Cryptanalysis of Short Secret Exponents Modulo RSA Primes

Chien-Yuan Chen Department of Information Engineering, I-Shou University, Kaohsiung County, Taiwan, 84008 R.O.C.

Email: cychen@csa500.isu.edu.tw

Abstract

An attack on the short secret exponent d_q modulo a larger RSA prime q is presented. When $d_q < (\frac{2q}{3p})^{1/2}$ and $e < (pq)^{1/2}$, we can discover d_q from the continued fraction of $\frac{e}{pq}$, where e and pq denote the public exponent and the modulus, respectively. Furthermore, the same attack on unbalanced RSA is also given. According to our analysis, unbalanced RSA will be broken if $d_q < (\frac{2}{3})^{1/2} q^{4/9}$.

Keyword: RSA, continued fraction method, cryptograph

1 Introduction

When RSA [7] is used in communications between a smart card and a large computer, it would be desirable for the smart card to have a short secret exponent. However, the short secret exponent can be easily discovered by Wiener's method if $d < N^{1/4}$ and e < N, where d, d, and d denote the secret exponent, the modulus, and the public exponent, respectively. To enhance the speed of decryption for the smart card [6], one can compute $d^{d}p$ mod $d^{d}q$ mod $d^{d}q$ mod $d^{d}q$, where $d^{d}q$ is a ciphertext, $d^{d}q$ and $d^{d}q$ mod $d^{d}q$ and $d^{d}q$ mod (q - 1). These two computed values can be easilged combined using the Chinese remainder theorem to obtain the original plaintext. Furthermore, one can reduce the secret exponentiation time by choosing d such that $d^{d}q$ and $d^{d}q$ are short. To be immune from Wiener's method, d must be larger than d

Is there an attack on RSA such that short d_p or d_q can be discovered? This is just Wiener's open problem [10]. It als motivates our paper. According to short d_q , we use the continued fraction method to obtain the following result. If

e < N
$$^{1/2}$$
, p < q and $d_q < (\frac{2q}{3p})^{1/2}$, then we can discovered d_q from the i^{th} convergent of the continued fraction of $\frac{e}{pq}$. Note that $\frac{q}{p} > 10^t$, where t is a small integer, to avoid

Lehmann's attack [4]. The main deference between our method and Wiener's [10] is the process of verifying the guess. Once we get the guess of denominator $d_q p$, it is eas to get prime p by computing $g.c.d.(d_q p, N)$. Furthermore, our method can attack unbalanced RSA [8] if d_q is short. In

unbalanced RSA, the fraction $\frac{q}{p} \approx 2^{4000}$ is very large.

Therefore, d_q will be discovered i $d_q < (\frac{2}{3})^{1/2} \, q^{4/9} \! \approx \! 2^{2000}.$

This paper is organized as follows. In Section 2, we revie

Wiener's method. Section 3 describes our proposed method Our method can also attack unbalanced RSA. The result will be presented in Section 4. The last section gives some discussions and conclusions.

2 Wiener's Method

In RSA, the public exponent e and the secret exponent d satisfy the relationship

$$ed \equiv 1 \pmod{l.c.m. (p-1, q-1)},$$
 (2.1)

where *l.c.m.* (a, b) denotes the least common multiple of a and b. It means that

$$ed = K l.c.m. (p - 1, q - 1) + 1,$$
 (2.2)

where K is an integer. Equation (2.2) can be rewritten as

ed =
$$\frac{K}{G}$$
 (p - 1, q - 1) + 1 (2.3)

$$= \frac{k}{g}(p-1, q-1) + 1, \qquad (2.4)$$

where G = g.c.d. (p - 1, q - 1), $\frac{K}{G} = \frac{k}{g}$ and g.c.d. (k, g)

= 1. Here g.c.d. (a, b) denotes the greatest common divisor of a and b. Dividing both sides of Equation (2.4) by dpq, we get

$$\frac{e}{pq} = \frac{k}{dg} \left(\frac{(p-1)(q-1)}{pq} \right) + \frac{1}{dpq}$$

$$= \frac{k}{dg} (1-\delta), \qquad (2.5)$$

where $\delta = \frac{p+q-1-\frac{g}{k}}{pq}$. Because $(1+\frac{g}{k})$ is far smaller

than pq, we have $\delta \approx \frac{p+q}{pq}$. Let $\frac{e}{pq}$ have a continued

fraction form [a₀; a₁, ..., a_n], where a_i is a positive integer, 0

 $\leq i \leq n$. According to [10], $\frac{k}{dg}$ can be probably found by

constructing the rational number $\frac{r}{s}$ which is equal to

 $[a_0; a_1, ..., a_i+1]$, if i is even,

and
$$[a_0; a_1, ..., a_i]$$
, if i is odd. (2.6)

