hERE/ N\ FREETEETE

An Effective Data Placement Scheme to Support Fault-Tolerance in

Video on Demand Server System

Wen Shih Huang

Abstract

Recently, the video server plays an important role in VO
or near VOD system. In general, a good video server can
not only support playback operation, but also provide
reliable service. In this paper, we will propose an effective
data placement scheme f or supporting fault -tolerance in
distributed video server environment, called Two Level
Clustering (TLC) method. This method includes three parts,
popularity-based replication, two level clustering, and shift
load scheduling. Using popularity -based replication t
calculate the number of replicas, we place the videos with
two level clustering, and schedule with shift load
scheduling policy. This method can support fault-tolerance
ability and balance the load of the disks, thereby helping
upgrade system performance crucial to archiving maximal
server throughput and improve the system reliability
According to our preliminary performance evaluations, we
have found that our method is superior than other schemes.
The detailed information about design principles a nd
performance evaluations will be described in the literature.

Keyword: fault tolerance ,video sewer, replication,
Popularity-based, rwo-level cluster

LIntroduction

Recent advances on multimedia technologies have
made versatile multimedia services feasible on
entertainment and commercial business. One of the most
common multimedia applications is Video On Demand
(VOD) [1,2]. Generally speaking, video data need alarge
amount of bandwidth. So that the storage bandwidth and
disk bandwidth have become one of the most important
issues of the video server system design. Video server
typically stores a huge number of video files [7]. However,
the larger the video server is, the more vulnerable to disk
failures it becomes. In order to ensure uninterrupted service
even in the presence of a disk failure, a server must be able
to reconstruct lost information. In general, there are two
ways to add redundancy within a server: replication -based
schemes [10,11] and parity-based schemes [9].
Replication-based schemes usually cost more redundancy
space, and parit -based need to reserve partial resources.

In this paper, an effective data placement method,
named “Two Tevel Clustering” and job scheduling policy
with popularity -based replication are proposed for our
VOD server system. It replicates and adjusis replica
number of video corresponding to client request pattern t

Cheng Zen Yang

Cheng Chen

Institute of Computer Science

and Information Engineering

National Chiao Tung University
Hsinchu, Taiwan, R.O.C.
Email:cchen@eicpca5.csie.nctu.edu.tw

increase the reliability of video server. By replication, high
degree fauli-tolerant and high bandwidth is available. By
this method, we take advantage of concept of clustering
twice to handle the load skew problems. At the first level,
we divide each video into fix -sized segments to eliminate
the influence of video length. And at the second level, we
limit each video file on a cluster group to decline the
striping penalty and adding video cost. Our job schedulin
policy exploits the property of video segment to detect and
shift loads between high load DSG and light load DSG.
When a stream is beginning to access a new segment,
system will query the load of all replicas and shift to the
lightest replica to balance the load distribution.

The remainder of the paper is organized as follows.
In Section 2, concept of our video server system will be
described. In Section 3, we will present the concept and
principle of proposed data placement method and job
scheduling policy. Related performance gains will be
evaluated and analyzed in detail in Section 4. Finally,
concluding femarks is given at the end of this paper.

2. Qur System Architecture

We have designed and implemenied an effective singl
server management system for VOD applications [15]. As
shown in Figure 1, SMU(Subscriber Management Unit)
contains five modules: Admission Control, Job Schedule,
Disk Schedule, Data Placement, and CD/HD Swappin g.
The admission control module acts as the doorkeeper of
video server. With the purpose of keeping service quality of
viewing streams, this module guarantees that the service
quality will not be degraded or be contravened by newly
incoming request. The ne wly request will be accepted i
and only if the admission constrain is not violated. And the
admission constrain is set according to the capability of
system and current service condition. In order to keep
accepted streams for continuous playback, job schedule
module is used to control VSE to retrieve video data from
disks and then buffer them in a cycle fashion. Meanwhile,
disk schedule module is used to optimize the performance
of data reading from disks by rearranging the order of
retrieval commands from job schedule module. In
VSE(Video Server Engine), there may be multiple disks
equipped as storage device to store hundreds of contents.
Data placement module will control how to place the
contents into storage space. And the CD/HD swapping
module response to update the contents from CD-ROM into

" disks [15].

Resource Admissi
Management Control requests
Table Module
Data Job Stream
Pl; Schedul
Module Module Table
CD/HD Disk
Swapping Schedule
Module Mudlule System
¥
| Deviee Conuroter & Driver ‘
SCSIPorts
Bo000 Aad
To Clients
Video.Server Engine.

