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Abstract

The arrangement graph A, is not only a general-
ization of star graph (n — k = 1), but also more flex-
ible. In this investigation, we elucidate the prob-
lem of embedding of multiple spanning trees in an
arrangement graph with the objective of congestion-
free. This result is to report how to exploit 2(n — k)
edge disjoint spanning trees in an arrangement graph,
where each congestion-free spanning tree’s height is
2k —1. Our scheme is based on a subgraph-partitioning
scheme. First, we construct 2(n — k) base spanning
trees in every A,—r422. Then, we recursively contruct
2(n— k) spanning trees from every A,_j422 Upto Apx
by a bottm-up approach. This is a near-optimal result
since all of possible edges in the base subrrangement
Ap—iy2,2 are fully utilized.

Keywords: Arrangement graph, interconnection net-
work, parallel processing, spanning tree.

1. Introduction

Designing large multi-processor systems frequently
involves organizing into various configurations. One
of the widely studied interconnection network topolo-
gies is the star graph [9] [10] [11]. As a member of the
Cayley graphs, the star graph possesses several attrac-
tive features such as its diameter-to-node-degree ratio,
scalability, partitionability, symmetry, and high degree
of fault tolerance [1]}{4]. However, the star graph is
limited with respect to its number of nodes: a! for an
n-dimensional star graph.

A new interconnection topology, arrangement
graph, has been proposed [5]. As a family of undi-
rected graphs that contains the star graph family, the
arrangement graph has desired properties, such as
symmetric vertex and symmetric edge, strongly re-
silience and maximally fault-tolerance. Arrangement
graph is more flexible than the star graph in terms of
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choosing major design parameters, i.e. member of ver-
tices, degree and diameter, while preserving most of
the excellent properties of the star graph.

The arrangement graph has received considerable
attention [2}{3]{5j{6]{7}{8). Firstly, Day and Tripathi
[6] designed a shortest-path routing algorithm for the
arrangement graphs. According to their results, the ar-
rangement graph can be embedded cycle whose length
ranging from three to the size of the graph [5]. More-
over, the arrangement graph can be decomposed into
vertex disjoint cycles in many different ways [5). Fur-
thermore, multi-dimensional grads, hypercube and one
spanning tree can be embedded in arrangement graphs
{7). The spanning tree can support broadcasting com-
munication in the arrangement graph. Heieh and"Chen
[8] further demonstrated that the arrangement graph
remains aring even if it is faulty. Bat et al. [2] recently
propose a distributed fault-tolerant algorithm for one-
to-all broadcasting only in the one-port communica-
tion model on the arrangement graph.

In light of above discussion, this work elucidates the
problem of construction of multiple spanning trees in
arrangement graphs. In this investigation, we assume
that a node consists of a processor with bidirectional
communication links to each of its adjacent nodes.
Therefore, the term edge-disjoint spanning trees can
be interchangeably adopted to reflect that no two edges
of our spanning trees share a same direct communi-
cation link. To our knowledge, this work reports to
the feasibility of embedding 2(n — k) spanning trees
in an A, while, at the same time, keeping the edge-
congestion free. Similar resulis for the star graph can
be found in [12][3].

A tree is a common structure to represent inter-task
communication pattern of a parallel algorithm. In this
work, we propose a new spanning tree in an arrange-
ment graph A, that has nice property that 2(n — k)
copies of such trees can be embedded simultaneously
in the network with edge-congestion free. In this pa-
per, we consider the embedding of multiple spanning
trees in an arrangement graph with the objective of
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Figure 1;
The example of arrangement graph (a) A4 » and (b) 4s 3.

congestion free. Chen et al. recently proposed a
scheme to embed » — k spanning trees in [3]. Further,
this paper exploits the double number of spanning trees
than Chen et al.’s scheme.

The rest of this paper is organized as follows. Sec-
tion 2 introduces preliminaries. Section 3 presents the
scheme of embedding 2(n — k) spanning trees. Con-
clusions are finally drawn in section 4.

