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Abstract

In this paper, we propose a robust principal com-
ponent analysis algorithm based on a fuzzy objec-
tive function. By defining a fuzzy objective func-
tion for considering the outliers in principal com-
ponent analysis, we dertve an on-line robust al-
gorithm that can extract the appropriate principal
components from the spoiled dota set. An artifi-
cially generated data set is used to evaluate the
performance of the proposed algorithm.
keywords: neural network, fuzzy theory, prin-
cipal component extraction, outlier, robust statis-
tics

1 Introduction

Principal component analysis is an important and
essential technique for data reduction, image com-
pression, and feature extraction. It has been
widely used in many fields including communica-
tion, pattern recognition, and image processing.
Oja (1] found that a simple linear neuron model
with a constrained Hebbian learning rule could
extract the principal components of a station-
ary data set. Thus, the self-organizing learning
rule for computing weights of the hidden nodes in
the neural network is associated with PCA tech-
niques. Since then, many other neural network
based PCA techniques are proposed. Sanger [2]
extended Oja’s method and designed an algorithm
for extracting the first k£ principal components.
Foldiak [3] and Kung et al. [4] developed other
similar algorithms based on anti-Hebbian learning
rules. Unlike the traditional eigenvector analysis
algorithms, these approaches do not require the
computation of the input data covariance which
may increase significantly with the dimensional-
ity of the training data. Furthermore, there is no
need to evaluate all the eigenvalues and eigenvec-
tors if only the eigenvector corresponding to the
most significant eigenvalue is required.

Since PCA algorithms process information from
the real world, it should have the ability to cope
with the noise or outliers. The batch-type robust
PCA has been studied for a long time [5]. How-
ever, almost all of the existing on-line PCA al-
gorithms assume the training data set contains
no outlier. Xu and Yuille [6] proposed one ro-
bust algorithm but their algorithm needs a careful

parameter setting procedure. Robustness theory
is concerned about solving problems subject to
model perturbation or added noise. According to
Huber (7], a robust algorithm not only performs
well under the assumed model, but also produces
a satisfactory result under some deviation of the
assumed model. Moreover, it will not deteriorate
drastically due to the noise or outliers. To estab-
lish the robust PCA algorithms, we define a fuzzy
objective function and derive an algorithm that
could update the weight according to the mem-
bership.

The remaining parts of this paper are organized
as follows. In section 2, we introduces our algo-
rithm. The following section illustrates the simu-
lation results. Finally, section 4 contains the con-
clusion.

2 PCA based on fuzzy objective function

Let X = {%;,%a,...,z,} denote the data set with
zero mean. The first principal component is de-
fined to be the dot product w'z if w is the vector
that maximizes the variance of the transformed
data set X = {w'z),wtzs, ..., wz, } with the con-
straint w*w = 1. The traditional eigenvalue based
approach to compute w is composed of two steps:

step 1. Compute the data covariance matrix & =
E {zz'}. E represents the expectation oper-
ation.

step 2. Apply some kind of numerical procedure
to extract the eigenvalues and the eigen-
vectors of the covariance matrix X. The
eigenvector w corresponding to the largest
eigenvalue is just the vector which maxi-
mizes the variance of the transformed data
set{w'zy, wtzo, wtzs, ..., wts,}.

Since the above approach processes the input
data in a batch way, several algorithms [8] [9] suit-
able for on-line training are proposed without the
necessity to compute ¥. For simplicity, we only
use the following algorithm in this paper.

PCA algorithm:

step 1. Initially set the iteration count ¢t = 1,
iteration bound T, learning coefficient ap €
(0,1] and the initial weight w.
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step 2. While ¢ is less than T, do steps 3-8.
step 3. Compute a; = ao(1—¢/T) and set i = 1.
step 4. While i is less than n, do steps 5-7.

t

step 5. Compute y = w'z;.

step 6. Update the weight:
w o
w =W+ a(Tiy — —y)- 1)

step 7. Add 1 toi.
step 8. Add 1 to ¢.

Equation ( 1) is the gradient rule for minimizing
E with respect to w.

E= Z e(z;) (2)

, where e(z;) = ||3:L|| ”ulj m”H o
The detail of the derivation could be found in
Xu and Yuille [6].
We propose a fuzzy objective function:

—JI.’L’

FE = Z(uz me(;) + "Z(l —u)™,  (3)
i=1

subject to u; € {0,1] and m € [1,00). wu; is the
membership of z; belonging to the data cluster
and (1 — u;) is the membership of z; belonging
to the noise cluster. m is the weighting exponent.
e(z;) measures the error between z; and class cen-
ter.

The concept is to add a noise cluster in which
the data has a constant influence 7. The idea
comes from Noise clustering designed by Davé
[10]and Fuzzy C-means algorithm by Bezdek [11].
Let us discuss this function from a clustering view-
point. u; is the membership of z; in the data
cluster; while (1 — u;) is the membership of z;
in the noise cluster. The fuzziness variable, m,
determines the influence of small u; compared to
large u;. Following the fuzzy clustering approach,
this is an appropriate formulation when only one
data cluster exists. This function measures the
weighted sum of distances between data and clus-
ter center which is zero in the data set.