Figure 1. Basic Configuration of Our Single
Video Server System

The original design of VSEaims at small -scale
video-on-demand service. However, as the requirement of
service grows up, the performance of single video server is
limited We may employ “multiple” autonomous servers t
alleviate the problem of massive load. Nevertheless, the
great skew in user access still makes some nodes overflow.
If popular contents are replicated across all autonomous
nodes for load balance, then the cost is too expensive. S
we want to re-design the original video server configuration
and a distributed architecture of video server cluster is
proposed to meet the requirement of scalability. In order to
extending the single video server toour distributed
architecture, some modifications and assumptions have t
be made in VSE. First, each VSE must be accessible by all
SMU. This means each SMU can use all the resourcet
service users. Second, VSEequips the ability of routin
video data to clients. Namely, each VSE is also accessible
by all clients in some way. The required routin
information comes from SMU.

Our distributed system maintains the base architecture of
two-level management, i.e. SMU and VSE. The main
difference is that we may have two or more SMU and VSE
respectively. The overall system architecture is shown in
Figure 2. Each SMU communicates with other SMU and
VSE through Ethernet. All VSE nodes are interconnected
with a high-speed network for exchanging video data, and
the hig -speed network is in turn connected to outward
service network. There are three entities in our design. The
Master Server is used for admitting and dispatching user
requests to slave SMU nodes. Slave SMU handles the
service requests of admitted users, and VSE performs

storage management, buffer management, and data
retrieval.
Commrication Network (Ethemer)]
Mmm@mwm _}
< Service Network N

Figure 2. Architecture of Our Distributed
Video Server System

3. Two Level Clustering Method
3.1 Popularit -Based Replication
In general, different videos have different popularity,

C-298

the access patterns to so-called “hot” videos must be taken
into consideration when designing a VOD system [4].
According to the access patterns we recorded, we can find
that some hot video files may be concurrently accessed b
hundreds of clients, while other video files may be accessed
by few clients. Based on this fact, there are two basic
approaches to solve such problem. One is “striping”[13,14],
and the other is “replication”[9,10]. Data siriping can
increase the bandwidth of data, but striping penalty restricts
the number of striping factor. I the number of clients is
huge, the requirement of bandwidth may exceed the upper
bound of single data bandwidth. In our approach,
replicating certain frequently accessed video files in some
disk arrays is another viable way to provide VOD services
and achieve fault tolerant function. The concept of
replication is that the figure of each video stored in storage
system is not the same. That is, we can replicate the
popular videos on several disks in order to provide
sufficient bandwidth for all accesses to these videos. With
storing more than one replicate video, the advantages are
that replicate video can provide extra bandwidth and then
fault-tolerant effect is available.

If we replicate video data according to popularity of
video and place them in disks balanced, we can get good
performance in beginning. As time passing, the popularity
of video maybe changed, then the system performance will
not be keptas usval. Another problem is that if the
popularity statistics were not available, how to set up the
initial placement? The better solution to this situation is
that the number of replicas of each video s hould change
over time, as the video access pattern be changed. That is,
we can dynamically adjust the number of replicas by some
ways, which is so called dynamic replication technique [18]
In fact, it is difficult to implement dynamic replication
efficiently, though it can solve the problem of popularit
changed. Hence, we propose an effective policy, called
Period Adjustment Policy to be implemented in our syste
easily. The idea is that we can adjust the video replicas
within appropriate time period (e.g. every day or every two
days). The reason is that the popularity may not change
very dramatically every day or every two days generally. If
the popularity is changed quickly, we can adjust the time
period to more short value. The change of access to each
video can express as a linear function show below: let N; be
the access number of video i, t be the time period, V be the
total number of video, and C i(t) be the replica number at
period time t. For video i, we have[4]

N(t)=2N{(r-1)=Ni(t = 2), Ni(t) 2 0 (D
and ¢ (1) = i(t = 1) i(t)
N i(t = 2)

if Cu(t)=|.Cut) J2 0.5, then Cu(1) = [Ci(1)] else Ci(r) = [Cutr)]
, Ci(ry 21 (2)

We assume that Ni(t) is a linear relation of Ni(t-1) and
Ni(t-2). So we can obtain formula 1 from Ni(t-1) and Ni(t-2)
using extrapolation. And we assume that Ci is proportional
to Ni to obtain formula 2. These formulas are both based on
linear relation, and the simple predictors are enough (4].
For simplicity, we round Ci into a integer. So we can adjust
the number of replicas of video according to the calculatin
result of formula 2. Besides, the alterable of adjustment
period, t, provides more flexibility. That is, we can adjust
the value at any time.