2. Preliminaries

The arrangement graph is denoted by A, ., where spec-
ified by integers n and k and | < k < n—1. Denote
{n) ={1,2,...,n}. Let P(}) be the set of permutations
of k symbols taken from (n). These k symbols are de-
noted as X = xyx2 - x;. Refer x; as the /’th element
of X. The (n,k)-arrangement graph, denoted as A 4.,
defined in [6] is an undirected graph (V, E) as follows.

V={X =xix- x| in (n) and x; # x; for i # j}
=P,

E={(x,y)[xandy in V and for some i in (&), x;
#yjandx;=y; for j #i}.

Fig. 1 depicts an example of A4 and As3. The
edge of A, connecting neighboring nodes which dif-
fer in exactly one of their k positions. The vertices of
Apy are the arrangements of k elements of (n). For
example, in A4z, the node p=41 is connected to the
nodes =42,43, 21 and 31. An edge of A ,; connecting
two arrangements p and g which differ only in posi-
ton i, is called an i-edge. For ail values of n and £,
Ap is a regular graph on r,%‘y nodes that is regu-

lar of degree k(n —k), and a diameter |3k| [6]. For
an arrangement X = xyx2...a, we define EXT(X) =
(n) = {x1,x2,...,5:} to be the n — k elements of (n)
not appearing in the arrangement X. Let INT (X) =
{x1,%2, ..., }= (n) — EXT(x) to be the k elements of
<n> appearing in the arrangement X. For example,
we consider the node p=412 in the arrangement graph
As3,50 EXT(p)= {3, 5} and INT (p)= {1, 2,4}.

In an A, each node p performs an adjacent func-
tion ADJ,(p) to arrive at adjacent node g, where x is
the position of fabel of node and y is the changed label
in EXT(p). Given X = x1-- X%, € INT(X), the
adjacent function ADJ,,(X) is the adjacent nodes of
X obtained by changing x in X as y, where | <x <
kand y € EXT(X). Consider an arrangement graph
As 3, adjacent nodes for node p =412 are 413, 415,
432, 452, 312 and 512, where EXT(p) = {3, 5},
INT(p) ={1, 2, 4}, ADJ13(p) = 312, ADJy 5(p) =
512,ADJ»5(p) = 432, ADJ, 5(p) = 452, ADJ3 3(p) =
413, and ADJ3 5(p) = 415.

The A, is with recursive structure [6). That is,
an A, can be partitioned into n copies of A,y 41,
each embedded A,_) 41 is conveniently denoted by
<#*~lo>,,, where o € {1,2,--+,n}, (where * rep-
resenis a “don’t care” symbol). For example, <##
3>43 represenis an embedded A3z of A4 3, contains
six nodes: 123, 143, 213, 243, 413, and 423. From
other point of view, there are n copies of <**~la>,
which are obtained by performing a split operation on
<#*>,1, where o € {1,2,...,n}. This operation is
called k-partition. Generally, A, can be partitioned

. + ¥ . = . . 1
mnio (Ef'T)s node-disjoint copies of Ap_pr_p in ;‘T"%P—)!
. . s kN ot
different ways and that in total A, ; contains ( P) =)

copies of Ap_pr_p. for 1l <p<k—1.

3. Congestion-Free Embedding of 2(n —
k) Spanning Trees

This section presents a novel embedding scheme
of embedding 2(n — k) edge-disjoint spanning trees.



Figure 2: Four base edge-disjoint spanning trees in an A4 5.

Our construction scheme adopts a bottom-up man-
ner. An Ay can be partitioned into T,;_’,Z—_'u? copies
of Ap—p42,2. Each A, 2 initially construct 2(n ~ k)
base spanning trees. For each A,_;433, there are
n—k+3 copies of Ap_t12,2. Bach A,_4y33 will per-
form a concatenation operation among n — k + 3 copies
of Ap_j42,2 to construct 2(n — k) spanning trees in
the A,—;433. Recursively performing the concatena-
tion operations allow us to finally construct 2(n — k)
spanning trees in an A 4.

