 and above. Thus, users are required to use Netscape
browser Version 4.0.5 when using CLogo on the Web.

Chinese Object-Oriented Language for
Knowledge Representation

In the last few decades, many knowledge representational
schemes have been proposed. Mylopoulos and Levesque
[6) have classified these into four categories: logical
representation schemes such as Prolog, procedural
representation schemes such as rule-based production
systems, network representational schemes such as
semantic networks, and structured representation schemes
such as frames and CLOS of LISP [5]. Our Chinese
Object-Oriented Language falls into the fourth category. In
COOL, a class definition uses the following template (the
original Chinese definition of the triangle class is given in
Appendix A):

[Class Name]

<Name>

[Puarent Class]

<Name >

[Atiributes]

<attribute> .. <ativibuie>

[Ranges of Volues of Aviributes]

<Atiribute>: <Range> .. <Attribuie>:<Range>
[Constraints]

<Equation/Inequulity> .. <Equation/Inequality>
[Visualization Method Selection Preconditions]

B-345

<Preconditions for method>..<Preconditions for method>
[Visualization Methods]
<method> .. <method>

Inheritance is a characteristic of object-oriented
programming languages. If class C inherits from class P,
then class C gets all attributes, constraints, visualization
methods, etc. from class P. In this way, P is called the parent
class or superclass of C and C is called a child class or
subclass of P, In COOL, each class inherits from only one
parent class. This design of single inheritance is much
simpler than that of multiple inheritance, where a class can
have two or more parent classes. For example, the C+
programming language allows multiple inheritance.
Inheritance provides an excellent way to reduce the amount
of source code for defining classes, since the source code
for defining P need not be repeated in the definitions of its
subclasses. The saving can be quite significant because a
medium-sized knowledge base might involve many classes,
which can form a nice class hierarchy. For example,
both classes of isosceles triangle and right angle triangle
inherit from the triangle class; the triangle class and the line
segment class inherit from the geometric object class. Since
the discussion of the details of inheritance involves the
concepts of “attributes”, “constraints”, and *“visualization
methods,” we will delay examining an example of
inheritance until after these concepts are introduced.

Simply speaking, attributes are the properties of a class. For
example, a point has atiribute x-coordinate and atiribute
y-coordinate; a line segment has a length atiribute and
end-points attributes; a triangle has attributes of three sides,
three vertices and three internal angles. Tn a frame sysiem,
an attribute is called a slot to be filled with a value. When
an object is declared to belong to a class, the object would
have some of its atiributes values specified. For example, a
specific point object A might have its x and y coordinates
specified as 0 and 10 respectively; a line segment
object AB might have its end-points specified as point
objects A and B; a triangle ABC might have its sides



specified as line segments AB, BC, and CA.

When a user wanis to draw a geomeitric figure, she might
provide sufficient information. For example, she can
specify the coordinates of three points of a triangle, which
are sufficient for drawing the triangle. On the other hand, a
user might not provide sufficient information. In this case,
the system would generate at random some information
needed for the drawing. For example, a user might just
specify the lengths of two sides of a iriangle. Then the
system would generate at random the angle in degrees for
the inclusive angle formed by the two sides. Hence, the
range of the values of some aitributes should be specified
so that the values, if needed, can be generated at random
within the range. A range is specified as the values within a
lower bound and an upper bound, where the limiting
values might be included or excluded. For example, an
angle of a triangle might be limited to [30,120] (from 30
degrees to 120 degrees inclusively at both ends) even
though the theoretic limit is (0,180) (from 0 to 180 degrees
excluding 0 and 180) in order to restrict the generation of
an “average-case” triangle.

Consiraints of a class specify algebraic relations among the
attributes of the class. These relations can usually be
specified as equalities and inequalities. For example, the
sum of the internal angles of a triangle must equal 180
degrees; the sum of two angles must be less than 180
degrees. Such information can be used in at least two
ways. First, with this information one can check whether
the user’s inputs are consistent or not. If the user specifies
a triangle with angles 30 degrees, 45 degrees, and 90
degrees, then the system can detect that the sum of angles
does not equal 180 degrees and inform the user about this
inconsistency. Second, the system can use the equality to
derive the value of a non-instantiated attribute. For
example, given the values of two angles of a triangle, the
system can derive the value of the third angle. This
inference capability is a very significant feature of COOL.
In general, the ability to manipulate algebraic equations
and inequalities provides a powerful inference engine for
this type of knowledge representation langunage.