3.2 Data Placement Scheme }
Here we introduce our placement scheme called
“Two Level Clustering Method” (TLC) insome detail

Basically, we take advantage of clustering technique twice
to eliminate the negative factor caused by striping as well
as attain the requirements of video server. At the first level,
we divide each video into fix -sized segments. And at the
second level, we limit each video file on a cluster group
instead of across all disks. Then we can handle each
video in segment unit rather than block unit. Combining the
merits of mirrored and CSSP [15] methods, TLC is
particularly useful for storing multiple video replicas in a
disk-arra -based video server.

Striping fector
=4

81 E832 DEG3 [5G4

N

{84 B4R @A 0300 B0 Gooo Ao

Ok 0123 4567 89011 L2BMIS 1617188 DADB US5HZ 829303

\ AN)

Qhstergmup 1 CGesgap?

Chster grapsizl=d

Figure 3. An example of TLC, m=4,1=4

In our video server architecture, the block unit size is
94kbytes [16). The stored video may have different content
size. In order to eliminate the load imbalance caused by
content length, we adopt the concept of segment as similar
to CSSP [15]. According to [7], we must avoid to use
pseudo disk arrays in logical volumes with large stripin
sizes Because performances between practical case and
ideal case are enlarged from striping factor of 4 [7], the gap
will grow with striping factor. Hence, we set the default
value of striping factor to be 4. We take figure 3 as an
example. Each DSG (Disk Striping Group) where a
segment is placed consists of 4 disks. This is the first level
clustering. So the problemis how to arrange the segments
into all DSGs. Forthe sake of dynamically adding or
removing video replicas, we limit the range of a vide
replica, which is called “cluster group”. We can find tha t
the shadow parts in figure 3 illusirate only simple striping
across DSG1 to DSG4, so DSG1 to DSG4 consist of a
cluster group. This is the second level clustering. Thus it is
not necessary to rearrange entire videos when adding /
dropping occurs. Another important reason of not direct
striping all segments into all DSGs is that there is stripin
penalty among segments. If we direct simple striping all
segments into all DSGs, the penalty between DSGs is not

negligible. The cause of Penalty is the same as striping
penalty. Therefore we may take advantage of cluster group
to avoid across too many DSGs in order to eliminate the
penalty.

After deciding the striping factor and cluster group
size, we need to choose a cluster group to place the replica
of a video. There are two principles to choose proper
cluster'group. One is cluster group with more free space,
and the other is no other replica of the video existed. We
take figure 4 as an example. Each square represents a
segment in a DSG. Video “A” has a replica “ a”. The sign
“x.y” means they segment of video x. The shadowed parts
are those disk spaces being used. We place all videos
sequentially. We can see clearly that when we place video
“c”, according to the first principle, we should choose
cluster group 2. Because the same replica “C” has existed

in cluster group 2, in order to follow the second principle,
we choose cluster 1 to place video “c”. The advantage of
distributing video into different cluster group can increase
the degree of fault tolerance. In other words, while disk
failure, the traffic to the failed disk can be spread across all
disks containing the replica. When each stream access to
failed disk, scheduler will shift it to other active

replica in order to spread load balanced.

© Video A : length4, copy 2

® VideoB : length 3, copy 1

® VideoC : length 1,copy 2

Cluster group 1 Cluster group 2 Cluster group 3

Figure 4 twelevel clustering method

By the above description, we can formulate our TLC in the
following. For simplicity, each block of each segment is
simple striping in a DSG and each segment is simple
striping across a cluster group. Given a set of N=mlk disks,
where m is the striping factor (SF), 1is the cluster group
size, and k is the cluster group number. If the segment size
is defined as s, the cluster group is chosen as ¢, the start
DSG of cluster group c is g, then we place the i ™ block of a
replica of a video on the disk numbered d(i). Itisnot
difficult to derive d(i) by the following formula

d (i) = mlc + (mg +I—:l'm+(i-1)mod m)mod mi *
s

The formal algorithm of this scheme isshown in
figure 5.

In our scheme, we achieve disk fauli-tolerantb
replication. Because all videos spread into all disks
balanced, once disk fails, load can distribute into all disks.
Taking mirror and interleaved declustering for example,

“mirror shift loads on failed disk into another disk, and

interleaved declustering shift loads on failed disk into disks
in the group. For TLC, it shifts loads on failed disk nearly
total disks. If we spread the load into more disks, the load
condition is more balanced. On the other hand, TLC
usually replicates hot videos many times (e.g. 4 or more).
So it can tolerate multiple error for single video.

