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Abstract guidance approach. With model matching, the precise

An intelligent system for learning environment models and
guidance strategies for vision-based autonomous land
vehicle (ALV) navigation in indoor environments is
proposed. In the learning process, the ALV is firstly driven
manually by an operator through the navigation
environment. Then, a navigation model, which consists of
the locations of environment features, refined sub-paths,
and their corresponding guidance strategies, is generated
automatically by the learning system. The selection of th
guidance strategy depends on the availability of stable
environment features. An intelligent navigation scheme by
integrating three guidance strategies is proposed for safe
ALV navigation through environments consisting of various
conditions. The learned model can be used to guide the
ALV through the esplored environment by the proposed
navigation scheme. When the tested environment changes,
the new environment can be re -learned, and the proposed
navigation scheme still can work in the new environment
without any manual adaptation. The proposed approach
has been tested on a prototype ALV and many successful
navigation sessions have been per-formed, which confirm
the feasibility of the proposed approach.

Keyword:  autonomous land vehicle, intelligent learning,
line following, model matching, dead reckoning.

1. Introduction

Autonomous land vehicles (ALV's) have attracted intensive
research efforts in recent years because of its versatile
applications and the fast development of computer
techniques. With recent developments of computer vision
techniques, ALV systems can perform many tedious or
dangerous tasks such as exploration of unknown
environments, working in nuclear plants, safety guarding,
document delivery, unmanned transportation, house
cleaning, etc. ision-based integration of various sensin
and guidance techniques for ALV navigation in natural
environments is a challenging task because of the variety of
environment structures. An intelligent ALV navigation
system should be able to integrate all available useful
information and adjust its guidance strategies in diffe rent
environment conditions. Useful environment information
includes baselines in straight corridors, pillars in lobby
sections, shapes of doors, or vertical lines of buildin
structures, eic.

Lines, points, and corners are commonly used visual
features. In some navigation environments, for example, a
long corridor of a structured building or the scene of a
highway, feature lines are parallel to the navigation path. In
such environments, line following techniques are widely
used for ALV guidance. Model matc hing is another popular

position and orientation of the ALV canbe obtained.
However, it can be employed only when visual features are
abundant. Another guidance approach is dead reckoning. It
is used when insufficient visual features are available. By
combining the above three techniques, the tasks of ALV
guidance in general structured indoor environments can be
completed in a single guidance scheme. The first goal of
our study is to develop such an integrated scheme.

An environment model is required for any model-based
navigation system. However, the traditional method of
establishing environment models - manual measurement of
the navigation environment - is a time-consuming work. It
is thus desired to design a system for automatic leaming of
navigation environments. Several environment learnin
systems were developed in recent years [1-7] to meet this
requirement. Lebégue and Aggarwal [ 1,2] developed an
integrated system to generate architectural CAD models
using a mobile robot. The system consists of a segment
detector, a tracker, and a CAD modeler. Ishiguro et al. [3]
presented a strategy for establishing the model of an
unknown environment by a mobile robot. Panoramic
sensing wasused to perceive the structure of the
environment in their implementation. Kurz [ 4] introduced
an approach to generating environmental maps based on
ultrasonic range data. Free -space can be partitioned into
situation areas by means of a learning classifier. Then the
situation areas are attached to graphnodesb
dead-reckoning and finally a map of the free -space in the
form of a graph representation is generated. Dean et al. [5]
formulated map learning as a problem of inferring the
structure of a reduced deterministic finite automaton from
noisy observations and provided an exploration algorith

to learn the correct structure of the automaton. Pan and Tsai
[6] proposed an integrated approach to automatic model
learning and path generation for vision-based ALV
guidance in building corridors. In Chen and Tsai [ 7], an
incremental environment learning system for ALV
navigation was proposed. Rough initialen vironment
models are constructed first, and after each navigation
session, the proposed system can update the environment
model according to the information collected in the
previous navigation.

All of the above environment learning systems provide
schemes to build environment models of different feature
types. Environment features are recorded in the learned
models, but no information for guidance strategies is
included. In this study, a new system, which not only can
learn environment features but also gu idance strategies, is
proposed. That is, inthe learning process, not only the
information of environment features is collected, but als
the guidance strategy for each navigation section is decided
Navigation information, including sub  -paths and their
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corresponding guidance strategies, are (with environment
features) recorded in a model, called navigation model.
With the learned model and the proposed integrated
navigation scheme, the ALV can navigate automaticall
along the planned path in the leamned en vironment by three
different guidance strategies.