3.1. Phase 1: Generate 2(n — k) Base Spanning
Trees in an A, 422

After a spliting-operation on A, , Z:T-’%—?)T copies of
Ap_i422’s are obtained. According to different val-
ues of n and k, 2(n — k) base spanning trees in each
Ap—i+2,2 can be generated as follows.

e Step 1: Locate 2(n — k) roots nodes.

e Step 2: Generate 2(n — k) base spanning trees in
each Ap_r422-

3.1.1. Step 1: Locating 2(n— k) Rootsinan A,_;;» >

This section describes how to locate 2(n — k) root
nodes in an A,_j12.2- An A, 1472 is partitioned into
n—k+2copies of Ay _ty1,1, where each Ap_jy 1 is @
(n—k+1)-node complete graph. The SWP) 2(R) func-
tion is defined to swap the first and second bits of R.
Denote these 2(rn—k) rootnodes as Ry, Ra, ..., R,_ and

P, Ps,...,P,—}, which are constructed as follows.

e Let Ry = (yixpx3e--x;) be any node
of one A, py11. Other root nodes
Ry = (yaxax3-%), Ry = (yaaxsx), ...,
and Ry—p+1 = (Vn—k+1%2%3 -+ -27) by exchanging
the first bit of Ry with o, where & € EXT(Ry) =
{9, sYn-ts1}-  This work is achieved as
follows.

Ri =ADJ1 o(Ry), where2<i<n—k+ 1and
o e EXT(R]).

Clearly, each pair of Ry,R», ..., and Ry are ad-
jacent since R1,Ry,..., and Ry belong to an
Ap—t1,1 (a complete graph (xxzx3---x)). Note
that node R, is used to be a template node to
ensure congestion-free in our embedding.

e Let P, = SWP;2(R;), where 1 <i<n—k+
1. Note that Py,Ps,...,and P,_;41 also belong
to a distinct A,_r1,1 (a complete graph (x2 %
x3+--xz)). Similarly node P,y is used to be
a template node to ensure congestion-free in our
embedding.

Intuitively, every R; is only different in the first bit,
and every P; is only different in the second bit. Root
nodes R;, 1 <i<n~k, are selected from (sxax3 - - xp).
Other root nodes P;,1 < i< n—k, are selected from
(x2%x3---2¢). Clearly, both (xxzx3---x;) and (xp #
X3++-%%) are Ap—gy1,1 OF (n —k + 1)-node complete
graph. Note that root nodes Ry,R»,..., R,—; and
Py, Py, ..., Py satisfy the following property.

Root-Location Property: There are 2(n —
k) root nodes R; and P;, 1 <i<n—k, in
same subarrangement graph. Root nodes
Ri, i=1l.n—k, belong to an A,_441,, P;
i=1..n—k,belong to a distinct A,_p41,1, SO
P;=SWP2(R;), fori=1..n—k.

Root nodes R; and P;, i = 1.n —k, are used to ex-
pand 2(n — k) base spanning trees in an A ,_g422. Fig.
2 illustrates an example by setting Ry = 21, R» = 31
and Py = 12, P, = 13. Node R; =41 and P3 = 14 are

the template nodes. This root-location property is very
useful during constructing 2(n — k) spanning trees.
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3.0.1. Step 2: Generate 2(n — k) Base Edge-Disjoint
Spanning Trees in an Ap_;122

The 2(n — k) base spanning trees are constructed from
root R;and Py, 1 <i<n—k,inan A,_rq22. The fact
that each A,t41,1 is a complete graph accounts for
why 2(n — k) base spanning trees can be consiructed
if we can connect each root nodes to distinct node of
all other A, _141,1’s. This is because that we have the
following result and Fig. 3 gives an example.

Lemma 1 For a K-node complete graph G, there ex-
ist K disjoint spanning trees with height one. Notably,
each node in G is the root node of each spanning tree.

Now we explain how to construct 2(n — k) base
spanning trees in each A,_;422 such that each tree’s
height is 3. Given 2(n — k) root nodes R; and P;,
1 < i< n—k. Consider any pair of nodes R € R; and
P € P, where R = SWP;5(P). There are n— k pairs.
As stated in Section 2, a n-dimensional arrangement
graph contains n subarrangements that we use to de-
rive the desired spanning trees. Let R and P are one of
these; we must connect R and P to other n — 1 subar-
rangements. For each of R and P, we use a single edge
to connect the R and P to n — k of subarrangements.
We use an intermediate node in same subarrangement
as the bridge node to connect R and P to the remaining
k — 1 subarrangements by two edges. If k = 2, then
there is only one subarrangement connecting by two
edges.