3.3 Job Scheduling Scheme

The goal of our enhanced job scheduling policy ist
shift the loads from heavier load segment into lighter load
segment in order to achieve well -balanced condition based
on our TLC method. The load distributed situation will be
changed with time. It costs enormously to adjust each
stream in each round. Within TLC, we can test and shift the
stream at the beginning of access to a segment. We will
show that the cost is low later. The policyof our job
scheduling is executed by the following steps.

(1) In each round, we pick out the streams in two kinds of
states. One is that the stream accesses the startin
block of a segment. The other is that the access disk i
failed and the segment has other replicas. For example
if our segment size is 800 blocks, a stream with more
than one replica will be picked when it access block
no.1, no.801, no.1601...

(2) Scheduling remaining sireams in turn. That is,t

arrange the disk toretrieve the video data for each
stream.

(3) Sorting those picked streams with the number of
replicas in ascend.

(4) Scheduling the picked stream to the segment of the
replicas which the loads is the lowest.

The shifting of loads in our job scheduling scheme ca
improve the system performance. Figure 6 is an-example.
The loads in cluster group A, B, C are 4, 2, 0 respectively,
and small square symbol “a.b” represents a stream which
accesses block b of video a. Because loads of cluster group
B is lighter than A and two streams are accessing the
beginning of a new segment(y.1 and y.801), the two loads
in cluster group A can be shifted to cluster group B.
Similarly, loads of cluster group C is lighter than B, anda
stream(w.801) in cluster group can be shifted to C. After
the shift, we can observe thatthe imbalance factor
decreases. That is, the balance condition is better. So, our
job scheduling improves the balance condition indeed.
Formally, the overall scheduling algorithm is shown in
figure 7

Algorithm 1: Data Placement
Input: video_list with sort in ascend by video length,
Let A=(0,1,2,...m-1) denote m DSG, Thus DSG j
denotedj, 0< j<m-—1
Let C=(0,1,2,.....n-1) denote n cluster group.
Thus cluster group idenoted i, 0<i<n—1
m=1l*n,le N

cluster group set S;at time t, § = RuC
RnC = 'ﬁb }
R : DSGs set can be chosen C : DSGs set have be
chosen
1 = cluster group size, m = striping factor
s = segment size, g = start DSG of xi
Quput: video allocation table
Program:
While (video_list is not empty) do
set C=¢, set R =set S,
get video x from video_list
for i = 1 to x.replication number do
/*'choose destination cluster group */
choosen cluster

gowp xi=max{FS(|ye Rit)}
and Ci#C,Vi,jex

/*choose max free space and no replica existed one */
C+={x}, R={xi}
/* delete x; from set R, and join set C */
fior j = 1 to x.length do
/* choose destination disk */

block j place in
disk(j) = mlx+(mg + —J———l -m+(j~1)modm)modml
s
end for
end for
end while

Figure 5. Algorithm of two level clustering method

C-300

Cluster group A Cluster group B Cluster group C

Video: X.Y.Z b ALY w
[rase Iz 11 [eso | [wst)
Load: 4 2 0

Imbalance Factor: 1.154

Cluster group A Cluster group B Cluster group C

Video: X, Y,Z YW w
i Jlwsr J] s

Load: 2 3 1
Imbalance Factor: 0.577

Figure6. Example of shift loads

Algorithm 2: Job Scheduling

Input:stream_list,alter_stream_list,

disk[total_disk].
Qutput: stream_list with load balance

 Program:

while stream_list is not empt do

get stream i from stream_list

if i.block equal i.length

" delete i from stream_list

else if (i.block % segment_size) equal O

OF i.access_disk equal failed
move stream i to alter_stream_list
else
schedule stream i
data */
end if
end if
end while
sort streams in alter_stream_list in ascend by
replica number
while alter_stream_list is not empt do
get stream i from alter_stream_list
choose light load DSG for i
schedule stream i
video data */
move i back to stream_list/* move back to
stream_list for next round */
end while