To achieve this goal, the learning system was designed t
handle the following tasks. Firstly, it collects desired
environment features; Secondly, it decides the guidance
strategy by using the collected inf ormation, including the
locations and the numbers, of the local environment
features; Thirdly, it divides the navigation path into several
sub-paths by the policy of “one sub -path, one guidance
strategy”’; and finally it adjusts the sub-paths to fit the
requirement of its corresponding guidance strategy.

The remainder of this paper is organized as follows. In
Section 2, the proposed leaming procedures for intelligent
navigation are described. In Section 3, the three guidance
strategies and the techniques for integration of consecutive
guidance strategies are presented. In Section 4, several
experimental results are presented. Finally, some
conclusions are given in Section 5.

2. Proposed Learning System

In this section, the proposed system for learnin
environment models and guidance strategies is described in
detail.

2.1 Principles of Proposed Learning Algorithm

In the proposed system, computer vision techniques are
employed to locate environment features. The selected
environment features are the baselines o n the building wall.
On the abstract level, the visual features can be categorized
into three classes, straight lines, comers and end points of
line segments, as shown in Figure 1. The visual features are
first found by image processi ng. Then by computer vision
techniques, the location of the features are calculated.
model matching algorithm for line segments and corners is
proposed to find the correspondence between the sensed
local model and the learned global model (see Section 2. 2
for the detail). The matching results then are used to locate
the ALV and construct environment models.

Unstable environment features, which usually result from
image processing error and image projection, cause bad
matching results and misguide the ALV. Thus, the learnin
system should be able to distinguish stable and unstable
features. In the proposed learning system, an environment
feature is said to be a stable feature when it is detected in
two or more learning cycles. The work of checking the
multi-occurrence  of each environment feature is
accomplished in the process for merging the local model t
the learned one.

To learn in a navigation process, the ALV is firstly driven
manuallyby the operator along a pre -selected path
meanwhile, the grabbed i mage of the environment scene
and the vehicle control data (i.e., the moving distance and
the turn angle of the front wheels) are recorded. Then, an
off-line leaming procedure is performed, which consists of
three phases. In the first phase, the environme nt model is
established by the procedures mentioned previously, and
stable and unstable features are separated. In the second
phase, for each learning cycle, a planned sub-path is
initialized to be identical to the path the ALV traveled in
the corresponding learning cycle of the first phase. Then
the local model corresponding to the current cycle is
maiched to the learned global model to determine the
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numbers, types and positions of stable features in the local
model. According to the condition of the environment
features, one of the three guidance strategies is selected for
guiding the ALV through the sub-path for navigation
session in the future. The criteria for selecting the guidance
strategy will be described later. Inthe third phase,
successive sub -paths with the line-following guidance
strategy, if existing, are merged into a single sub-path. The
safe distance between the refined line -following sub-paths
and the line segment feature is assigned to be the distance
between the last sub-path of those bei ng merged and the
corresponding line segment feature.

2.2 Guidance Strategy Selectiom and Learning
Algorithms

The adoption of appropriate guidance strategies in different
environment sections depends on the types of the stable
features that can be extracted from environment images
during ALV navigation. For example, baselines are
common stable features in straight corridor sections, and
corners and end points of the baselines are general stable
features in turning sections and lobby space inside
structured buildings. Sometimes, no stable feature can be
found during navigation. In such cases, a guidance strategy
not depending on visual features is required. In our study,
the dead reckoning approach is used for blind navigation.
More specifically, the criteria for selecting the guidance
strategy for sub-paths are summarized as follows. If there
are two or more stable environment features in the local
model, the model matching strategy is selected as the
guidance strategy of the sub -path. If there are only line
segments nearly parallel to the sub -path in the local model,
the line following strategy is selected for sub -path. And if
no stable feature is found in the local model, the dead
reckoning strategy is selected for the sub-path.

The entire learning algorithm can be summarized as
follows.

Algorithm 1 Intelligent learning of ALV navigation.

Step 1. Perform camera calibration.

Step 2. Drive the ALV manually along the
pre-selected path and grab the image of the
current environment scene.

Step 3. Record the environment image and the control
data.

Step 4. Establish the environment
Algorithm 2 for the detail).

Step 5. For each leaming cycle, in additiont
recording the positions of the start and the end
of the sub-path, select a guidance strategy for
use in the future to guide the ALV through the
corresponding sub -path according 1o the
numbers, types, and positions of stable
features detected in the current cycle, as
described previously.

Step 6. Adjust the learned sub -paths. Successive
sub-paths with the line-following guidance
strategy are merged into a single sub -path.

