PERE/ T\ FEEREEEE

The View-Dependent Real-Time Rendering of
Large-Scale Terrain in Continuous Levels of Detail

Chin-Shyurng Fahn and Shih-Tung Wu

Department of Electrical Engineering
National Taiwan University of Science and Technology
Taipei, Taiwan 106, Republic of China
E-mail: csfahn @mouse.ee.ntust.edu.tw

ABSTRACT

This paper presents a straightforward and efficient
algorithm for the view-dependent real-time rendering of
large-scale terrain in continuous levels of detail (LOD). It
can render the terrain in continuous LOD without the
overhead of tree structures or off-line computations of
supplemental data. Such a terrain simplification algorithm
consists of two main processes that we call block-based
concatenation and vertex-based refinement for each visible
block.

Before the block-based concatenation process, a piece of
terrain had been partitioned into small units referred to as
blocks. In the course of matching adjacent blocks, the LOD
value for each block is first determined according to the
importance of local geometry and the distance from an
observer to the foreground formed by the terrain. The
difference between the LOD of adjacent blocks is set to be
at most one. To achieve this, a look-up table is employed to
record all the cases of boundary matching. In this manner,
T-junctions or cracks occurring in the boundaries of blocks
can be avoided with no additional effort.

In the vertex-based refinement process, a screen-space
error metric is used as a vertex refinement criterion. And
the estimation of the error is on a pixel level. Prior to
vertex refinement, each block is further divided into a set of
sub-blocks; after that, they are manipulated from the
outside to the center within a block in clockwise spiral
order. During the vertex refinement, all the non-boundary
vertices of the currently processed block are measured by
an error function. If the error associated with a vertex is
smaller than a specified pixel error, the vertex is
considered to remove. Conversely, the vertex is reserved.

The experimental terrain data are originally generated by
a fractal algorithm, and followed by manual editing. A
primary terrain rendering system that we have developed
is demonstrated on general PC platforms. In this system,
the terrain simplification algorithm has been implemented
Jor approximating and rendering digital terrain models as
well as the other kinds of height fields, which consistently
performs at interactive frame rates of high image quality.

Keywords: Levels of detail, terrain rendering, geometry
reduction, view-frustum culling, geomorphing.

1. INTRODUCTION

The efficient visualization of a large-scale surface like

terrain models is a challenging problem. The most
common way to render such surfaces is to exploit
triangulated surface models for simulation. A triangle is an
essential geometric primitive in 3-D computer graphics. It
is easily to be transmitted, computed, and rendered. In
addition, a set of triangles can approximately compose any
geometric object with arbitrary accuracy, and it can be
implemented efficiently by the aid of graphics hardware.
However, a large-scale triangulated surface is still hard to
be rendered in real time if no accelerating techniques
support, even on a powerful workstation. The major
problem of most applications is that the requirements for
rendering far exceed the capacities of typical graphics
hardware. It motivates us to effectively reduce the
complexity of the surface and display it at interactive
frame rates.

In the past, several schemes have been proposed, one of
which is LOD control [1-11]. The primary idea of LOD is
to moderate the number of geometric primitives that need
to be rendered without loss of compromising visual quality.
Because LOD produces mulii-resolution models, the
graphics complexity can be controlled by adaptive surface
triangulation together with tuking advantage of different
levels of detail. So far, many LOD algorithms -have been
presented in literatures. Recently, a new approach called
Continuous Levels of Detail introduces a hierarchical
quadtree technique [1]. In order to minify a projected pixel
error, the height field is dynamically triangulated in a
bottom-up fashion according to the distance from an
observer to the foreground. In this way, nevertheless, the
terrain is partitioned into a set of blocks and represented as
regular grids, so it need create extra triangles to avoid
T-junctions or cracks. Besides this, the most common
drawback of such a regular grid representation is that the
polygonalization is seldom optimal, or just near optimal.
Also, large and flat surface mats require the same polygon
density as small and rough areas do. Another famous
method is based on the structure of Progressive Meshes
(PM) [2]. This method shows that a multi-resolution
hierarchy for arbitrary meshes can be defined by using a
general refinement transformation, namely vertex split. For
the same screen-space error, the PM scheme uses fewer
active triangles than a quadiree scheme does. But, the
former adopts a complex data structure to represent
meshes.