/* retrieve video

[* retrieve

Figure 7. Algorithm of job scheduling

Next we will give preliminary analysis of the
complexity of our job scheduling algorithm. The state of
our problem is: the video requestedbyeach stream has
different replica number. Each round, we try to assign each
stream to access disks, or the stream will be interrupted. If
each disk can accept one stream to access,iti s likea
maximum-bipartite-matching problem shown in Figure 8(a)
The maximum-bipartite-matching problem is defined as
finding a maximum matching in a bipartite graph [19].
Given an undirected graph G =(V, E), a matching is a sub
set of edges M C F such that for all vertices VE V , at

most one edge of M is incident on v. We say that a vertex

v € V is matched by matching M if some edge in M is
incident on v; otherwise, v isunmatched. A maximu
matching is a matching of maximum cardinality, that is, a
matching M such that for any matching M’, we

have IM l2]M " [19]. Based on this concept, we can

transform our problem into corresponding bipartite graph
by the following way. The nodes in the left side are set of
request streams, and nodes in the right side are set of disks.
Practically, each disk usually can be accessed by more than
one requested stream. Consider an example shown in figure
8(b). The number at right of each disk number is the
maximum requests of that disk. So we expand the number
of maximum requests of each disk as nodes as shown in
figure 8(b). That is because that in bipartite graph, only one
to one relation is allowed. Our state allows many to one
relation. By expanding, we can transform our state into one
to one relation, which is equivalent to the maximu
bipartite graph problem. For example, disk no.2, no.3, no.5
extend from one node to two nodes in figure 8(b), The
same number nodes represent the same disk. Thus it can
satisify the assumptions, oneto one relation, of
maximume-bipartite-matching. If we denote stream number
which have more than one replica as S, candidate disks as
D, and we assume each stream have N replicas. The worst
complexity of this scheme is O((S+D)SN). That is, the
calculating complexity is pretty low.

set of set of set of set of
request streams Disks request streams Disks

Figure 8(b) convert of our scheme

3.4 Map to Our distributed Environment

In this section, we will describe how to apply TLC to
our distributed environment. We will introduce the state of
multi-V8E and constrains of mapping procedures firstly.
Then we describe the steps of placing video on multi -VSEs
with TLC method.

In our distributed architecture, there are multiple
SMUs and VSEs. Two basic assumptions are given here.
(1) The number of disks in each VSE must be the same.
(2) The number of disks in each VSE can’t be prime

number.

If these two constraints are not followed, it is more
difficult to config and manage the VSEs. We will map the
TLC method to our distributed system by the following
procedures.

(1) By the capacity of single VSE, we decide the
appropriate number of cluster group in it. Due to th
number of VSEs is fixed, larger cluster group
represents less choices when placing video and les
replicas of a video allowed. Taking figure 9 as an
example, if we set each VSE as a cluster group, ther
are only three clusters group in system. For each video,

C-301

it has three replicas at most. It implies that there ar
only three choices at most when shifting loads, sow
benefit less from our job scheduling scheme. On th
other hand, if we set each VSE as two cluster groups.
There are totally six clusters in system. Thus, it implies
more choices for each video. However if we divid
each VSE into too many cluster groups, we have t
replicate each video more in order to provide large
bandwidth. Thus, it will increase the redundancy cost.

(2) Choosing the value of striping factor, in general, 4 or
is suggested [7]. The reason is that when the stripin
factor is larger than 8, the striping penalty will cause
load skews to degrade the performance and there are
more disks which are influenced when adding video
In additional, larger striping factor represents les
DSGes. i.e. the effect of striping segment will decline
So appropriate value of striping factor, like 4, i
adopted in our scheme and environment.

(3) After the striping factor and cluster group size ar
determined, the next step is to sort all video that i
prepared to place in disks by length.

(4) With our policy, we get the longest video and select th
most free space cluster group to place. If no othe
replica of the video exist, we piace the segments of th
video replica onto the cluster group in simple stripin
manner.

(5) Repeating step (4) to place others replicas of the video

(6) Repeating step (4) and (5) for the longest video in th
remaining videos.

l

Commmicative Network (Ethernet 10Base-T)

‘lﬂm un

Intercommection Netwark (400VviBps)
) | | 1
r Servioe Netwerk (Cable) J

1

VSEi VSE2 VSE3
N

Cusiergmap) Clustergroup2 Cusargroup3 Cluster groupd '

f Voo [Y Wc(

GGoohBas ﬂﬂﬂﬂﬁﬂﬂﬂ;ﬂﬂﬂﬂﬂﬂﬂﬂ

/Chmgmpﬁ GmymD

)

Figure 9. Two-level clustering in Multi-VSE

After placing all videos, the video allocation table wil
save in each slave SMU for job scheduling. By the above
procedures, we can operate our system both in normal
mode and failure mode easily [20]