The algorithm for establishing the environment model is as
follows

model (see

Algorithm 2 Learning of environment models.
Step 1. Set the initial global model as empty.
Step 2. Extract environment features from the
captured image.
Step 3. Calculate the estimated positionand
orientation of the ALV, then calculate



location of the extracted environment features,
and set up a local model by collecting the
extracted local features.
Step 4. If the global model is nonempty, match the
local model with the global model with the
proposed matching scheme (described in
Section 2.4) and recalculate the accurate
position of the local featuresby the matchin
result.
Attach the local model to the global model.
For each learning cycle, repeat Steps2
through 5.

2.3 Estimation of ALV Location

Step 5.
Step 6.

The estimated new position and orientation of the ALV are
calculated as follows. When the ALV moves away from a
known position, the new position of the ALV c an be
estimated with the moving distance and the turn angle of
the front wheels. The derivations of the equationst
calculate the estimated ALV location can be found in [ 6]
and are reviewed in the following. As shown in Fig ure 3,
assume that the vehicle is located at A. After movinga
distance S forward, the vehicle will be at a new location B,
which is the desired estimated ALV location. Let the
relative location of B with respect to A be denoted by a
vector T. The rotation radius R can be written as
d

K sind M
where d is the distance between the front wheels and the
rear wheels, and & is the turn angle of the front wheels. And
the angle ¥can be determined as

S

=—. 2)

Y R (
So, the length of vector T can be solved to be

[T = Ry2(1-cosy) , 3)

and the direction of vector T is
T s Y
u= 5 é 5 4)

The coordinates of location B in the vehicle coordinate
system with respect to location A can thus be computed b
Xp =||T"cosu )
Vg ="T||sin u.
After the front wheel location of the ALV is determined,
the rear wheel location (¥g,¥g) of the ALV can also be

determined to be
Xp=xp+dsiny
L ©)
yg =yg —dcosy.
Since the global coordinates of location A are kmown, and
since the vehicle coordinates of location B with respect t
location A can be obtained fromEq.( 5), the global
coordinates of location B can be calculated by coordinate
system transformations. Thus the desired estimated ALV
location is obtained.

2.4 Maiching Algorithms for Corners and Line
Segments

The proposed matching algorithm is designed to find the
translation and the rotation between the input model and
the global model. The proposed algorithm is a two-phase
one. The rotation between the two models is found in the
first phase. The information used for the matching
algorithm in this phase is the slope angles of the line
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segments. Then the input model is transformed with the
obtained rotation angle. In the second phase of matching,
the translation between the two models can be obtained.
The information used for the matching algorithm in this
phase is the position of the corners and end points.

The matching algorithm to find the rotation between the
two models is based on the following idea. To find the
rotation between models, each of which consists of only
one line segment, the most trivial approach is to compare
the slope angles of the line segments. For models consistin
of more than one corner or line segment, it might no work
to find a matched pair of line segments or corners to obtain
the rotation angle by simply comparing the slope angles of
them. In the proposed algorithm, a statistical approach is
used to find the rotation. The distributions of the slope
angles of the line segments (or the branches of the corners)
are firstly generated as a histogram. The magnitude of each
the histogram value is proportional to the sum of the
lengths of the line segments with a certain slope angle.
Then, by comparing the two histograms, the rotation
between the two models can be obtained. In practice, the
work to compare the two histograms is implemented in a
way of finding the rotation angle as a shift angle, which
resulis from the maximum correlation values. Furthermore,
for error tolerance, a low-pass filter is applied to both
histograms before the correlation values are calculated. An
illustration for this phase of the proposed matching
algorithms is shown in Figure 2. Two environment models
are shown in the top-left corner and their correspondin
slope-angle histograms are shown in the bottom of the
figure. In the upper slope -angle histogram, there are two
peaks around 90 and 180 (or 0) degrees. The se peaks
correspond to the slope angles of the line segments of the
left model. Similarly, in the lower histogram, there are two
peaks around 95 and 5 degrees, corresponding to the slope
angles of the line segments of the right model. The chart of
the correlation value versus the rotation angle is shown in
the top-right comer of the figure. The rotation angle
corresponding to the maximum of the correlation value is 5
degrees. It is concluded that the rotation between the two
models is 5 degrees.

Once the rotation angle between the two models is obtained
the input model is then rotated with the obtained rotation
angle. After the rotation, a revision of the corner -matching
algorithm proposed by Pan and Tsai [6] is performed to
find the best m atch pair of corners (or end points). The
distance between the two corners (or end points) is then
regarded as the translation between the input and the global
models.