There are many other examples of applying
multi-resolution models. One of the applications is flight
simulation, where complex terrain models are used. Virtual
reality applications also require many complex models,
depending on the degrees of importance for the

B-374

applications. CAD/CAM applications need the interactive
visualization of complex models, and medical applications
often create complex models from magnetic resonance
imaging (MRI) scanning. In recent years,.the visualization
of complex molecular models has become a new research
direction in chemical applications. For the aforementioned
applications, LOD is not only applied to express the
geometric surfaces of different complexities, but also to
textures with a similar concept. Texture mapping is an
important issue for a terrain rendering system, which can
simulate realistic imaging without complex geometric
surfaces to approximately model objects. In human vision,
an object is perceived to be blurry if the distance from an
observer to the object is out of the clear-sighted range.
Accordingly, the texture resolution is determined by means
of the distance and the angle of view. When an observer is
close to objects, they need high-resolution texiures. By
contrast, when an observer moves further and further away
from objects, they just adopt low-resolution textures.

In this paper, we will propose a view-dependent algorithm
for the real-time visualization of multi-resolution terrain
models. A straightforward and efficient approach is
employed to accomplish continuous LOD control. This
terrain simplification algorithm has been realized on
general PC platforms. To achieve good performance, some
criteria of the algorithm can be further modified in

accordance with the requirements of practical applications. -

2. SYSTEM ARCHITECTURE

Most real-time rendering algorithms for multi-resolution
height fields may be logically composed of two processes.
The first is vertex selection for a given frame based on
some specified criteria, such as a weighted function of the
importance of local geometry and the distance from an
observer to the foreground, for example, the screen-space
error metric. Moreover, the selection process is constrained
to guaraniee that the triangles should be continued,
excluding from T-junctions or cracks, after which the
second process collects the selected vertices that are fed to
a rendering pipeline.

The terrain simplification algorithm presented here will
integrate the two processes mentioned above into a single
process over the visible portion of a height field. This
algorithm needs not any off-line computations and special
efforts to eliminate T-junctions or cracks. Although the
algorithm can not generate optimal triangles, it will not
influence the achievement of the rendering at interactive
frame rates.

The terrain database comprises small units referred to as
blocks (or pages). All these blocks are in the form of
square height fields of the same size, and the number of
vertices in each dimension of the height field is a power of
two plus one. Also, some attributes are attached to the
block, such as a set of texture maps (e.g., different
resolution texture maps), texture coordinates, and
bounding box vectors,

There is a clear tradeoff on determining the size of a block.
Larger blocks allow a greater reduction in the number of
triangles to be drawn; conversely, smaller blocks permit
more efficient rendering of those constituted triangles. In
our implementation, the length or width of each block
possesses 33 vertices separated equally. This amount is
snitable for a general PC platform, even without the aid of
a 3-D graphics accelerator. The disadvantage of dividing
the terrain into blocks occurs in the geomeiry reduction
that no quad may be larger than a block. The system
architecture of our terrain simplification algorithm for
view-dependent rendering in real time is shown in Fig. 1.

simplification
full-detailed block-based
terrain concatenation
v
fractal vertex-based simplified
algorithm refinement terrain

Fig.1. The system architecture of our terrain simplification
algorithm.

3. OUR TERRAIN SIMPLIFICATION
ALGORITHM

In this section, we describe our terrain simplification
algorithm, including a block-based concatenation process
and a vertex-based refinement process for each visible
block.