Wiener [10] showed that if

$$kdg \le \frac{1}{\frac{3}{2}\delta},\tag{2.7}$$

the constructed number $\frac{r}{s}$ can be equal to $\frac{k}{dg}$. Once we

guess a certain rational number $\frac{r}{s}$, we have to check

whether $\frac{r}{s}$ is equivalent to $\frac{k}{dg}$. For simplicity, assume

that ed > pq. From Equation (2.4), we have k > g. Next, multiplying both sides of Equation (2.4) by g, we have

$$edg = k(p-1)(q-1) + g.$$
 (2.8)

If $\lfloor edg / k \rfloor$ is zero, then the guesses of k and dg are not

correct. Otherwise, we can calculate $\frac{p+q}{2}$ =

 $\frac{pq - \left[edg/k\right] + 1}{2}$. If the value is an integer, then we

compute

$$\left(\frac{p-q}{2}\right)^2 = \left(\frac{p+q}{2}\right)^2 - pq$$
. (2.9)

If the guess of $(\frac{p-q}{2})^2$ is perfect square, we know that

the original guess of k and dg is correct. From Equation (2.8), we can obtain g by calculating the expression edg mod k. Therefore, the secret exponent d can be discovered by dividing dg by g.

Next, let us discuss the restriction on the secret exponent d.

Since
$$\delta \approx \frac{p+q}{pq}$$
, in Equation (2.7), we substitute $\frac{p+q}{pq}$

for δ , we have

$$kdg \le \frac{pq}{\frac{3}{2}(p+q)}.$$
 (2.10)

Generally, one can expect g to be short, and k < dg. Inequality (2.10) reveals that

$$d^2 < \frac{pq}{\frac{3}{2}(p+q)} \approx N^{1/2},$$
 (2.11)

where N = pq. This implies that

$$d < N^{1/4}$$
. (2.12)

3 Our Method

In this section, we first describe an attack on the short exponent d_q . Next, according to [1], we present another attack on the large exponent d_q .

3.1 Attack on the Short Exponent dq

To avoid Wiener's method and speed up decryption time, the smart card should choose a large secret exponent d such that the corresponding

$$d_p = d \mod (p-1)$$
 (3.1.1)

and
$$d_0 = d \mod (q-1)$$
 (3.1.2)

are very short. Because d is large, we expect that e is small. Here, we assume that $e < N^{1/2}$. Without lose of generality, we assume that p < q. Furthermore, according to [4], p and q should differ in length by a few digits. Thus, we have $\frac{q}{p} > 10^t$, where t is a small integer.

From Equation (3.1.2), there must exist an integer i such that

$$d = i(q - 1) + d_q. (3.1.3)$$

Then, we use Equation (3.1.3) to substitute for d in Equation (2.2) and get

$$e(i(q-1) + d_q) = K(l.c.m.(p-1, q-1)) + 1.$$
 (3.1.4)

Furthermore, we have

$$ed_q = k(q-1) + 1,$$
 (3.1.5)

where k is an integer. Because $e < N^{1/2}$ and d_q is short, we

have $k < d_q$. Dividing both sides of Equation (3.1.5) b $d_q pq$, we have

$$\frac{e}{pq} = \frac{k}{d_q p} (1 - \frac{1}{q}) + \frac{1}{d_q pq}$$

$$= \frac{k}{d_0 p} (1 - \frac{1 - \frac{1}{k}}{q}) . (3.1.6)$$

Let $\theta \approx \frac{1 - \frac{1}{k}}{q}$. Then, Equation (3.1.6) can be rewritten as

$$\frac{e}{pq} = \frac{k}{d_0 p} (1 - \theta) \quad . \tag{3.1.7}$$

Comparing Equation (3.1.7) with Equation (2.5), $\frac{k}{d_{\alpha}p}$ can

be discovered by using Formula (2.6) if

$$\theta < \frac{1}{\frac{3}{2} k d_q p}. \tag{3.1.8}$$

Once we have the guess of $\frac{k}{d_q p}$, we compute g.c.d. $(d_q p, d_q p)$

N). If $g.c.d.(d_{q}p, N)\neq 1$ or N, we obtain $p = g.c.d.(d_{q}p, N)$.

