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Abstract

We consider access control problem for two multi-server
loss queues in tandem, which is usually used to model
networking systems. In previous work [4], it can be
shown that under appropriate conditions the optimal
managerial policy that maximizes the expected total
discounted reward over an infinite horizon is given by a
switching curve in the two-dimensional state space. In
this paper, we discuss the variation of these swiiching
curves with number of customers in system. Some
experimental examples of unusual variation are presented.
However, two sufficient conditions, which prevent this
counterintuitive situation from happening were proposed.
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L. Imiroduction

Loss queueing models are often used to describe
networking systems, especially for real-time applications
and have been successful in analysis of resource allocation
in these systems. Therefore, the optimal control problem
for two-loss-queune-in-tandem model has aitracted attention
for years. Using the approach of dynamic programming
method, the threshold-type managerial policy which
reserves servers in second queue for internal customers
coming from first queue has been extensively derived in
[2,4]. From intvitive point of view, the optimal
admission policy won’t reserve more than one server for
each customer at first station. However, some
counterintuitive examples were found from experimental
resulis. In these experiments, the system manager has to
leave two servers open for one additional customer in the

upstream queue according to the optimal managerial policy.

A good reference on this topic can be found in [1,6]. The
cause, which induces this counterintuitive situation, is still
under investigation. However, two sufficient conditions,
which prevent it from happening are derived according to
the structure of optimality equation.

The two-queue model is presented in section 2. In section
3, we show two theorems, which describe the major topic
in this paper and then experimental results are presented.

I, Model and Problem Formuﬁation

Consider the system of multi-server loss queues in tandem
as pictured in the following Fig. 1. The first quene A is
a M/M/m/m station in which !, is the Poisson

arrival rate, p, is the exponential service rate, RIA is

the revenue for service to a new customer and P is the
probability that customers leave system after service. The

second quene B isa ./M/n/n station in which ! ,

is the Poisson arrival rate, |1 is the exponential service
rate, Ry is the revenue for service to a new customer and
R? is the revenue for service to an internal customer from

station A. Assume R >R}, which means internal

customers are more valuable than new customers at station
B . Moreover, we also assume that 1>P >0 and
revenue is collected when a customer enters service.
Suppose that only call admission control (CAC) is
implemented to manage this system since it is of particular
interest to high-speed networks. We consider the
objective of maximizing the total discounted rewards over
an infinite horizon. Form the results in {4], it can be
shown that the optimal admission policy doesn’t control
new customers at station A and internal customers at
station B at all. Hence, the sysiem manager only
controls new customers at B .

This system can be modeled as a two-dimensional
continuous-time Markov chain,  with state
(,))eQ: {0,1,...,m}>< {O,l,...,n} defined as the number

of customers at stations A and B respectively.
Uniformization results in an approximate discrete-time
Markov chain by allowing fictitious transitions from a state
to itself [5].
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Choose an appropriate geR s.t.
O>M+A, +my,+np, and let p=

A Ly Hp

Pr=— , ga=—, and gg =—— . This

Q Q
discrete-time system has corresponding parameters p, ,
Py, g, and g, and the appropriate discount factor

a<l.

Using the approach of dynamic programming, the
following optimality equation, which need to be revised at
the boundary states consists of all possible transitions with
corresponding transition probabilities.

p v+, perY]
vap, VG, j+D+RE]
VG, jy=max" +(1-P)ig OV G-1 j+)+RE]
T HRig VG- )+ (igsV G j-1)
+(1=py—ap, —iq, = jas)V (, J)

where V(i,j) is the optimal value function and the
optimal access control policy is given by a:Q — {0,1}.
a(i, j) =1 (or 0) iff admit (or reject) the new customer at
station B when the system is in (4, j). The optimal

admission policy admits a customer if the immediate
revenue generated by that customer exceeds the expected
loss in future discounted revenue caused by future
blocking due to this customer. Thus we define the
optimal difference function
A(i, )=V (i, j)-V(i,j+1). Then the optimal policy,
in state (i, j), admits a new customer at B , ie.

a(i, j) =15iff AG, )< R;.
IMI. Variation of Opiimal Switching Curve

From results in [4], it can be shown that the optimal
admission policy, which maximizes the expected total
discounted reward over an infinite horizon is given by a
switching curve in two-dimensional state space. The
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system manager admits new customers at station B if
state (i, j) is below the switching curve and rejecis new

customers while state (i, j) is on or above the threshold.