Rules Al and A2 formalize our basic spanning tree
construction.

Al: (Single edge) Let nodes R and P denote two nodes
in every n — k subarrangements.

R =ADJ>4(R), where 0. € EXT(R).
P = ADJ, o(P), where o. € EXT(P).

Note that P= SWP, »(R).

A2: (Two edges) Let nodes R and P denote as two
nodes in one of remaining k£ — 1 subarrange-
ments which connected by two edges (Note that
in this case, k = 2). Recall in phase 1, nodes
Ry—i+1 and Py are the intermediate nodes for
nodes R and P, respectively. Note that R,_z41
= SWPy 2(Po—s1)-

R = ADJ, g(Rp_t41), where B is the first bit

‘ value in R.
P= ADJ, g(Pa_i41), where B is the second bit
valuein P.

Note that P= SWP»(K). Fig. 2(a) shows that
root node 21 uses distinct single edge to conneci-
ing nodes 23 and 24, and connecting node 42 by

(o] O O
(a) () «© (@

Figure 3:
Four spanning trees with height 1 in a 4-node complete graph.

two edges. ‘Fig. 2(b) displays that root node 31
directly connects to 32 and 34 but connects 43 by
two edges. Fig. 2(c) gives example for other root
nodes 12 and 13. '

In the following, we describe the existence of 2(n—
k) base spanning trees. Some notations are defined
firstly. Given root nodes R; and P;, 1 <i<n—k, are
constructed by phase 1. An A, 2 can be partitioned
into n — k+2 copies of Ap—g41,1 0T A} 1y along di-
mension two or one. First, assume that an A,_z422
is partitioned into n — k42 copies of A,_41,1 along
second dimension, where R;, 1 <i{ < n—k, located in
one of Ap—pt1,1- Let IE(R;), 1 < i <n—k, denote a
set of all possible internal edges within each Ap_r1.1,1.
Let EE(R;) denote a set of all possible external edges
ouigoing each A,_f1,1. Secondly, an A,_;42 2 is par-
titioned into n — k + 2 copies of A]_, ., ; along first
dimension, where P;, 1 <i< n—k, located in one of
Al gy Let IE(P), 1 € i< n—k, denote a set of
all possible internal edges within each A} _, | . Let
EE(P;) denote a set of all possible external edges out-
goingeach A, ;. Further, let E(x, y) denote as edge
beginning from node x to destination node y. Note that
E(x,y) and E(y,x) represent different edges since the
link is-assumed as full duplex. For example, as illus-
trated in Fig. 4(a), all bold edges are /E(R;) and all
dash edges are EE(R;). In Fig. 4(b), all bold edges are
IE(P;) and all dash edges are EE(P;).

Some important properties are used later as stated
herein. For 1 <i< n—k, we have following properties.

P1: Edges in IE(R;) are equal to edges in EE(P;).

Fig. 4(a) shows that E(21,31) € IE(R;) and
E(21,31) € EE(P).

P2: Edges in IE(P;) are equal to edges in EE(R;).

Fig. 4(b) displays that E(21,23) € IE(P;) and
E(21,23) € EE(R)).

C-439



Ariig As=<F1>a2 € i
A3 =< Ty

A3 =<E3> 5

£ =<4 %>,
A'3,1=<2""§_1 A5i=<3%>42 A."/L\<4 e

P | L
Ay A'3,1=<1*4k S

Figure 4: (a) All internal edges , (b) all internal edges.

P3: Bdges in IE(R;) and edges in EE(R;) are equal to
all edges in the A;_j422.

P4: Edgesin IE(R;) and edges in EE(R;) are distinct.
PS: Edges in IE(P;) and edges in EE(P;) are distinct.

Lemma 2 There exist n — k edge-disjoint spanning
trees SThp—jy22(Ri) inan Ap—pya2, for 1 <i<n—k

Proof. Given root nodes R;, 1 < i< n—k, are located
in one of partitioned A,_1,. Every root node needs
to connect to other Ap_z1,1. Therefore, n — k spanning
trees STh_g42,2(Ri), for 1 < i < n—k, are mutually dis-

joint due to the fact that every root node satisfy the

following conditions:

1: Alledgesof Ry, Ry,..., and R, connecting to the
same A,—r41,1 are disjoint.