Let us derive our algorithm with gradient de-
scent approach. First, we compute the gradient
of FE with respect to u;. By setting %> 3F E =0,
we get

_ 1
e{x;i .
1+ (L2idy1/(m-1)

Substitute this membership back and after sim-
plification, we get

~ 1 (m~1)
FE:Z (1+(ﬂ5f_))1/(m—1)> e(z:) (5)
i= 7

(4)

Following the multidimensional chain rule, the
gradient of F'E with respect to w is:

17 i
T = (ey) 5 ©)
= (1+ (Eﬁﬂi)l/(m—l)) (868(:;))( 7
We use 3(z;) to denote (ml)—m)m m is

called fuzziness variable in the literature of fuzzy
clustering. If m = 1, the fuzzy membership, for-
mula (4), reduces to the hard membership and
could be determined by the following rule.

w; = L,if e(z;) <7,
= o,otherwise.

7 plays the role of hard threshold in this situation.
If m — o0, the maximum fuzziness is achieved.

Ui = %, for all xX;. (8)

We show the membership relative to some other
values of m in Fig. 1. An interesting observa-
tion shows 7 is a soft threshold that determines
where the membership becomes 0.5. Since 0.5 is
the average value in the membership domain {0, 1],
a reasonable choice for 7 is the average distance,

;‘—Jne(—x') There is no general rule for the setting
of m, most papers set m = 2 since it leads to a
simpler modification rule. The derived algorithm
is as follows.

Fuzzy PCA algorithm:

step 1. Initially set the iteration count ¢ = 1,
iteration bound T, learning coefficient oy €
(0, 1], soft threshold n and the initial weight
w.

step 2. While ¢ is less than T', do steps 3-9.

step 3. Compute a; = ap(1 —¢t/T) ,set i =1
and o =0.

step 4. While ¢ is less than n, do steps 5-8.
step 5. Compute y = w'z;.
step 6. Update the weight:

w=w+ a;B(z;)(z;y — %yz). 9)

step 7. Update the temporary count: ¢ = o +
6(17;)
step 8. Add 1 to .

step 9. Compute n = (¢/n) and add 1 to t.
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In some applications, it is necessary to com-
pute the first & principal components. Two strate-
gies could be used to generalize the above algo-
rithm for this purpose. One is the Gram-Schmidt
orthogonalization method based strategy. Using
this approach, we derive the following algorithm.

Fuzzy k-PCA algorithm:

step 1. Initially set the iteration count ¢ = 1,
iteration bound T, learning coefficient ap €
(0, 1], initial weight w and soft threshold n;,
i=1l.k.

step 2. While ¢ is less tha,n.T, do steps 3-9.

step 3. Compute o = ao(t/T) , set ¢ = 1 and
O = 0, ] = ].k‘

step 4. While i is less than n, do steps 5-7.

step 5. z:(1) = r; and y(1) = w'z;(1). For j =
2.k, 2:(3) = (-1 —w (G -z (j ~Lw(j-
1), and y(j) = w'z;(j)-

step 6. For j = 1...k, update the weight and the
temporary count:

1 m
'[3—(1+(M)1/(m—1)> ’ (10)
i

w=w+ afe(y) - ——y(i)?), (1)

0; = 0 + [l () = w' D (u()] (12)
step 7. Add 1 to¢.
step 8. For j = 1...k, compute n; = (0/n).
step 9. Add 1 to ¢.

Another strategy called the asymmetrical lat-
eral anti-Hebbian learning method uses an addi-
tional set of weights to connect the output nodes
laterally. These weights are modified by the anti-
Hebbian learning rule. An example of this strat-
egy could be found in Rubner and Schulten [12].

3 Simulations

A three dimensional data set with 100 elements
and zero mean is generated. As shown in Figs. 2-
4, there are 10 outliers in the set. We set T' = 80
and aop = 0.1. The comparative result is shown
in Fig. 5. The error is defined to be the Eu-
clidean distance between the principal component
of the unrobust data set and the currently esti-
mated principal component. It is clear that the
proposed algorithm could produce better result
than the traditional PCA in this experiment.

4 Conclusions

With consideration of outliers, we derive a ro-
bust principal component extraction algorithms
by introducing the fuzzy concept into the objec-
tive function. The derived algorithm adapts the
estimated principal component according to the
current membership of the input data. Thus the
influence of outlizers is alleviated. There exists
other form of fuzzy PCA algorithms. One sim-
ple modification is to change the learning law to
batch mode or using a momentum updating law.
These alterations may be better than the original
algorithm if the input presentation order is biased.
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Figure 1: Plot of the membership generated with
different m.
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Figure 2: The projection of the testing data on the
x-y plane. "*” represents the normal data and "0”
represents the outlier.
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Figure 3: The projection of the testing data on
the y-z plane.
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Figure 4: The projection of the testing data on
the x-z plane.

S ¥y

" " L i PO o s s v
10 20 30 40 50 60 70 &0
Learmng step

Figure 5: This curve shows the result of the pro-
posed algorithm represented by ”*” is better than
the traditional PCA represented by ”0” when out-
liers exist.
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