3. Navigation by Integrating Different Guidance
Strategies

After the learning stage, the ALV may conduct navigation
session with the learned model and strategies. The
navigation techniques using the three strategies are
described in detail in this section.

3.1 Navigation by Dead Reckoning

When no desired visual feature can be extracted stabl y
from the grabbed images, the ALV is steered to follow a
pre-defined navigation path. The approach to follow the
pre-defined path by the dead reckoning strategy is

described as follows. Firstly, calculate the desired wheel
turn angle by an exhaustive sear ch approach, as described
later. Secondly, move the ALV with a given moving
distance and the obtained wheel turn angle. Thirdly, obtain



the real moving distance and the real wheel direction from
the odometer and the feedback of the control unit. The real
moving distance and the real wheel direction might not be
identical to the desired ones owing to the existence of
possible control error and imprecision. Fourthly, calculate
the new position and orientation of the ALV with the data
from the odometer and the feedback of the control unit (see
Section 2.1 for the detail). Finaly, repeat the above stepst
complete another dead reckoning navigation cycle.

The driving wheel direciion & can be calculated by the
following wheel adjustment strategy. The basic idea is to
search a turn angle of the front wheels to drive the ALV as
close to the desired path as possible. As shown in Figure 4,
given a path P, either a straight line or a circular segment,

define D‘f (6) as the distance from the midpoint between

the two ALV{ront wheels to the given path P after the ALV
traverses a certain distance S with the turn angle 8, where S
may be assigned to be the average navigation distance

during a cycle. Define DE(8) as the distance from the

midpoint between the two ALV back wheels to the given
path P Also, define Q as the nearest point on P to the
estimated ALV position. Define Ap(8) as the angl

between the head direction of the ALV and the tangent of P
on Q. Finally, define measure Lp tobe

Lp(5)=(DE &)+ DE@®)IC, + Ap(BYIC,, (D)
where C; and C; are two pre-selected constants. To find the
turn angle of the front wheel to drive the ALV as close to
the path as possible, an exhaustive search is performed to
find the angle that produces the minimal value of Lp. The

obtained angle is used as the turn angle for safe navigation.
3.2 Navigation by Line Following

The line following guidance strategy is used only when
stable line features can be extracted from grabbed images.
After a line is extracted, the line equation with respect t
the vehicle coordinate system is derived by computer vision
techniques [8, 9]. With a given safe distance to the
extracted line feature, a line following navigation path,
which is parallel to the line feature, can be obtained. By the
exhaustive search approach proposed in Section 3.1, the
desired wheel turn angle can be calculated. The ALV then
navigates to the next position with the desired driving
wheel direction and starts another navigation cycle.

3.3 Navigation by Model Matching

If comners and the end points of the baselines are available
in the grabbed image, the model matching guidance
strategy is used to derive a more precise ALV position and
orientation. The basic steps of the model maichin
guidance strategy are described as follows. Firstly, extract
the local environment model from the grabbed image and
calculate the location of the environment features with
respect to the ALV [7, 8]. Secondly, match the local model
to the learned global model and find the translation and
rotation between the two models by the matching result.
Thirdly, calculate the position and the orientation of the
ALV with respect to the learned global model [ 8]. Finally,
calculate the desired wheel turn angle by the approach
proposed in Section 3.1 anddrive the ALV with the
obtained wheel turn angle.

The algorithms of model matching depend on the selection
of the environment model. For example, the Generalize
Hough Transform (GHT){ 10] i3 a well-known
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point-pattern-matching scheme. A model-matching scheme
for corners and line segment features was proposed by Pan
and Tsai [6]. In this study, the environment model consists
of corners and end points of line segments. An algorithm t
maich such a type of models was proposed in Section 2.4.
The matching algorithm finds the best match pair, and then
calculates the translation and rotation between the two
models by the maiching result.

3.4 Criteria for Switching Guidance Strategies

The major issue arising in the integration of guidance
strategies for ALV navigation is the criteria for switching of
the guidance strategies. In the proposed approach, the
criteria are as follows.

1. Ifthe ALV is in a line -following session: The
guidance strategy will be switched to model matchin
if the following conditions are satisfied: (1) the end of
the line is being approached ; (2) the next sub-path
requires the model matching strategy; and (3) one or
more stable corners or end points, i.e., features with
multi-occurrences, are available in the sensed local
model. It is mentioned by the way that the guidance
strategy is never s witched to dead reckoning from
line-following because the end points of the followed
lines, which facilitates model matching, can always be
detected before the lines disappear.

