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Abstract

An attack on the short secret exponent dq modulo a larger

)”Z and e <

RSA prime q is presented. When dg <(%‘i
, P

12
(pq) . we can discover d q Jrom the continued fraction of

—e—, where e and pq denote the public exponent and the
pq

modulus, respectively. Furthermore, the same artack on
unbalanced RSA is also given. According to our analysis,

unbalanced RSA will be broken if dg < (-i—)” 2 q4/ kS
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1 Introduction

When RSA [7] is used in communications between a smar t
card and a large computer, it would be desirable for the
smart card to have a short secret exponent. However, the
short secret exponent can be easily discovered by Wiener’s
method if d < NU4 ande <N, where d, N, and e denote the
secret exponent, the modulus, and the public exponent,

respectively. To enhance the speed of decryption for the

d d
smart card [6], one can compute C P mod pand C 9 mod qQ,
where C is a ciphertext, dp =dmod (p- 1) and clq =d mod

(q - 1). These two computed values can be easil combined
using the Chinese remainder theorem to obtain the original

plaintext. Furthermore, one can reducethe secret

exponentiation time by choosing d such that d, and dg are
short. To be immune from Wiener’s method, d mustbe

4
larger than N .
Is there an attack on RSA such that short d p OF dq can be

discovered? This is just Wiener’s open problem [10]. It als

motivates our paper. According to short d g We use the

continued fraction method to obtain the following result, If
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2q 2

-3— , then we can discovered
P

12
e<N ,p<qand dg <(

dq from the ith convergent of the continued fraction of

e t . . .
—— . Note that a >10, where tis a small integer, to avoid

Pq P

Lehmamn’s attack [4]. The main deference between our
method and Wiener’s [10] is the process of verifying the
guess. Once we get the guess of denominator d P> itis eas
to get prime p by computing g.c.a’.(dqp, N). Furthermore,

our rﬁethod can attack unbalanced RSA [8] if dq is short. In

4000
unbalanced RSA, the fraction =2 is very large.

o ho

Therefore, d will be

A discovered i

2

2 000
dg < (;)u:qmzz

This paper is organized as follows. In Section 2, we revie

Wiener’s method. Section 3 describes our proposed method
Our method can also attack unbalanced RSA. The result

‘will be presented in Section 4. The last section gives some

discussions and conclusions.

2 Wiener’s Method

In RSA, the public exponent e and the secret exponentd
satisfy the relationship

ed=1(modlcm (p-1,q-1)), 2.1
where Lc.m. (a, b) denotes the least common multiple of a
and b. It means that

ed=Klcm (p-1,q-1)+1, 2.2)

where K is an integer. Equation (2.2) can be rewritten as

ed= %(p-l,q-1)+1 (2.3)



= Xp-19-n+1, @4
g

whereG=gecd (p-1,q-1), lé- = E and g.cd (k, 2
g

= 1. Here g.c.d. (a, b) denotes the greatest common divisor

of a and b. Dividing both sides of Equation (2.4) by dpg,

we get
k (p-1)g-1 1
..E_ = __(w__))  —
Pq dg Pq dpq
k
= —(1-9), 2.3)
dg( ) (
ptq-1-&
where § = ————& _ Because (1+_1g:) is far smaller
Pq <

than pg, we have & = P9 et £ have a continued

pq pq

fraction form [ay; a), ..., a ], where a; is a positive integer, 0

< i< n. According to [10], Ek- can be probably found by
g

. . I . .
constructing the rational number — which is equal to
s

fag ), - a;+1], if i is even,

and [ag; @, < 3 if iis odd. (2.6)
Wien(:r [10] showed that if
Kdg< ——, @7
3
=3
2

k
the constructed number I canbe equal to = Once we
J 2

. . r
guess a certain rational number —, we have to check
s

. . k o
whether * is equivalent to =" For simplicity, assume
8 g

that ed > pq. From Equation (2.4), we have k > g. Next,

multiplying both sides of Equation (2.4) by g, we have
edg=k(p-1¥q-D+g (2.8)