Another example will illustrate constraints involving
boolean operators and how this is used to define a subclass
of a class. We can define a right-angle triangle with the
following simple COOL code:

[Cluss Name]

Right-angle iriangle

[Pareni Class]

Triangle

[Constrainis]

Anglel=90 || Angle2=90 || Angle3=90

The righi-angle triangle class inherits all properties and
methods from the triangle class by declaring triangle as its
superclass. In a right-angle triangle, one of the internal
angles must be 90 degrees. This constraint can be specified
using the boolean operator OR (symbol II).

Visualization Methods of COOL

The langnage features of COOL introduced so far are
declarative. This means the atiributes, their ranges, and
consiraints can be specified in any order and would not
affect the resulis produced by the system. However, the
visualization methods of a class must be procedural
rather than declarative. These methods specify the
procedures of how to draw the objects of this class. For
COOL, these methods are specified as CLogo procedures,

B-346

which can be executed in a CLogo environment to draw
the geomeiric figure objects. CLogo is chosen as the
visualization language because it is simple, high-level and
is a fully Chinese programming language. Also, COOL can
work with CLogo for teaching children how to program in
ClLogo and explore elementary geometry concepts.
Consider a triangle given the length of its two sides and
their inclusive angle. In secondary school math classes,
students would know how to draw such a triangle. One
would draw one side first, then using a protector to get the
inclusive angle, draw another side, and finally draw the
third side. This procedure is commonly known as the SAS
(short for Side-Angle-Side) method. Similarly, in COOL,
this procedure can be specified in the following pseudo
CLogo code:

To SAS :s1 :a :s2
Make “p3 position //Remember the starting point

of the first side

// as the current position of the

turtle

/ Draw line segment :s1 as

the first side of the triungle

// Prepare to form the

inclusive angle :a

/ Draw line segment :52 as

Forward length of :s1
Right (180-:a)

Forward length of :s2

the second side
MoveTo :p3 // Draw the third side of the
triangle
End

Another method, called PPP (short for Point-Point-Point),
to draw a triangle is one using the coordinates of the three
vertices of the triangle. In CLogo code, PPP can be
expressed as:

To PPP :pl :p2 :p3

PenUp // Turtle’s future path becomes
invisible from this time

MoveTo :pl // Turtle moves to the first
vertex of the triangle

PenDown / Turtle’s future path becomes
visible from this time

MoveTo :p2 // Turtle moves to the second
vertex and draws the first side

MoveTo :p3 // Draw the second side

MoveTo :pl // Draw the third side of the
triangle

End

Since there are usually several visualization methods, the
sysiem, when asking to draw an object of a geometric
class, must pick one from the available methods. Each
visualization method must specify its own preconditions.
These preconditions specify which class atiributes are
needed as the method parameters and specify the relations
among the attributes. These preconditions must be satisfied
before the method can be adopted for drawing the object.
For example, the preconditions of the wvisualization
methods of a triangle object are specified as:

[Visualizavion Method Selection Preconditions]
SAS sl :a :s2
{ :sl = line segment formed by pointl and point2 of
angle :a
:52 = line segment formed by poini2 und poini3 of
angle :a



PPP :pointl :poini2 :poini3
/¥ :pointl, :poini2, :poini3 must be point objects
{

}

For the visualization method SAS, the preconditions only
check whether the given line segments :s1 and :s2 are the
line segments forming the angle :a. The visualization
method PPP requires that the coordinates of the vertices
must be given.

Interpreting COOL Script

The previous section briefly describes the knowledge
representation scheme of COOL. This section will explain
how a script can be written to use the class knowledge
defined in COOL. For example, the following script
describes a triangle with two given sides and their
inclusive angle:

Triangle ABC // declare ABC to be a
triangle

Line-segment AB.length = 100 // Side AB is 100 pixels
long

Line-segment BClength = 140 // Side BC is 140 pixels
long

Angle ABC.measure = 40 // Angle ABC is 40
degrees

Triangle ABC.Draw // Draw triangle ABC

Using the SAS visualization method, COOL interprets this
script as the following CLogo source code:

Matee “v3 position
Forward 100
Right (180-40)
Forward 140
MoveTo :v3

The previous example illustrates how a triangle can be
drawn when sufficient conditions are given. The next
sample script illusirates the case when insufficient
conditions are given:

Triangle ABC

Angle ABC.measure = 60
Angle BCA.measure = 30
Triangle ABC.draw

When COOL tries to interpret this script, it will check the
given information against the constraints defined in the
triangle class. One of the constraints is:

Anglel.measure + Angle2.measure < 180

Suppose Anglel is bound to Angle ABC and Angle2 is
bound to Angle BCA. Then this consiraint will be
instantiated as:

Angle ABC.meuasure + Angle BCA.measure < 180

Obviously this constraint is satisfied. Consider another
constraint in the triangle class:

Anglel.measure + Angle2.measure + Angle3.measure =
180

When COOL considers this constraint during the
interpretation process for the above script, the constraint

becomes:
60 + 30 + Angle CAB.measure = 180

Since there is only one unlmown variable in the equation,
COOL immediately derives the wvalue of Angle
CAB.measure as 180-100-20=90. Thus, the triangle object

B-347

ABC has an inferred atiribute (Angle CAB.measure) added
to the already known information of triangle ABC. From
this point on, COOL finds that no new information can be
derived further so it checks the preconditions of all
visualization methods in order to pick one method to draw
the triangle. Unfortunately, it finds no visualization method
whose preconditions can be satisfied. Tnstead, it finds a
visualization method that requires three parameters, two of
which are known information for triangle ABC. This
method is the ASA method, short for Angle-Side-Angle.
This method requires two angles and their common side to
be known information for the method to be executed. For
triangle ABC, all angles are known but no side is known.
Hence COOL picks two known angles ABC and BCA and
tries to generate the length of their common side BC. Since
the length of any side of a triangle is limited to be
(0,400]---400 pixels is the default length of a CLogo
drawing window, COOL will generate an integer larger
than 0 and less than or equal to 400, say 50, and assign it
as the length of side BC. At this point, all preconditions for
using the ASA method are satisfied and the corresponding
CLogo code will be produced for drawing triangle ABC
(Figure 2).

A

AN i

B 50

Figure 2. Triang_le ABC drawn with the ASA method
Conclusion and Discussion

A potential application of COOL is to understand the
natural language description of geometric figure input by
students of elementary geometry and/or CLogo
programming. We are developing another system to
interpret texts describing geometric figures as COOL
scripts, which can then be interpreted as CLogo code that
can be executed to draw the figure. In a previous project,
we achieve some success when interpreting simple
sentences to be CLogo code without the use of COOL [10].
After that project, we believe it is natural and efficient for
COOL to be an intermediate representation between text
and CLogo.

At this stage, COOL is not as “cool” as we hope. A simple
script such as the following is not interpreted properly by
the current version of COOL

Triangle ABC
Triangle BCD
Triangle ABC.draw
Triangle BCD.draw

This script just describes two triangles sharing the same
side BC. However, the current COOL system does not
remember triangle ABC after its CLogo visualization code
is generated. Hence, when COOL considers the iriangle
BCD, it has no idea that side BC is already drawn. In other
words, side BC of triangle ABC and side BC of BCD will
be generated as two different line segments. This of course
is not correct and we are taking steps to improve COOL in
this direction.

Another limitation of COOL is that it is not designed as a
full-blown programming language such as C++ At this
stage, COOL does not have methods other than those for



visualization and does not have any control constructs such
as if-else, while-loop, etc. These are not needed for
describing static geometric objects whose atiributes will
not change. In the future, COOL might provide these more
advanced programming language features when
applications . concerning dynamic geometiric objects are
considered.

We can make the following short conclusion about COOL
at this point. COOL is a Chinese object-oriented langnage
for knowledge representation. It is used for describing
knowledge of geometric objects. Its main features include
inheritance, constraint checking, algebraic inference of
new information, random generation of attribute values
needed for visualization when insufficient information is
given, and the specification of visualization methods using
CLogo procedures. COOL will be used in a computational
environment for students to learn CLogo programming and
elementary geometry. Potential applications of COOL
include natural language understanding of Chinese texts
describing geometric figures, and computational
environments for learning in domains involving geometry
concepts or algebra concepts.

Acknowledgement

This research is supported by the National Science Council
under contract NSC88-2511-3-224-002.

References

[1]  Abelson, H & Abelson, A. Logo for the Macintosh.
Paradigm Software, Cambridge, MA. 1992.

[2] Friendly, M. Advanced LOGO: A language for
learning. Lawrence Erlbaum, Hillsdale, NJ. 1988.

[31 Howell, R. D., Scott, P. B., and Diamond, J. The
Effects of “Instant” Logo Computing Language on
the Cognitive Development of Very Young Children.
Educational Computing Research, Vol 3(2),
pp.249-260. 1987.

[4] Lawler, R. W,, Boulay, B. D., Hughes, M., Macleod,
H.. Cognition and Computers: Studies in learning.
Ellis Horwood, Chicester, England. 1986

[51 Luger, G F and Stubblefield, W. A.. Artificial
Intelligence: Structures and Strategies for Complex
Problem Solving. Benjamin/Cummings, Redwood
City, CA. 1993

[61 Mylopoulos, J. and Levesque, H. J. An overview of
knowledge representation languages. In Brodie, M.
L., Mylopoulos, J. and Schmidi, J. W. On
Conceptual Modelling. Springer-Verlag, New York.
1984.