2: All nodes in the same A,_4.1,) connecting to Ry,
Ra,..., and R, differ from each other.

The reason is stated as follows. Recalled again,
since k = 2, for all R;, we use n — 2 distinct single
edges connecting to n — 2 copies of A,_r41,) and use

iwo edge to connect with remaining one A 41,1, In-
tuitively, all edges connecting from R, R;,..., and R,,_;,
to template node R, are distinct since all of these
nodes located in a (n — k+ 1)-node complete graph (or
An_i+1,1)- Recall previous notation, edges in all pos-
sible A,_¢41,1 are denoted as IE(R;) and all edges in
all possible A} _, . | are denoted as EE(R;). For con-
dition 1, all edges of Ry, Ry,..., and R,_; connecting
to the same A,_r41,1 are 'disjoint because every edge
belongs to different Aj_; ., . Remember, these edges
are belong to EE(R;). For condition 2, all nodes in the
same A,_i41,1 connecting to Ry, Ry, ..., and R, dif-
fer from each other due to the fact that each of these
nodes belongs to distinct A}, ., ;. &

Based on node symmetry, we have the following
similar result.

Lemma 3 There exist n— k edge-disjoint spanning
trees ST, _y22(P) inanAp_pia2 , for 1 <i<n—k.

To make the clear description of lemma 6, some no-
tations are defined. Let SE(R;,A), A € Ap—py1, OF

“Al_141,1» denote a set of spanning edges which ex-

ist in tree ST(R;) belonging to subarrangement A. In
the same way, SE(P;,A),A € Ap—gq1,1 OF A:z-k+1,l’
denote a set of spanning edges which exist in tree
ST (P;) belonging to subarrangement A. For example
in Fig. 4(b), edges E(21,23) and E(21,24) are be-
long to SE(21,< 2% >) € EE(21). Edges E(24,21)
and E(24,23) are belong to SE(12,< 2% >) € IE(12).

Two other important properties are stated. For 1 <
i < n—k, we have the following properties.

Spanning edges in tree ST(R;) belonging to
An_y1,1, 1., SE(R;,An—it1,1), € TE(R;).
Spanning edges in tree ST (R;) belonging to
Ay 180 SERiA, ) 1), € EE(R;).
For instance as shown in Figs. 4(a) and 4(b),
E(24,14) € SE(21,< +4 >42) € IE(21) and
E(21,24) € SE(21,< 2% >4,) € EE(21).

Pé:

Spanning edges in tree ST (P;) belonging to
A prien SE(PLAL 11 1), € TE(P).
Spanning edges in tree ST (P;) belonging to
An_iy1,1,1e., SE(Pi,Ap—t1,1), € EE(F)).
For instance as illustrated in Figs. 4(b) and
4(a), E(24,21) € SE(12,< 2% >4,) € IE(12) and
E(14,24) € SE(12,< %4 >4,) € EE(12).

Lemma4 Each pair of ST,_py22(Ri) and

SThtr22(B), for 1 < i < n—k, are mutually

2,2

disjoint.

Proof. Initially, all edges of root nodes R; connecting
to template node R,y located in one (n— k + 1)-
node complete graph, namely fi,,_,ﬂ_,,l, and all edges
of root nodes P; connecting to template node P,y
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located in another one {(n — k +.1)-node complete
graph, namely fi;_k +1,1- Note that, all spanning trees
ST,—t+2,2(R;) do not use any internal edge of A;_k 11
and all spanning trees ST,—422(P;) do not use any
internal edge of A,_;41,1. For example as shown in
Fig. 4, edges for R, and R, connecting o iemplaie
node R,_j) belong to a complete graph A,—z41,1 =
Asz) =< *1 >43. And edges for P; and P, connect-
ing to template node P,,_Hl belong to another com-
plete graph A,1 k1,1 —A3 =< 1% >4, Clearly, all
of these edges are dlS_]Oll‘lt Based on P'1 and P2 prop-
erty, for all ST,—r122(Ri) and ST,—422(Pi),1 < i <
n —k, may spread its subtree in same subarrangement
An_k 41,1 OF Ap_py1,1- Foran A,_gyq) containing root
node R;, 1 <i<n—k, usingn—1 edges connecting to
other A,_i41,1 denote as SE(R,,AH_H,I ) EEE(R) =
IE(F;). Each pair of $Ty—1422(R;) and STy 422(P),
for 1 <i<n—k, are said to be mutually disjoint if
and only if we can prove that SE(R,,An_k e+1,1) and
SE(P,,A n_k+1'1),l < i< n—k are edge-disjoint and
SE(Ri,An—t+1,1) and SE(P;,Ap—t41,1),1 ST <n—k,
are edge-disjoint. These two cases are stated as fol-
lows.