4. Performance Evaluations

Here, we will give the performance evaluations of
our scheme compared with other schemes such as
“mirroring”[5], “interleaved declustering”’[6], ‘‘rotational
mirr red declustering”[11], and “Shift duplex with cyclic
permutations”[9] in some detail. These performance gains,
maximum stream capacity, and reject probability, are
evaluated and analyzed, from which some distinguished
features of our method can be explored.
4.1 Simulation Parameters

Several parameters will be given or defined
appropriately for our simulation and evaluations. i) Arrive
Rate: this denotes the time period of a request to arrive. The
unit is millisscond We will evaluate this value in 2083,

2604, 2997, 3470, and 4167ms. ii) Striping Factor: it
specifies the number of physical disks used in a logical
group. We will evaluate this factor in 4 and 8. iii)
Replication pattern: we divide the total 100 videos ini
three parts. No.1 to n0.30 is the hottest part, no.31 to no.60
is middle part, and n0.61 t0 n0.100 is cold part. The pattern
“xyz” mean the hottest part with x replicas, middle part
with y replicas, and cold part with z replicas. We will
-evaluate our method under the case of “3217,“4117,
“421”, and “511”. iv) Load Factor: this value represents the
proportion of streams exist in system compared to full
capacity. We will evaluate our method for the case of 0.5,

0.6,0.7, and 0.8.
4.2 Number of Replication

Before our evaluation, we will show the performance
of different number of replication. For easy to discuss, we
divide all videos sorted by their popularity with ascend int
three parts—1% to 30%, 31% to 60%, and 61% to 100%.
We will compare several replication patterns, includin
“3217,“411”, “421”, and “511”. Figure 10 is the maximu
stream comparison among different patterns. And figure 1
& 12 are reject probabilities both in normal and failure
mode tespectively. We can find that the performances of
“421” and “411” are very close to each other. However,
“321” is much worse than the other two. And “5117 is
superior than “421”, but their difference is small. Thatis
because “321” can’t provide enough bandwidth for hot
videos. So when the replica number of hot videos increase
from 3 to 4, the performance will be improved a lot. And
the performance is improved only a little from “4117t
“421”, So we can realize that the first part influence the
performance deeply. Thus, we will use “411” to represent
our scheme in the each of the following eva luations.

840
830
820

B qormal
Erailure

L sl

g 500

Eowm
780
770 b
760 f

321 411 424 st

Figure 10. Maximum Stream comparison
among different pattern

Normal M ode

——1311
1|41
—tr=421
~—=—511

Reyeet Prebobility

Load Factor

Probability

Failure M ode

Figure 11. Reject in Normal Mode

4 | —o—321
—T— 431
—r~421
—#—Sil

Piect hrobabilig

Load Factor

Figure 12. Reject Probability in Failure Mode

4.3 Influence of Striping Factor

As we mentioned above, the value of striping factor
is suggested to be 4, 8, or 16. And we choose 4 as our
default value. Theoretically, the performance of striping

C-302

factor 8 should be superior than that of striping factor 4.
From figure 13, we find the performance difference is only
0.5% in normal mode and 1.8% in failure mode. From
figure 14, it is clearly that the performance with striping
factor 8 is better than that of 4. But the gap is minor,
especially under light load condition (e.g. load factor = 0.5
& 0.6). We choose 4 due to the Jow cost of adding videos.

340
330 b
320
310
800 p—
790 |
780
770

E3 normal
Dfailure

Streams

4118 4114
Striping factor

Figure 13.compare maximum in different striping factor

Normal Mode

Reject Probability

0.5 0.6 0.7 0.8
Load Factor

Figure 14(a) Striping factor in reject probabilit

Failure Mode

Reject Probability

0.5 0.6 0.7 2.3
Load Factor

Figure 14(b) striping factor in reject probabilit

4.4 Comparison of TLC with other schemes

Figure 15 shows the evaluation of maximum strea
capacity among those methods. From here, we can observe
that the maximum streams of inter leaved declustering and
mirroring are close to TLC under normal operation mode.
But their performance under disk failure mode is pretty bad
compared with TLC. The rotational mirrored declusterin
has a stable performance no maiter what operation modes.
But its drawback is that although the performance under
failure operation mode is not bad, the performance under
normal mode still need to be improved more. It is necessar
to have well performance in normal operation mode.
Anyway, the system in normal mode i s much longer than.
failure mode. In contrast, the TLC and SDWCP are prett
good under both modes.

From figure 16, we can see at load factor 0.8 that all
value are close except TLC. That is because that there are
all saturated and the value can’t be improved any more. In
failure mode, the performance gap is shown apparertly.
Thus, we conclude that TLC is superior than any other
scheme in both modes and any load condition.