3.1 The Block-Based Concatenation

The levels of detail selected at a given vertex are a function
of the relative position of the vertex and an observer’s eyes.
In our experiments, each block consists of 33x33 vertices,
whose LOD is classified into 5 levels. How many levels of
detail required are dependent on the block size. The only
one thing needed to check is that the difference between

the levels of two adjacent blocks is at most one. The

block-based concatenation process is executed in
row-major order, i.e., in the horizontal (major) direction,
followed by the vertical (minor) direction, as illusirated in

Fig. 2.
—————————p> Major direction

Block00|Block01 | Block02
Minor

direction
Blockl0| Blockll | Blocki2

Block20)\Block21

Fig.2. The processing directions of the block-based
concatenation.

B-375

‘When the block-based concatenation process proceeds in
the major or minor direction, it is prohibited from
revisiting the previously processed blocks. According to
this regulation, we can unify the two steps: selecting
veriices and feeding them to the rendering pipeline into
one step. Therefore, it is merely required to scan all visible
blocks one time.

During the block-based concatenation process, we simply
want to check the boundaries of the adjacent blocks in both
the major and minor directions. In Fig. 2, for instance,
BlockQ0 is adjacent to Block0! and Blockl(, so Block0O
just requires for matching its LOD with those of Block01
and BlocklO. In other words, each block only needs to
check its right and bottom boundaries. Figure 3 shows one
case of boundary matching, where the LOD of Block00 is
higher than that of BlockOl by one but equal to S{}ft' of
Block10. Ao

B direction
Block00 Block01

Minor
direction

Blockl0

Fig.3. An example of the boundary matching between a
currently processed block and its adjacent blocks.

We totally categorize nine cases of boundary matching
between different LOD of a currently processed block and
its eastern and southern adjacent blocks. The following
lists the nine cases:
* 1) The eastern block has the same LOD and the
southern block has the same LOD.
2) The eastern block has a higher LOD and the
southern block has the same LOD.
3) The eastern block has a lower LOD and the
southern block has the same LOD.
4) The eastern block has the same LOD and the
southern block has a higher LOD.
5) The eastern block hag the same LOD and the
southern block has a lower LOD.
6) The eastern block has a higher LOD and the
southern block has a higher LOD.
7) The eastern block has a higher LOD and the
southern block has a lower LOD.
8) The eastern block has a lower LOD and the
southern block has a higher LOD.
9) The eastern block has a lower LOD and the
southern block has a lower LOD.

Figures 4 (a)~(1) illustrate how to match the boundaries of
adjacent blocks as depicted in the above nine cases. In case
7 and case 8, however, we can not directly handle them, as
shown in Figs. 4 (g)&(h), because their boundaries occur

in cracks. In these situatiofg) we furtherfadjnst the LOD of

LOD
(a)
LOD LOD+1
LOD
(b)
LOD LOD-I
LOD
©
LOD LOD
LOD+1
(@
LOD LOD
LOD-1
Y
(e

Fig.4. The nine cases of boundary maiching between

B-376

LOD LOD+1

LOD+1
®
LOD LOD+1
LOD-1 occurring in
a crack
(g)
LOD LOD-1
occurring in
LOD+1 a crack
()
LOD LOD-1
LOD-1
(B

Fig.4. (Continued)

¥ = eastern adjacent block to coincide with that of the
currently processed block. Note that the difference of two
adjacent block’s LOD is at most one for each of the nine
cases once the boundary matching is completed. Figure 5
shows the sequential block-based processing for the visible
blocks obtained from a view frustum culling operation.