[7]1 Papert, S.. Mindstorms. New York, Basic Books.
1980

(81 Simon, T.. Claims for LOGO---What should we
believe and why? In J. Rutkowska and C. Crook.
(Eds). Computers, Cognition and Development.
John Wiley, pp.115-133. 1987

[91 Wong, W. K.. An environment for learning Chinese

Logo programming. In Proceedings of Global

Chinese Conference on Computer in Education,

Hong Kong, pp.404-409. 1998

Wong, W. K., Chan, T. W, Pai, 8. T, Wang, Y. K.,

Chen, Y. S., Hsuy, W. L. Natural Language

Educational Agents in a Networked Chinese Logo

Learning Environment, Proceedings of ICCE, Vol.

1, AACE, Beijing, pp.220-227. 1998

Hoyles, . and Noss, R (Eds). Learning

Mathematics and Logo. MIT Press, Boston. 1992.

(10]

(11]

B-348

Appendix A: Definition of the Triangle Class in
COOL '

EEplEAY

=ZAK

[AEA]

HTEY

[BiE]

AREZ 1 = ARER(RE2,B53) = FRER(B63,852)

RRER2 = BRER(BE3.BAD) = RERGBE1L,EE D)

FRER3 = ARER(BE1,852) = fFER(BE2,BE 1)

A= A8 ,852,853) = A(EE3,852,85 1)

A2 =rE 2,853,851 = A(BE1,863,552)
A3 =AE3.81,852) = A(BE2, 81 ,853)

Bil = B
Bh2 = B(2)
Bh3 = B(3)
[ Pt iEaE ]

. AE: (0~180)
FRER . R (0~400]

[FRAUPEAF]

71 R 2. FIRE<180

2. BE+A 3. AE<80 o
3. AE A AE180

A1 A 2. AEGE 3. AE=180

MRER 1 REWRER 2. BRI EE

RER ) BERE 3 BB 1.BE

BRER 3 BEVRE | BRERE 2. BE

(AEiE ]

@ FRAAR KRER 1 ARER2 A3
{ #E = MB(A3.861,43.852)
RRER2 = RRER(M3.B62,593.853)
}
@ AlRA A1 A2 RERS3
{  #RER3=MEB(A1.82,82.582)
} -
@ BhEREL Bh1 BE2 B3
{
}

[ 75E]

GG #AAR (FRER 1) (A3) (MRER2)
i 90
508k "(A3.851) fIE
{#REZ 1)
it "B 2 MIE
(A3}
{#7ER 2)
g8k "IIE 3 fIE
BE fIE1
BYF "(A3.%51) (A3.51)
BYE "(A3.252) A8 2
BNE "(A3.853) 83
FER



Bih ARRA (A1) (83} (A2)
sk “IEED ()
FOf% "A43 0
EHE 90
st "R EE fIE AR
{#9E 3)
8 "SR BE B ER
(A1EK 20 (B1.AK) (A2LAE)
BEREE R B B B B
EHE 90

EH

BRth ZHELEG (B 1) (Bh2) (Bh3)
e 3
{% 2}
AOf% "BR2 1B
{853}
A8k B3 LB
{81
FgR "B Il
HE
BE 852
BYFE "2 (R
BE B3
BAF "3 ME
BE B
KR

[EEhE)
A ARAEEER. 1eo
(4]

Appendix B: File “fisAiaE=. 1g0”

Hath BERE CTREERR 2 CMEESRR 2 BEEME CHEERE
ERER (R (K5 (HEERL - HER
1) DK CHEER?2 - HEEED 2)))

Rk

s THA
FoER “ERF ARRD

ROER U OBEME (F E R (B B R

(B &5 ) (B B )

sCsk EMOIE 1 BERE (F H EE) (B B

uHE) (8 B T (B B ER)

Rk EMOE 2 R (8 B ERE EE) (B
B EE EF) (5 8 E% (BB .Y

i)

FoER EMDA 1 (90 - REYICE / EMBED)

BINSHE] - HBE2=0
[ 3082 "HaA2 0]
[ 308k "#fAA2 (%0 - REVICE /
BEE2)))
gk A3 CEGAEL + A
EER (A3
Kk

il

B-349

il

&Ik

=k EBE2 A1 A2
’E
B R <1
[ EC8k "EEC BY uE %
EE
BREEEZ O B FE EX B B EE &%
BPEEEE Y SR E B g8

{Z1E]

o "R BY Ml AgR

gk A3 TEA

BINER) (A3 > (180 - (A1 - :A2)
(BT 882
=Jy BE2 A1 A2)
(BB 82

=_ (EBE2/2) (Al A2

Appendix C; A Sample COOL seript

=Ff ABC

7 BCA.AE = 30
#E: BC.EE = 50
74 ABC.AE = 60
=AW ABC.E