The managerial procedure should reserve servers for
internal customers while the system tends to congestion
according to the switching curve. In this paper, we focus
on the relationship between the number of customers at
station A and the number of reserved servers at station
B for internal customers. Intuitively, the optimal policy
won’t reserve more than one server for each customer at
station A. If it is correct, then the optimal switching
threshold is not only nonincreasing in the number of
customers at A but also is always horizontal or 45
degrees down as the switching curve 1 shown in Fig. 2.

However, a special experimental example shows the
counterintuitive  results. Adopting the following
parameters for this system: m=6, n=5, &=0.9999,

0=100000, A, =18, A, =5, u, =18, p,=8,

R} =100, R? =320, R; =105 and P=0, the
optimal switching curve is pictured as the switching curve
2 in Fig. 2. From this curve, two interesting situations
could be observed. First, the system manager reserves
one space even though there is no customer at station A .
That’s because the arrival and service rates at station A
are large, and the service rate at station B is relatively
small. Therefore, the probability for new customers going
throngh station A and then requiring service at station
B in the near future is significantly large. In addition,
the relative value of two types of customers at station B

B
2

R}
internal customers much more than new customers at
station B. Hence, one space is kept for this type of
customers even while nobody is at A . Second, the
system manager reserves three servers while there are two
customers at A. However, he allocates five servers for
upcoming internal arrivals while there are three customers
at A. That means two more servers are reserved for one
additional customer at the first station while the system is
in this specific state. This phenomenon totally disagrees
with our intuition.

is quite small. So the system manager values
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Fig. 2. The Optimal Switching Curve
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From the structure of optimal difference function, it is easy
to observe that if A(i, j)>A(i+1, j—1) is true for any
possible (7, j), then the optimal switching curve is either
horizontal or 45 degree down. In theorem 1, we can show
that Pg, 2q; is a sufficient condition for
A(, j)>A@+1,j=1) for any possible (i,) and

therefore also a sufficient condition for the optimal policy
to be either horizontal or 45 degrees down.

Theorem 1
Pg, 24,
A(, j) > A(i+1,j—1) for any possible (i, j)
Optimal switching curve is either horizontal or 45
degrees down

In opposite, it indicates that if the leaving rate from station
A is smaller and the flow rate from A to B is larger,
then more servers should be reserved.  Therefore,
switching curve steeper than 45 degree is more possible.
For the switching curve 2 in Fig. 2, the system with
P=0, p,=18 and ;=8 has one segment of

policy, which is steeper than 45 degrees. But if we let
8 —
Pg, 2qy by setting P=045> m =04, then the

experimental result is pictured as one in Fig. 3.

P =045 satisfies Pg, >¢,, and thus the switching
curve is either horizontal or 45 degrees down. However,
P =03 do not dissatisfy Pg,>g, , and yet the
switching curve is still horizontal or 45 degrees down.
Thetefore, the condition Pq, =g, is thus sufficient but

not necessary.
The following theorem 2 shows that an alternative

. .. RE .
sufficient condition is — <1+ s However, it is of
2 Py

No. of customers at station B

note that this condition does not assure the diagonal
monotonicity, A(, j)>A@+1,j-1).

Theorem 2
RxB ds
vy <l+=—=

Optimal switching curve is either
Rz p 1
horizontal or 45 degrees down

This  sufficient  condition is  equivalent to

R’ R’ —R}
<1+l o D% B e, if
R, b R, b

qz =% is going up, p, =—Q— is going down and

R is close to R, then less servers need to be reserved

for the output flow from the first station. So, the optimal
managerial policy is less possible to be steeper than 45
degree.

IV. Conclusion

From the experimental results, we can observe that the
optimal access control policies for two-queue models are
generally horizontal or 45 degrees down in the
two-dimensional state space. A switching curve which is
steeper than 45 degrees occurs rarely. This rare situation
means the optimal managerial policy has to reserve more
than one server at the second station for one additional
customer at the first station in some specific states.
Obviously, this result is counterintuitive. This
phenomenon might be due to the procedure of
uniformization but it is still under investigation. However,
two sufficient conditions are presented to prevent this
situation from happening. As for the omitted proofs can
be found in [3].
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Fig. 3. The Optimal Policies for Adjusted P
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