3.2 The Vertex-Based Refinement

After the block-based concatenation process, each block is
still associated with a representative LOD except parts of

B-377

Major direction

Ay

block ’\Klo:,k block || block | block || block

-block bl(kx ~ block || block g block block

\‘.‘.‘. :‘.
block | block \bzbgk block | block | block

Minor ¥§ o
direction \\//
observer

Fig.5. The sequential block-based processing of visible
blocks.

its boundaries. Here, we will consider the vertex-based
refinement for individual blocks. In the current
implementation, each block has 33x33 vertices. Because
the block is not too large, the vertex-based refinement is
unnoticeable to improve the rendering performance. But, if
we adopt larger blocks, the vertex-based refinement
becomes important. Our algorithmn processes a block only
one time, which can not go back to refine the block
repeatedly. In addition, we do not perform the refinement
of the vertices on boundaries.

There are three types of an attribute to record the status of
a vertex: lock, enable, and disable. When the vertex-based
refinement is carried out, the attributes of the vertices on
the boundary are set as lock. This inhibits such vertices
from refinement to preserve the continuity of the LOD of
adjacent blocks. If a vertex is considered for removal, then
the atiribute of the vertex is disable. On the contrary, the
attribute of the vertex is enable.

In the course of block-based concatenation, we only feed
the boundary vertices into the rendering engine. In the
following process, we will consider non-boundary vertices
for refinement. A sub-block is defined as the fundamental
unit used for the vertex-based refinement. In our

‘implementation, each block is further divided into 4x4

sub-blocks. That is, each sub-block comprises 9x9 vertices.
Figure 6 shows the sub-block consisting of eight triangle
fans. ‘

Fig.6. The geometry contents of a sub-block,

To guarantee the boundaries of adjacent sub-blocks
matched well with each other, we process the vertex-based
refinement for the sub-blocks within a block in clockwise
spiral order from the ouiside to the center as shown in Fig.
7.

sub- sub- sub- sub-
block block block block

K777, SN — . sub-
block block
sub- sub-
block | s block
sub- sub- sub- sub-

block block block block

Fig.7. The refinement sequence of the sub-blocks
within a block.

In principle, if a sub-block can be reduced to the coarsest
block, i.e., composed of only two triangle fans, then we
will replace this sub-block and its eastern, southern, and
southeastern adjacent sub-blocks with a larger sub-block
that contains eight triangle fans. Figure 8 illustrates the
general case of such a geometry reduction process. This
replacement strategy for the sub-block located in the
rightmost column or the lowermost row should be
modified according to its existing adjacent sub-blocks
within the same block. The screen-space error metric
described in [1] is adopted, which is derived from
projecting the difference of the height of a vertex and the
mean height of its adjacent vertices. If the resulting pixel
error is smaller than a user-defined value, then the vertex
will be considered for removal. Otherwise, the vertex is
hold. Consequently, the LOD of a block turns to be
non-uniform.

e e N\ | N

a sub-block

a larger sub-block

Fig.8. The geometry reduction of sub-blocks in a general
case (the cross indicates the removed vertex).

4, OTHER ACCELERATING TECHNIQUES

In this section, we give some techniques for facilitating our
terrain rendering system, including texture mapping,
texture LOD, view frustum culling, terrain modeling tools,
and geomorphing.

4.1 Texture mapping

Texture mapping is a technigue of adding detail to a
rendering image without detailed modeling. Texture
mapping can be thought of pasting a picture to the surface
of an object. The use of texture mapping needs two pieces
of information: a texture map and texture coordinates. The

texture map is the picture to be pasted, and the texture

coordinates specify the location where the picture is pasted.

Most texture maps and coordinates are 2-D data, but 3-D
texture maps and coordinates are becoming more popular.

In our experiments, we employ 96 texture maps that
demand the memory of about 5 megabytes. Each texture
map is possessed of three different resolutions used for
texture LOD. We will discuss this in the next subsection. In
the current implementation, tile-based texture maps are
adopted to approximate real terrain images.