Ifthe ALV is in a model -matching session: The
guidance strategy will be switched to line following if
the following three conditions are satisfied: (1) the end
position of the sub-path of the model matching session
is being approached; (2) the next sub -path is a
line-following session; and (3) line features nearly
parallel to the next sub-path are available. It will be
switched to be dead reckoning if (1) the end position
of the sub-path of the model matching session is
reached and (2) the next sub -path to be followed is a
dead-reckoning session.

3. Ifthe ALV is in a dead reckoni ng session: The
guidance strategy will be switched to model matchin
if the following conditions are satisfied: (1) the end of
the line is being approached; (2) the next sub -path
requires the model matching strategy; and (3) one or
more stable corners or e nd points are available in the
sensed local model. The guidance strategy will be
switched to line following if the following three
conditions are satisfied: (1) the end position of the
sub-path of the model matching session is bein
approached; (2) the next sub-path is a line-following
session; and (3) line features nearly parallel to the next
sub-path are detected in the sensed image.

If insufficient visual features are extracted during the
model-matching or line-following navigation sessions, the
guidance  strategy will automatically  switcht
dead-reckoning temporarily until sufficient visual features
are found in the grabbed images. If no sufficient visual
features are found within a certain number of cycles, the
ALV will stop automatically to ensure safety.

4, Experimental Results

5\)

The external view of the prototype of the ALV is shown in
Figure 5(a). The ALV is computer-controlled witha

modular architecture, as shown in Figure 5(b), including
four major components, namely a vision system, a central
processing unit (an Intel Pentium II 450MHz PC), a motor
control system, and a DC power system. The vision system
consists of a camera, a color monitor, and an image frame



grabber. The motor control system consists of a main
control box with a controller, a motor driver, and two
motors.

The image processing works for extracting line segments
and corners in sensed images are accomplished in two
phases. In the first phase, two consecutive pixels with gray
values smaller than a pre -selected threshold value indicate a
possible candidate pixel on a baseline. Then, we check ina
downward direction to see if there exist five consecutive
pixels with their gray value smaller than the threshold value
We also do this in the upward direction to see if there exist
five consecutive pixels with their gray value larger than the
threshold value. If the two constraints are satisfied, the
current pixel is regarded as a baseline candidate point. In
the second phase, an algorithm similar to the edge -linking
algorithm is performed to form a set of line segments and
comners from the candidate set. The equations of the
baseline segments are computed by least-mean-square-error
(LMSE) fitting [ 11]. An example of image processin
results is shown in Figure 6. Detected baselines are shown
in white line segments and detected corners and end points
are shown in white spots.

The ALV learning and navigation experiments were
performed in a building corridor in National Chiao Tun
University. By using the proposed approach, man
successful navigation sessions have been conducted. An
example of the learned navigation models is shown in
Figure 7. The environment features are shown as heavy
black lines from the top view, and the planned sub -paths
are shown as lines with different gray levels, depending on
their  corresponding guidance ~ strategies. Sub -paths
corresponding to dead reckoning, line following, and model
matching guidance strategies are shown as light gray, dark
gray and black ones, respectively.

5. Conclusion

In this paper, we proposed a system for learning
environment models and guidance strategies for ALV
navigation. The system not only collects the information of
the environment features to build up an environment model
but also selects a guidance strategy for each of the
navigation sub -paths according tothe encountered
environment conditions. Furthermore, an intelligent
navigation scheme by integrating three guidance strategies
is proposed for safe ALVna vigation through environments
consisting of various conditions. The proposed learning and
navigation system has been implemented on a prototype
ALV and successful navigation sessions in indoor corridor
environments confirmed the feasibility of the approach.

This research is supported under the project
NSC-88-2213-E-009-114 of National Science
Council, epublic of China.
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Figure 4: Dlustration of adjustment of the front wheels in a
path.

Figure 1. Three types of the environment features: ()
baseline (b) comers (c) end points of the
baselines.
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Figure 2: Dlustration of the proposed matching algorithm. et Fome ‘ VehDisly ‘
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Figure 5: The prototype ALV used in the experiments.
(a) External view. (b) System structure.

Figure 3: The vehicle location before and after the ALV
moves a distance S forward.
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Figure 6. An example of the image processing results.
Detected baselines are shown in white line
segments and detected corners and end points are
shown in white spots.

Figure 7. An example of the learned navigation model.
Environment features are shown as thick black
line segments, and the planned sub -paths are
shown as thin lines segments.
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