Otherwise, we must try another guess of $\frac{k}{d_q p}$.

Now, let us discuss the restriction on d_o. Since

$$\theta = \frac{1 - \frac{1}{k}}{q} \approx \frac{1}{q}$$
, in Equation (3.1.8), we use $\frac{1}{q}$ to

substitute for θ , we have

$$kd_{q} < \frac{2q}{3p}. \tag{3.1.9}$$

Because $k < d_q$, we view k as d_q and get

$$d_{q} < (\frac{2q}{3p})^{1/2} \tag{3.1.10}$$

According to the assumption $\frac{q}{p} > 10^t$, we have restriction

$$d_{q} < (\frac{2^{*}(10)^{t}}{3})^{1/2} \tag{3.1.11}$$

for a small integer t.

For the sake of clarity, as shown in Table 1, we can recover the secret exponent $d_q = 5$ using the continued fraction of $\frac{e}{N}$, where e = 2221 and N = 655819. It is worth noting that Wiener's method is in vain because $d > N^{1/4}$.

3.2 Attack on the Large Exponent d

Chen et al. [1] showed that the large secret exponent d will be discovered if $|d-l.c.m.(p-1, q-1)| < N^{1/4}$. Like [1], we assume that d_a is large such that

$$|(q-1) - d_q| < (\frac{2q}{3p})^{1/2}$$
. (3.2.1)

Without loss of generality, let $d_q < (q-1)$. Then, we compute $d_q^{'} = (q-1) - d_q$, which satisfies

$$d_{q}' < (\frac{2q}{3p})^{1/2}.$$
 (3.2.2)

Now, we rewrite Equation (3.1.5) as

$$e((q-1) - d_q) = k(q-1) + 1.$$
 (3.2.3)

It implies that

$$ed_{q}' = k'(q-1)-1,$$
 (3.2.4)

where k is an integer. According to the assumption of Section 3.1, we know that $e < N^{1/2}$ and d_q is short, we

have $k < d_q$. Dividing both sides of Equation (3.2.4) by d_q pq, we have

$$\frac{e}{pq} = \frac{k'}{d_q p} (1 - \frac{1}{q}) - \frac{1}{d_q p q}$$

$$= \frac{k'}{d_q p} (1 - \frac{1 + \frac{1}{k'}}{q}) . \tag{3.2.5}$$

Let $\theta = \frac{1 + \frac{1}{k}}{q}$. Then, Equation (3.2.5) can be rewritten as

$$\frac{e}{pq} = \frac{k}{d_q p} (1 - \theta) \quad . \tag{3.2.6}$$

Due to Equation (3.2.2), we can compute $\frac{k^{'}}{d_{q}p}$ from the

4. Attack on unbalanced RSA

The security of RSA depends on the difficulty of factoring large numbers. Therefore, a larger RSA modulus is chosen for further security. However, a larger computational effort is required for encryption and decryption. To resist against the best factorization algorithm [5] and not increase the decryption time, Shamir [8] presented the concept of unbalanced RSA. In unbalanced RSA, q is much larger than p, where q is of 4500 bits and p of 500 bits. The security of unbalanced RSA has been discussed in [2, 3]. Here we cryptanalyze it from the viewpoint of Section 3. According to [8], we know that

$$\frac{q}{p} \approx \frac{2^{4500}}{2^{500}} = 2^{4000} \tag{4.1}$$

Like the assumption of Section 3, we have $k < d_q$. From Equation (3.1.10), we substitute 2^{4000} for $\frac{q}{p}$ and get

$$d_{q} < (\frac{2}{3}2^{4000})^{1/2} \tag{4.2}$$

Because $q\approx 2^{4500},$ the relationship between $d_{\,q}$ and q is

$$d_{q} < (\frac{2}{3})^{1/2} q^{4/9} \tag{4.3}$$

Therefore, we find that if $d_q < (\frac{2}{3})^{1/2} q^{4/9}$, we can recover d_q and further compute the secret exponent d.

5. Discussions and Conclusions

From Inequality (3.1.11), the limit of d_q is very small. For example, the limit of d_q is about 26 when t=3. To enhance the limit of d_q , we use the Verheul and van Tilborg scheme [9]. The secret exponent d_q can be found by exhaustively searching for about 2r+8 bit workload if $d_q < 2^r \left(\frac{2^*(10)^t}{3}\right)^{1/2}$, where r is an integer.