4.2 Texture LOD

In our terrain rendering system, we partition a piece of
terrain into a set of blocks, and we perform the same
operation on the textures used. Each block is pasted by a
sequence of texture maps with various resohations. In our
irnplementation, the highest resolution of a texture map is
128X 128, and the lowest one is 32X 32, All of them are
applied to the block that comprises 33 33 vertices. And
all the texture coordinates are generated in real time by a
linear mapping technique. Like the height field data, the
image data on the boundaries of adjacent texture maps
should be identical. That is, the last texel in a given row of
the current page has to equal the first one in the same row
of the next page. The texture resolution will be determined
on the fly by the distance from an observer to the
associated block in the foreground. When the distance
increases, the resolution must decrease. In the experiments,
we merely exploit three different resolutions for each
texture map.

4.3 View Frustum Culling

The basic idea of view frustum culling is that before
drawing the entire scene for the current frame, we can
decide whether an object is inside the field-of-view (FOV)
of an observer. If the objects completely or partiaily lie
outside the view frustum, we can remove or cull them to
speed up the rendering. Nevertheless, it is quite inefficient
if we accomplish this for all the triangles constituting the
foreground formed by the terrain individually. Therefore,
we had better divide a piece of terrain into smaller blocks
for the facilitation of culling.

After the terrain is represented by a set of blocks, the
bounding box can be computed for each block. One
advantage of using blocks is to achieve rapid triangle
culling. To avoid excessive time spent in rendering the
triangles outside the FOV, we intersect the terrain with a
view frustum and render only those blocks that belong to
this intersection. The view frustum culling is recursively
operated if the bounding boxes are built into a hierarchical
organization. This will be more efficient than a
non-hierarchical organizaiion. For the hierarchical
organization, the culling is performed in a recursive
pre-order manner. If a block is not within or across the
FOV (this can be determined by intersecting the bounding
box of the block with a view frustum), none of iis children
is visible. If the block is visible, its children are recursively
checked against the view frustum. Thus, for the invisible
blocks on the top levels of the hierarchical organizarion,

B-378

we can cut out the corresponding large terrain that need not
be rendered.

The view frustum culling on blocks is a very economical
way to reduce the number of triangles considered for
rendering. For an FOV of 90 degrees, the culling operation
moderates the number of triangles to be rendered by more
than half. In our implementation, each block has 33x33
vertices and about 600~700 blocks are visible in each
frame. Por most of invisible blocks, they can be discarded
with little effort when the terrain simplification algorithm
is in progress.

4.4 Terrain Modeling Tools

Terrain modeling is an essential task for flight simulation.
We apply our terrain modeling tools to create height field
data. Through the tools, we can specify elevation data by
fractals or by hand, and specify texture maps manually.
What follows introduces how to generate fractal terrain.
The key concept behind any fractals is self-similarity. An
object is said to be self-similar when magnified subsets of
the object ook like the whole and resemble each other.
Terrain falls into the category of such self-similarity. A
diamond-square algorithm is employed to generate fractal
terrain, which is formerly in a two-dimensional version.
Here, a one-dimensional midpoint-displacement algorithm
is used to explain how the diamond-square algorithm
generates the terrain. The midpoint-displacement algorithm
starts with a straight-line segment, and calculates a
displaced y value for the mid-position of the line segment
by taking an average of the y values of endpoints ¢ and b,
followed by adding a random offset r:

Yia =[y(@)+ y(®)}/2+7.
To approximate fractional Brownian motion, we generate
the value r from a Gaussian random variable with a mean
of zero and a variance proportional to |b-a[*”, where
H=2-D and D>1 is the fractal dimension. Figure 9 shows a
fractal curve obtained with this method. And then we can
extend this midpoint-displacement algorithm to create
two-dimensional elevation data. Figure 10 exemplifies the
fractal terrain shown in a window opened by our terrain
mg}dﬂmg tools.

YA
¥(b) - y(b)
y(a) ya) -
Y mia :
— X >
a b a (a+b)2 b
(a) (b)

Fig. 9. The generation of a fractal curve: (a) an original
straight-line segment; (b) a random
midpoint-displacement of (a).