1: Initially, we show that all of spanning tree edges
in tree ST(R;) and ST'(P;) belonging to same sub-
arrangement A::-k+1,17 ie., SE(Ri,A:,_k_H’l) and
SE(P;,A:,_,(H’,),I < i< n—k,are edge-disjoint.
Note that, SE(Ri,A;,_,, ) € EE(R) = IE(P)
and SE(P,A,_.,1,) € IE(P) = EE(R;). The
reason of SE(Ri,A;_k_‘_l’l) and SE(P;,A;_HH)
being edge-disjoint is stated as follows.
For every spanning tree ST, p422(F;) may
spread its subtree in same A; ;. be-
ginning from a node, namely first node.
SE(R,,A —k41,1)  and SE(P,,A,,_Hl ) are
edge—dlsjomt if all of first nodes are different
in same An JRRE In every same An—k+1,1’
SE(Ri,An_k+1,1) € EE(R) = IE(P) and
SE(Pi,Ay_r11) € IE(P) = EE(R),1 < i <
n —k, are edge-disjoint because the correspond-
ing first node is different. This is because that all
first nodes are located in different A,_z41,1.

2: Next, we prove that all of spanning tree edges in
tree ST(R;) and ST(P;) belonging to same sub-
arrangement An_g41,1, i.6, SE(R;,Ap—t+1,1) and
SE(P,Ap—ky11),1 <i< n—k, are edge-disjoint.
Note that SE(R[,A,,_/H.“) € IE(R;) = EE(P)
and SE(Pi,Ap-t+1,1) € EE(P;) = IE(R;). Due
to node symmetry, so we omit the detail, but
SE(Ri,Ap—t41,1) and SE(P,Ap_410),1 < i <
n —k are edge-disjoint in the same A,_;4y,1 by
the similar reason in the case 1. B

.copies of A,_14—1.

Fig. 4 illustrates an example that let R; = 21, it
has two direct edges SE(21, < 2% >4 ,) € EE(21) con-
necting to subarrangement < *3 >4, < ¥4 >43=A3 1
with nodes 23,24 and one edge SE(21,< 4% >42)
€ EE(21) for node 41 connecting to another sub-
arrangement < *2 >42= A3 with node 42. Span-
ning tree ST42(R1),5Ts2(P1) and STy»(P2) respec-
tively spread their subtrees in < 2% >45=A3 | by first
node 21,24,23 and spread subtrees in < 4% >4,= A} |
by first node 41,42,43. We can find that the edges
for all spanning trees spread its subtrees in subarrange-
ment < 2x >42=Aj | and < 4% >4,=A} | are disjoint
from each other due to all the first nodes are different
and locate in different A3 ;.

Theorem 1 There exist 2(n — k) base edge-disjoint
spanning trees ST,_422(R;) and STy_g422(P;) in an
An—t422, where 1 <i < n—k. Each spanning tree's
height is 3.

Proof. Given root nodes R; and P;, where 1 <i<n—
k. First, there exist n — & spanning trees STp_t4.2,2(R;)
and ST,,_i422(P;) inan A,_gy22, for 1 <i<n—k,in
Lemmas 2 and 3. Lemma 4 illustrates that each pair of
STh—r+2,2(Ri) and STy—t122(F;), for 1 <i<n—k,are

mutually disjoint. Hence the Theorem. &

3.2. Phase 2: Construction of 2(n — k) Edge-
DlSjOlni Spanning Trees in an A,

The above section constructed 2(n — k) base spanning
trees in A,—r42,2, and each base spanning tree’s height
is 3. In this section, we describe how to construct 2(n—
k) spanning trees ST, x(R;) and ST, (P, for 1 <i<
n—kin an A, x, where the height of each spanning tree
is 2k~ 1.