In this paper, we improve Wiener's method to discover the short secret exponent d_q when $|d_q|<(\frac{2q}{3p})^{1/2}|$, $e< N^{1/2}$ and p< q. We then make use of the technique of [1] to discover d_q which is close to (q-1). Furthermore, we attack unbalanced RSA such that it will be insecure if $|d_q|<(\frac{2}{3})^{1/2}q^{4/9}\approx 2^{2000}$

NSC 89-2213-E-214-002

References

[1] C. Y. Chen, C. C. Chang, and W. P. Yang, "Cryptanalysis of the Secret Exponent of the RSA Scheme," Journal of Information Science and Engineering, Vol. 12, pp. 277-290, 1996.

- [2] H. Gilbert, D. Gupta, A. Odlyzko and J. -J. Quisquater, "Attacks on Shamir's 'RSA for Paranoids'," Information Processing Letters, Vol. 68, pp. 197-199, 1998.
- [3] M. Joye, J. J. Quisquater, S. M. Yen, and M. Yung, "Security Paradoxes: How improving a cryptosystem may weaken it," Proceedings of The Ninth National Conference on Information Security, TaiChung County, Taiwan, pp. 27-32, May 14-15, 1999.
- [4] S. Lehmann, "Factoring Large Integers," Math. Comp., Vol. 28, pp.637-646, 1974.
- [5] A. Odlyzko, "The Future of Integer Factorization," CRYPTOBYTES, Vol. 1, No. 2, pp. 5-12, 1995.
- [6] J.-J. Quisquater and C. Couvreu, "Fast Decipherment Algorithm for RSA Public-Key Cryptosystem," Electronics Letters, Vol. 18, pp. 905-907, 1982.

- [7] R. L. Rivest, A. Shamir, and L. Adleman, "A Method for Obtaining Digital Signatures and Public -Key Cryptosystems," Comm. of the ACM, Vol.21, pp 120-126, 1978.
- [8] A. Shamir, "RSA for Paranoids," CRYPTOBYTES, Vol 1, No. 3, pp. 1-4, 1995.
- [9] E. R. Verheul and H. C. A. van Tilborg, "Cryptanalysis of 'Less Short' RSA Secret Exponents," Applicabl Algebra in Engineering, Communication an Computing, Vol.8, pp.425-435, 1997.
- [10] M. J. Wiener, "Cryptanalysis of Short RSA Secret Exponents," IEEE Trans. on Information Theory, Vol. IT-36, pp. 553-558, 1990.

Table 1. The process of our method when d_q is small.

 $N = (137 \times 4787) = 655819$, e = 3829

Calculated Quantit	How It is Derived	i=0	i=1	i=2
a _i	continued fraction of $\frac{e}{N}$	0	171	3
$\frac{\mathbf{r_i}}{\mathbf{s_i}} = [\mathbf{a_0}; \mathbf{a_1}, \mathbf{a_i}]$	See [10]	$\frac{0}{1}$	1 171	3 514
The guess of $\frac{k}{d_q p}$	$[a_0; a_1,a_i+1]$ (i even) $[a_0; a_1,a_i]$ (i odd)	$\frac{1}{1}$	1 171	$\frac{4}{685}$
The guess of p	$p = g.c.d.(d_{q}p, N)$	1	1	137
d _q	$d_{q} = d_{q}p/p$			5
g	q = N/p			4787
Secret exponent d	$ed = 1 \mod 1.c.m.(p-1, q-1)$			76581

Table 2. the process of our method when d_q is large

 $N = (137 \times 4787) = 655819$, e = 957

Calculated Quantit	How It is Derived	i=0	i=1
a _i	continued fraction of $\frac{e}{N}$	0	685
$\frac{r_i}{s_i} = [a_0; a_1,a_i]$	See [10]	$\frac{0}{1}$	$\frac{1}{685}$
The guess of $\frac{k}{d_q p}$	$[a_0; a_1,a_i+1]$ (i even) $[a_0; a_1,a_i]$ (i odd)	1 1	$\frac{1}{685}$
The guess of p	$p = g.c.d.(\dot{d_q}p, N)$	1	137
d _q	$\mathbf{d}_{\mathbf{q}} = \mathbf{d}_{\mathbf{q}} \mathbf{p} / \mathbf{p}$		5
q	q = N/p		4787
$^{\mathrm{d}}\mathrm{_{q}}$	$d_{q} = (q-1) - d_{q}$		4781