Normal Mode

interleaved mirror rotational sdwep 4114

Figure 15.(a) maximum stream comparison

Failure Mode

1000 g

Streams

rotational 411 4 sdwep

interleaved mimor

Figure 15(b) maximum stream comparison

Normal Mode

i |——interleaveq
=& mimor

i [~ roranonat

Tmbalance Factor

Lead Factor

Figure 16(a) Imbalance factor in normal mode

Failure Mode

—— interieaved
i | —@—mirror
= | —a— rotational
| == sdwep
L |oani g

{mbalance Facior

Q5 0.6 0.7 08
Load Factor

Figure16(b) Imbalance factor in failure mode

Last, figure 17 & 18show the reject probability
comparison in normal and failure mode respectively.
Comparing these two figurés, it is obvious that mirrorin
method has fairly bad disk fault-tolerant effect. As usually,
TLC performs better under both modes. The rotational
mirrored declustering, prompting from worst innormal
mode into the second one in failure mode, shows that it has
well fault-tolerant ability than interleaved declustering and
mirroring. From these two figures, we also find that in light
load condition (50%), all schemes have veryclose
performance, especially in normal mode. But the
degradation to failure mode enlarges with the increasin
load. Hence, our TLC is also betier under this evaluation.
In figure 19, it shows the reject probability when double
failures, we can find that TLC is also better than other
schemes under this evaluation.

So far, we have analyzed the basic performance of
TLC and mirroring and parity check method. Then we will
show the evaluation of TLC compared with SDWCP,
mirroring, interleaved declustering, and rotational mirrored
declustering. In summary, in normal operation mode, TLC
has good performance compared with simple striping and
mirroring. It means that TLC balances the load successfully.
It reduces the imbalance factor to the minimum. In disk
failure mode, TLC demonstrates even better performance.

It spreads the loads on failure disk into nearly total disks
successfully. So it shows better disk fault -tolerant ability in
the heavy load condition. For TLC, the degradation of
performance while disk failure is minimal. Although
SDWCP has better performance than TLC, the difference is
very limited. However TLC doesn’t need an exira disk for
failure condition.

Normd Mode
05 :
%’ 04 4—inFEﬂEaV
2w | | o mimor
£ @b : | —e—rotational
Z | —e=sdop
5]
& 0 a4
0
Qs 06 07 08
Load Factor

Figure 17. reject probability in normal mode

Faitee Mode

Z0s
505 = mimor
£0 ~a—ratational
-i a3 =H—=dl1 4
g0 - sdep

LAl

=)

Lead Factor

Figure 18. Reject probability in failure mode

Doutle Failues

g os e [y
5 06 s | o interieaved
S04 - |~ miror
€ 02 ¢ | == rotaional
. :
10105 loal06 lead07 lowd 08
Load

Figure 19. Reject Probability of double failures

5.Concluding Remarks

In this paper, we have described an effective data
placement method and job scheduling policy with
popularity-based replication technique. We also build a
simulation environment to evaluaie the performance of our
methods and compared with other methods in some detail.
In summary, the main features of our techniques are list
below. i) A popularit -based replication concept is
introduced. Because the behavior of clients, the popularity
of each video are different. According to the popularity of
the video, we assign it the different number of replicas. It is
unnecessary to track and predict the load of every streams
as to reduce the cost and adjust the number of replicas
effectively. ii) Our data placement method, named “Two
Level Clustering”, is a static placement method such that
we take advantage of clustering technique twice to
eliminate the negative factor caused by striping as w ell as
attain the requirement of video server. By the evaluation of
TLC, we find that TLC indeed reduces the influence of the
highly skewed population distribution effectively, and
hence, improves the load balance condition among DSGs.
iii) Furthermore, an effective job scheduling scheme is als
proposed to enhance the load distribution into more balance

C-303

condition. iv) Our placement provide a reliable disk
fault-tolerant function. When disk failure occurs, our
placement can spread the load on failed diskin to other
disks balance so as to maintain the performance. Due to
replication, our placement can tolerate multiple disk
failures.

In the future, we may enhance our method to i)
support VCR operation for client, ii) those heterogeneous
video servers in the sysiem, and iii) attach batch technique
with fault-tolerance.

Acknowledgement

This work was supported by NSC 87-2622-E009-008

Reference

[1] T L. Kunii, Y. Shinagawa, R. M. Paul, M. F. Khan,
and A. A. Kbokhar, “Issues in storage and retrieval
of multimedia data,” Multimedia Systems, Vol. 3, No.
5/6, 1995, pp. 298-304.