For induction, we construct 2(n — k) spanning trees
in an A,; by using 2n(n — k) spanning tress in n
Our major task is to connect
2n(n — k) spanning subtrees into' 2(n — k) spanning
trees ST, «(R;) and ST, x(P), 1 <i<n—k.

Consider an A, which is partitioned into n copies
of Ap_jx—1. Assume that 2(n — k) spanning trees
STh-1p—1(R;) and ST,—1 4—1(P), i = L.n—k, can be
constructed in each A,_;,_ if their root nodes sat-
isfied the root-location property. A randomly se-
lected A,_14—1 servers as beginning spanning tree.
From this A,y 11, there exist 2(n — k) spanning trees
STo—14-1(R:) and ST,y 41 (P;),1 <i < n—k, where
R; and P; are root nodes. Let root nodes R; and P; con-
nect to root nodes R} and P/, where R} and P! located
in other A, 1. If R} and P/ satisfy the root-location
property, therefore we can embedd 2(n — k) spanning
trees ST, x(Ri) and ST, 1(F;),1 < i < n—k, on each of
the Ap_1 41, SO we can recursively construct 2(n — k)

spanning trees in an A, .

Given 2(n—k) root nodes R; and P, 1 < i< n—*k
Consider any pair of nodes R € R; and P € P,, where
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R = SWP, »(P). Note that there are n — k pairs. A n-
dimensional arrangement graph contains » subarrange-
ments that we use to derive the desired spanning trees.
Let R and P are one of these; we must connect R and P
to other n — 1 subarrangements. For each of R and P,
we use a single edge to connect the R and P to n —k of
subarrangements. We also use an intermediate node in
same subarrangement as the bridge node to connect R
and P to the remaining k — 1 subarrangements by two
edges.

Rules A1’ and A2’ formalize our recursively span-
ning {ree construction.

AT’: (Sihgle edge) The part is same as Al. Let nodes
R and P denote two nodes in every n — k subar-
rangements.

R=ADJ,4(R), where o € EXT(R).
P =ADJ,4(P), where a. € EXT(P).

Note that P= SWP; »(R).

A2’ (Two edges) This part is same as A2. Let nodes
R and P denote as two nodes in one of remaining
k — 1 subarrangements which connected by two
edges. Nodes R,—y+1 and P, are the interme-
diate nodes for nodes R and P, respectively. Note
that Ry—g1 = SWPy 2(Potiy1)-

R=ADJ,g(Rp—t+1), where B is the first bit
value in R.

P=ADJ, g(Py—t41), where B is the second bit
value in P.

Note that P= SWP; »(R). (See example in Fig. 5).

Assume that R} and P!, 1 < i< n—k, are new
connecting root nodes in each of other (n — 1)-
subarrangement. Ensuring that root nodes R} and P}
satisfied the root-location property would allow us to
establish our spanning trees ST, 1 (R;) and ST,, x(P;), for
i=1.n—k Inthe fbllowing, we show the correctness
that root nodes R} and P/ satisfied root-location prop-
erty, fori=1l.n—k.

Lemma § There are 2(n— k) root nodes R} and P},
1 < i< n—k,in same subarrangement graph are sai-
isfied the root-location property.

Proof. Without loss of generality, assume that
n —k voot nodes R;, | < i < n—k, represented as
(abysya:+-y) €<s*ysya---yp>ppand P, 1 <i<n—
k, represented as (baysys---yr) €< *Y3y4- Ve>nk,
R; and P; connect to R} and P!, 1 <i < n—k, re-
spectively. Our results demonstrate that root nodes R}
and P/, 1 <i< n—k, in same subarrangement graph
are satisfied the root-location property. Three possible
cases are discussed.
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Figure 5: Example of four spanning trees in an As 3.