4.5 Geomorphing
There are two principal factors for a good visual flight

simulation: a high frame rate and non-poping artifacts. The
LOD techniques can reduce the number of triangles for

rendering and then increase the performance to achieve

Fig.10. An example of the fractal terrain showm by our
terrain modeling tools.

high frame rates; however, they also result in poping
artifacts. Such a drawback can be overcome if the
tolerance of the screen-space error is kept near a value
of 1 pixel. In our current implementation, the tolerance of
the screen-space error is required to exceed 2.5 pixels more
or less for reaching interactive frame rates. To eliminate
poping artifacts, we incorporate morphing techniques
into our terrain rendering system. In [2]), the term
geomorph was previously to denote the morphing between
different LOD of the same terrain segments, The LOD
morphing can be stated as two steps. First, geometric
primitives are grouped into new interpolated vertices,
edges, and faces for remodeling an object with no change
of approximation accuracy. Not only a vertex itself but also
all its associated attributes should be interpolated, such as
normals and texture coordinates. Second, each vertex is

£, v, d)=(1.0-d W +dv,

continuously moved from its interpolated position v’ to
the true location v using a morphing function as follows:
where d €[0,1] is the normalized distance from an observer
to the vertex. Additionally, some different approaches that
adopt time functions are exploited to accomplish the
geomorphing [11]. Nevertheless, they are not appropriate
for our system architecture.

5. EXPERIMENTAL RESULTS

In this section, we demonstrate the experimental results
from our proposed view-dependent terrain simplification
algorithm. All the testing programs have been implemented
in C++ language by using the Microsoft Visual C++ 5.0
compiler under the Microsoft Windows 98 operating
system. The platform is a personal computer equipped with
an Intel Pentium IT 350 CPU and an ASUS AGP-V3800
graphics board with an OpenGL accelerator.

Two of the experimental results are illustrated in
Figs.11&12, respectively. Figure 11(a) shows the original
terrain 1 with texture mapping, while Fig. 11(b) with
wireframes. And Figs. 11(c) & 11(d) individually show the
simplified terrain I through the block-based concatenation
and vertex-based refinement processes. For terrain IT, the
similar results are shown in Figs. 12(a)~(d). Table 1
records the numbers of triangles of each original terrain

B-379

@

) 218 6) 8 €l) 1} OF e

!__H_WE__..__. - -
S 1\ jey 10 8 o) £i8d o)) RinfTy

(d)

Fig.11. The illustration of terrain I rendered in: (a) full
detail with texture mapping; (b) full detail with
wireframes; (¢) block-based simplification with
wireframes; (d) vertex-based simplification with
wireframes.

B-380

@

e
v o A VTS e A 3 T
Eeoc ot i
ATt e e A
BN S ES S D
BN
v
TAVAYS S LAY

Fig.12. The illustration of terrain II rendered in: (a) full
detail with texture mapping; (b) full detail with
wireframes; (c) block-based simplification with
wireframes; (d) vertex-based simplification with

wireframes.

terrain simplification algorithm with the angle of view 60°.

On an average, the data simplification ratios attain 91 and
223 for the first and second processes, respectively. Table 2
reveals the number of visible blocks and the average frame
rate obtained from rendering the terrain in continuous LOD
with texture mapping. This performance fulfills the
requirements for the view-dependent real-time rendering of
large-scale terrain. :

TABLE 1. The numbers of triangles of the original terrain
and its simplified ones resulting from the
block-based concatenation and vertex-based

refinement.
- Block-based | Vertex-based
“\lriangles . ock-base ertex-bases
Terrxl'gm Full detail simplification simplification
I 1,177,600 11,899 4,957
i) 1,224,704 14,975 5,918

TABLE2.The number of visible blocks and the average
frame rates of the terrain rendered in continuous
LOD with texture mapping.