If I_edg / k_| is zero, then the guesses of k and dg are not

+

correct. Otherwise, we can calculate Prq -

(3]

pq - [edg/k| +1

5 . If the value is an integer, then we

compute

P-49,.2 _ ,P+q.
G5 = G m 29)

If the guess of (R%-i)2 is perfect square, we know that

the original guess of k and dg is correct. From Equation
(2.8), we can obtain g by calculating the expression edg
mod k. Therefore, the secret exponent d can be discovered
by dividing dg by g.

Next, let us discuss the restriction on the secret exponent d.

Since & = p*g , in Equation (2.7), we substitute B—ﬂ
Pq Pq
for &, we have
kdgs B4 (2.10)
;( p+q)

Generally, one can expect g to be short, and k < dg.
Inequality (2.10) reveals that
2 Pq

d*< 3 =NV, 2.11)
E( p+q)
where N = pq. This implies that
d <N, (2.12)
3 Qur Method

In this section, we first describe an attack on the short
exponent dq. Next, according to [1], we present another

attack on the large exponent dq.

3.1 Attack on the Short Exponent d .

To avoid Wiener's method and speed up decryption time,

the smart card should choose a large secret exponent d such

that the corresponding
dpzdmod (p-D (3.1.D
and dq=dm0d (q-1) (3.1.2)

are very short. Because d is large, we expect that ¢ is small.

12 .
Here, we assume thai e < N . Without lose of generality,

we assume that p < q. Furthermore, according to [4], p and
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q should differ in length by a few digits. Thus, we have

t
2510 , where t is a small integer.

P
From Equation (3.1.2), there must exist an integer i such
that

d=i(q- 1)+dq. (3.1.3)
Then, we use Equation (3.1.3) to substitute for d in
Equation (2.2) and get

e(f(q -D+d)= Klem(pp-1,9-1)+1. (3.14)
Furthermore, we have

ed,=kig-1)+1, (3.1.5)

12 .
where k is an integer. Because e <N and dc1 is short, we

have k < dq, Dividing both sides of Equation (3.1.5)b

dqpq, we have

= K-k (3.1.6)
dqp q
-1
Let 6=—FK Then, Equation (3.1.6) can be rewritten as
q
iz__k_“_e) . (3.1.7)
pqa  dgp

Comparing Equation (3.1.7) with Equation (2.5), Ek—can
qP
be discovered by using Formula (2.6) if

19<1

3 . (3.1.8)
Ekdqp

Once we have the guess of -El—\—, we compute g.c.d.(dqp,
q

N). If g.c.d.(dqp, N)#1 or N, we obtain p= g.c.'a'.(dqp, N).

Otherwise, we must try another guess of —k—
qP
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Now, let us discuss the restricion on dq. Since

6=—£z—l— , in Equation (3.1.8), we use 1 to
q q

substitute for & , we have

kdg <—zi. (3.1.9
3p
Becausek<dq, we view k as dq and get
29112
d, <(=—= 3.1.10)
a<(3) (

. . t i
According to the assumption 410 , we have restriction

d

1Mt
<2 (310) NE: (3.1.11)

9

for a small integer t.
For the sake of clarity, as shown in Table 1, we can recovesr

the secret exponent dq = 5 using the continued fraction of
%, where ¢ = 2221 and N = 655819. It is worth noting

that Wiener's method is in vain because d > N /4,

3.2 Attack on the Large Exponent dq

Chen et al. [1] showed that the large secret exponent d will

be discovered ifld - Lem(p-1, g-1)l < N4, Like [1], we

assume that dq is large such that
l(g-1)-d_1< (g (3.2.1)
q 3p

Without loss of generality, let dq < (g-1). Then, we

compute d;l =(q-1) - dq, which satisfies

dy < (i—g)”z. (3.2.2)
Now, we rewrite Equation(3.1.5) as

e((@)- dy)=ki@-D+1. (3.2.3)
1t implies that

ed, = k' (@-D-1, (3.2.4)