1. (Both links are single edge) Since EXT(R; =
(abysys...yx)) = EXT(P; = (baysys---yi)), so it
is possible to let R} =(abysys---yr—1Y) and P}
=(baysya---yr-1Y), where Yy belongs to a set of
elements which are not used in all root nodes
Ry,...,and R,_; or Py,..., and P,_;, which can
be represented as Yy € EXT(R)) NEXT(R:) N
< NEXT(Rp—t) = EXT(P)NEXT(P) N...N
EXT(P,—t). Obviously, P| = SWP; (R} €<x*
Y3¥4+ o Yr—1Y>ng is satisfied the root-location
property.

2. One link is single link, other link is two edges)

For 1 <i# j<n—k let R; = (abysys -~ Vi),
Rj = (Bbysya---yi), P = (boysyq---y), and
Pj o= (bBysya---yk) €< * % y3yarooye >ng
Note that P; = SWPl’g(R,'), Pj = SWP]Q_(R_,’).
First, if B € EXT(R;) = EXT(P,), then R, =
(0by3ya---yk—1B) and P} = (bowsys---ye-1B)-
Second, if B € INT(R;) = INT(P}), two
edges are needed for R; and P; to connect R;
and P} in subarrangement <# % y3y4---yp-1
B>n4, respectively. Then let ® € EXT(R)),
we can obtain R; = (Bbysys---yi) —



(@byzys---yi) — (@bysys--y—1 B) = R
and Py = (bBysya---yp) — (boyzys---ye) —
(baysysyeaf) = P Therefore,
Pl = SWP2(R)} and P} = SWPl,z(R;v)
€L % % y3¥4- - YpiP >np are satisfied the
root-location property.

3. (Both links are two edges) For 1 < i< n—k,
let Ri = (abysys--- i) and P; = (baysys- - yy).
Because of b € INT(R;} = INT(P,), two edges
are needed for R; and P; to connect R’i and
P; in subarrangement <# % Y34 -+ Yr_16>ny, 1€-
spectively. Without loss of generality, if y be-
longs to a set of elements which are not used
in root nodes Ry,..., and R,_;, we can ob-
tain that R; = (abysys---yi) ~ (ayysya--m) —
(ayysya---yi-1b) =R}, and P; = (baysys -~ yi) ~
(yayaya:--yx) = (Yaysya---ye-16) = P}. There-
fore, P,’ =SWhP 'Z(R;) C<k*y3yq-- ‘,Vk—lb>"’k is
satisfied the root-location property. &

Lemma 6 All edges for R; and P,,1 <i<n—~k, re-
spectively connect to root nodes R; and P,’ which lo-
cated in other subarrangement graphs are all edge-
disjoint.

Proof. Note that root nodes R; and P,,1 <i<n—k,
are all distinct, and R; and P; use same rule 1o connect
with R} and P}, therefore R; and P; are also different
from each other. Because of different source and des-
tination, all edges for R; and P; respectively connect
to root nodes R; and P, which located in other subar-

1
rangement graphs are all edge-disjoint. &

Lemma 7 The height of 2(n — k) edge disjoint span-
ning trees ST, 1(R;) and ST, x(P;) inan Apy is 2k — 1.

Proof. There are k steps to construct ST, x(R;) and
ST x(P), 1 < i< n— k. Bach step needs at most two
edges except that the final step in A,_y41,; needs one
single edge since A,_t41,1 is a complete graph. The
heightis 2(k— 1) + 1 =2k~ 1. &

Theorem 2 There exist 2{n — k) edge-disjoint span-
ning trees ST, 1(R:) and ST, 1{F;) with height 2k — 1
inanAyy, wherei=1l.n—r

4. Conclusions

In this paper, we consider the problem of congestion-
free embedding of multiple spanning trees in an ar-
rangement graph. This is first result to exploit multiple
spanning irees. In this paper, we develop a bottom-
up congestion-free embedding of 2(n — k) spanning
trees with height 2k — 1 in an (n,k)-dimensional ar-
rangement graph. A well known application of edge-
disjoint muitiple spanning trees is the broadcasting al-
gorithm. Work is currently underway to develop the

optimal number of spanning trees in A , ; by exploiting
O(k(n — k)) edge-disjoint spanning trees.

This work was supported by the National Science
Council, R.0.C., under Contract NSC89-2213-E-216-
010.
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