[2] B. Ozden, R. Rastogi, A. Silberschatz, “On the
design of a low cost video-on-demand storage
system,” Multimedia systems, Vol. 4, No. 1, 1996,
pp. 40-54.

[3] Golubchik L, Lui JCS, Papadopouli M. “A survey of
approaches to fault tolerant design of VOD servers
techniques, analysis and comparison.” Parallel
Computing, vol.24, no.l, Jan. 1998, pp.123 -55.
Elsevier, Netherlands.

[4] Thomas D. C. Little, Dinesh Venkatesh,
“Popularity-Based Assignment of Movies to Storage
Devices in a Video-on-Demand System”.
Multimedia Systems, Vol.2, No.6, pp.280 -287, Jan,
1995.

[5] D.Bitton and J.Gray. “Disk shadowing”, VLDB, p
331-338. 1988.

[6] Leana Golubchik, Richard R.Muntz: Fault
Tolerance Issues in Data Declustering for Parallel
Database Systems. Data Engineering Bulletin 17(3):
pp.14-28,1994,

[7] Jenwei Hsieh, Mengjou Lin, Jonathan C.L. Liu, and
David H.C. Du "Performance of A Mass Storage
System for Video-On-Demand," INFOCOM'95 and
A Special Issue on Multimedia Systems and
Technology of Journal of Parallel and Distributed
Processing, Vol 30, No 2, Nov, 1995, pp.147-167

[8] Muntz R, Renato Santos J, Fabbrocino F. “Design of
a fault tolerant real-time storage system for
multimedia applications.” Proceedings of IEE
International ~ Computer Performance and
Dependability Symposium. IPDS'98.. IEEE Comput.
Soc. 1998, pp.174-83. Los Alamitos, CA.

C-304

[91 Yuewei Wang, Du D.HC. “On providing highly
available fault-tolerant video-on-demand services.”
Proceedings. IEEE International Conference on
Multimedia Computing and Systems, IEEE Comput.
Soc. 1998, pp.76-85. Los Alamitos, CA.

[10] Flynn R, Tetzlaff W. “Disk striping and block

replication algorithm8 for video file servers”
Proceedings of the International Conference on
Multimedia Computing and Systems. IEEE Comput.
Soc. Press. 1996, pp.590 -597. Los Alamitos, CA,
USA.

[11] Ming-Syan Chen, Hui-1 Hsiao, Chung-Sheng Li, Yu
PS. “Using rotational mirrored declustering for
replica placement in a disk-array-based video
server”. Multimedia Systems, vol.5, no.6, Dec. 1997,
pp.371-379. Springer-Verlag, Germany.

[12] Copeland G, Keller T, “A comparison of
high-availability media recovery techniquis”.
Procedings of ACM ISGMOD, Portland, OR,
pp.98-109, 1989.

[13] B. Ozden, R. Rastogi and A. Siberschatz. “Disk
striping in video serverenvi ronments,” Data
Engineering, Vol 18. No. 4, Dec, 1995, pp. 4-16.

[14] Wang Y, Liu JCL, Du DHC, Hsieh J. “Efficient
video file allocation schemes for video-on-demand
services”. Multimedia Systems, Vol.5, No.5, Sept.
1997, pp.283-296. Springer-Verlag, Germany.

[15] J.K.Chen,C.Chen,S.Y.Lee, “CSSP : An Effective
Static Content Placement Policy for Load-balancing
in Video Server”, Proceedings of Workshop On
Computer Networks, Internet, and Multimedia
(ICS’98), 1998, pp.104-110.

[16] Video Server User Guide, Institute of Mentor Data
System, 1998.

[17] Steven Berson, Leana Golubchik, Richard R.
Muntz, “Fault Tolerant Design of Multimedi
Servers”. SIGMOD Conference, 1995, pp.364-375.

[18] Asit Dan, Martin G. Kienzle, Dinkar Sitaram, “
Dynamic Policy of Segment Replication for
Load-Balancing in Video-On-Demand Servers”.
Multimedia Systems, Vol.3, No.3: 93-103, Jul, 1995.

[19] Thomas H. Cormen, Charles E. Leiserson,
Introduction to Algorithms, 1996, pp.600-604.

[20] W.S.Huang, An Effective Data Placement Scheme to

Support Fault-Tolerance in Distributed Video Server
Environment, Master Thesis, CSIE, NCTU, 1999