Terrain no No. of Average frame
AN N0 | isible blocks rate (sec™)
I 542 25.0
n 519 23.2

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a straightforward
approach to achieving the view-dependent real-time
rendering of large-scale terrain in continuous LOD. The
advantage of our terrain simplification algorithm needs not
any off-line computations. But, the disadvantages of this
algorithm are that the terrain simplification is not optimal
and the poping astifacts can not be completely eliminated
yet. At present, we merely consider the distance from an
observer to the foreground and where the viewpoint is.
Other refinement criteria may be taken into account, as
mentioned in the view-dependent algorithm [11].

In our current implementation, the poping effect still exists.
On the other hand, our geomorphing function is not the
best one, because it just has several levels, depending on
the distance. We can further adopt a time function to
exclude the poping artifacts, not only referring to the
distance. Also, our refinement method has a room for
improvement due to the inherence of the regular grid
representation. In this representation, extra triangles are
required to prevent from the occuirence of T-junctions or
cracks. In the near future, we will try to find an optimal
refinement algorithm.

So far, we solely render a piece of terrain loaded into the
memory. It is very waste and may decrease the rendering
performance if the terrain is exiremely large. Dynamic
loading techniques can provide the efficient use of memory,
and browse a larger piece of terrain with the aid of
registration. This is adequate for the machine that only has
a finite size of memory. As a result, the terrain data set can
be extended unlimitedly, if necessary.

REFERENCES

{1] P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges,
HN. Faust, and G A. Turner, “Real-time, continuous
level of detail rendering of height fields,” in Proc. of
the ACM SIGGRPAH Conf. on Computer
Graphics *96, New Orleans, LA, 1996, pp.109-118.

[2] H. Hoppe, “Progressive meshes,” in Proc. of the
ACM SIGGRAPH Conf. on Computer Graphics '96,
New Orleans, LA, 1996, pp.99-108.

[3] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen,
“Decimation of triangle meshes,” Computer
Graphics, Vol.26, No.2, 1992, pp.65-70.

[4] G Turk, “Re-tiling polygonal surfaces,” Computer
Graphics, Vol.26, No.2, 1992, pp.55-64.

[5] J. Cohen, A. Varshney, D. Manocha, G. Turk, H.
Weber, P. Agarwal, F. Brooks, and W. Wright,
“Simplification envelopes,” in Proc. of the ACM
SIGGRAPH Conf. on Computer Graphics ‘96, New
Orleans, LA, 1996, pp.119-128.

{6] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald,
and W. Stuetzle, “Mesh optimization,” in Porc. of the
ACM SIGGRAPH Conf. on Computer Graphics '93,
Anaheim, CA, 1993, pp.19-26.

{77 M. Garland and P. S. Heckbert, “Surface
simplification using quadric error metrics,” in Proc.
of the ACM SIGGRAPH Conf. on Computer
Graphics '97, Los Angeles, CA, 1997, pp.209-216.

[8] M. Duchaineau, M. C. Miller, M. Wolinsky, C.
Aldrich, D. E. Sigeti, and M. B. Mineev-Weinstein,
“ROAMing terrain: real-time optimally adapting
meshes,” in Proc. of the IEEE Visualization Conf. '97,
Phoenix, AZ, 1997, pp.81-88.

[9] R.J. Fowler and J. J. Litile, “Automatic extraction of
irregular network digital terrain models,” Computer
Graphics, Vol.13, No.2, 1979, pp.199-207.

[10]H. Hoppe, “View-dependent refinement of
progressive meshes,” in Proc. of the ACM
SIGGRAPH Conf. on Computer Graphics '97, Los
Angeles, CA, 1997, pp.189-198.

[11]H. Hoppe, “Smooth view-dependent level-of-detail
control and its application to terrain rendering,” in
Proc. of the IEEE Visualization Conf. '98, Research
Trangle Park, NC, 1998, pp.35-42.

B-381