where k' is an integer. According to the assumption of

. 112 -
Section 3.1, we know that e < N and dg 1s short, we



have k' < d,. Dividing both sides of Equation (3.2.4)
by d'q pq, we have

e Kk 1. 1

= = ——(l-—)-
Pg  dgp 9 dgpq
K 1+L,
= —(-—K, (3.2.5)
dqp q
i
Let 6= k . Then, Equation (3.2.5) can be rewritten as
Lok ey, (3.2.6)
Pa  dgp

Due to Equation (3.2.2), we can compute L— from the
dgp
q

. . e
continued fraction of — .
Pq

Then, we discover p

g.c.d.(d;]p, N). Once we get p, d;; can be discovered by
d:q p/p and another RSA prime q can also be computed b
N/p. Therefore, the original d q is recovered by (g-1) - d'q .

For the sake of clarity, as shown in Table 2, we ca n recover

the large dq using the continued fraction of {T, where e

957 and N = 655819.

4. Attack on unbalanced RSA

The security of RSA depends on the difficulty of factoring
large numbers. Therefore, a larger RSA modulus is chosen
for further security. However, a larger computational effort
is required for encryption and decryption. To resist against
the best factorization algorithm [5] and not increase the
decryption iime, Shamir [8] presented the concept of
unbalanced RSA. In unbalanced RSA, q is much larger
than p, where q is of 4500 bits and p of 500 bits. The
security of unbalanced RSA has been discussed in [2, 3].
Here we cryptanalyze it from the viewpoint of Section 3.

According to [8], we know that

4.1
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Like the assumption of Section 3, we have k < dq. From

4000
Equation (3.1.10), we substitute 2 for L and get
p

2 4000 \1/2
dq <(3-2 ) 4.2)

4500
Becauseq=2 , the relationship between d q and q is

2 12 _are
dq<(§) q 4.3)

; 2 /2 _a/9
Therefore, we find that if dq <(§) q , we can

recover dq and further compute the secret exponent d.

5. Discussions and Conclusions

From Inequality (3.1.11), the limit of dq is very small. For
example, the limit of d q is about 26 when t = 3. To enhance
the limit of d g Weuse the Verheul and van Tilborg scheme
[9). The secret exponent clq can be found by exhaustively

2r + 8bit workload if

searching for about

* t
dg <2° (-—2—-(31i)1-/2 , where r is an integer.

In this paper, we improve Wiener's method to discover the

4 2802 g
short secret exponent dq when dg < (—3—-) “,e<N and
P

p <q. We then make use of the technique of 1] to discover

dq which is close to (g-1). Furthermore, we attack

unbalanced RSA such that it will be insecure if

2 172 _as9 2000
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Calculated Quantit How Itis Derived i=l i=1 i=2
4 continued fraction of % 171 3
5 . 1 3
—L=[agy; ay, ...a; — =
i 20721 -] See [10] 171 514
The guess of k. lag: ag, .--a;+1] fl even) 1 4
dgp [ag; a1, -a;] (i odd) 171 685
The guess of p p= g.c.d.(dqp, N) 1 137
dq dq = dqp/p 5
q q=N/p 4787
Secret exponent d ed =1 mod l.c.m.(p-1, g-1) 76581
Table 2. the process of our method when dq is large
N =(137x4787) = 655819, e = 957
Calculated Quantit How It is Derived i= i=1
3 continued fraction of % 0 685
T, ) 9 1
S [ag: a1, -2 See [10] 1 685
™ ; K lag; aj, ..a;+1] (i even) 1 1
e guess of —— . . . -z
dqp [ao, a, ...ai] (1 Odd) 1 685
The guess of p p=g.cd( d;p JN) 1 137
dy dy=dyp/p 3
g q=N/p 4787
dq dq - (q-l) _ d;?l 4781
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