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ABSTRACT

This work presents a novel feedback rate regulator
using the multiple leaky bucket (MLB) for VBR self-
similar traffic that is based on the traffic load prediction
by time-delayed neural networks in ATM networks. In
contrast to the conventional leaky bucket (LB), the leak
rate and buffer capacity of all LBs are shared in the
same virtual path to more effectively utilize network
resources. In the MLB mechanism, the leak rate and
buffer capacity of each LB can be dynamically adjusted
based on the buffer occupancy. A finite-duration
impulse response (FIR) multilayer neural network is
used to predict the incoming traffic load and pass the
information to the feedback rate regulator. In addition,
ten real world MPEGI1 and ten synthesized traffic traces
are used to validate the performance of the MLB and
the MLB ‘with FIR prediction mechanism. Simulation
results demonstrate that the cell loss rate using MLB
and MLB with FIR has a three to more than ten
thousand time improvement over the conventional
leaky bucket method.

Keywords: Self-similar, ATM Networks, Multiple
Leaky Bucket, Neural Networks, Traffic Control.

1. Imtroduction

ATM technology is based on a small and fixed size
packet called a cell. These cells permit sufficiently
rapid switching so that multiple isochronous data can be
statistically multiplexed and physical resources can be
maximally utilized. To maintain the quality of service
(QoS) perceived by network users, the users must make
contracts with networks. According to the contracts, a
policing mechanism acts accordingly to protect all well-
behaving sources. In ATM networks, the need for
multimedia and real-time applications has increased
rapidly. To elucidate the characteristics of these traffic,
some rate regulators based on neural networks have
been proposed [1, 2]. These mechanisms can increase
bandwidth utilization and decrease cell loss rate while
integrated with the rate-based feedback control scheme.
Therefore, developing a simple and feasible feedback
rate regulator for real-time services is of priority
concern.

Manv investigations have employed the leaky
bucket control scheme to resolve a flow control
problem [3, 4, 5, 6], while several policing mechanisms
have been proposed as well [7, 8). Actually,
determining an appropriate leak rate and buffer capacity

- network (TDNN) [11].

for a leaky bucket is a relatively difficult task. For an
MPEG fraffic source, it may generate cells at a near-
peak rate for a short time interval and, immediately
thereafter, become silent. Selecting a leak rate close to
the source’s peak rate may waste the bandwidth. In
contrast, the cell loss rate (CLR) may be extremely high
if a leak rate is close to the source’s mean rate. As
generally known, the cell loss rate can be reduced by
increasing the buffer capacity. However, if the leak rate
is too low, the cell loss rate cannot be greatly improved
by merely increasing buffer capacity.

In light of above developments, we devised a
source rate regulator (SRR) by using an FIR multilayer
neural network to predict the incoming traffic load [9]
and by adopting the concept of reactive congestion
control. The weakness of reactive congestion control
comes from high bandwidth-delay product, but its still
valid when the control method is applied to monitor a
single MPEG traffic as well as multiple self-similar
traffics.

The rest of this paper is organized as follows. In
section 2, the operation of FIR and its learning
algorithm are summarized. Section 3 describes the
characteristics of self-similar traffic. Section 4 discusses
the leaky bucket mechanism and its modifications. In
section 5, we present a novel policing mechanism called

-multiple leaky buckets (MLB) for controlling the self-

similar traffic. To validate the performance of MLB, ten
real-world MPEG! video traces and synthesized self-
similar traffic are used. Finally, conclusions and areas
for future research are made in Section 6.

2. The FIR Multilayer Network

The multilayer feed-forward neural networks are
extensively used in many areas, such as pattern
recognition, character segmentation, or diagonsis.
However, a major limitation of the standard multilayer
neural network is that it can only learn an input-output
mapping that is static [10]. The form of static, input-
output mapping is well suited for spatial application,
but is inadequate for temporal application such as in
time series prediction. By replicating hidden neurons
and output neurons through time, the network is
appropriate to be used in temporal applications [10].
This kind of neural network is called time-delay neural
The TDNN topology is
embodied in a multilayer network in which each
synapse is represented by a finite-duration impulse
response (FIR) filter, as shown in Fig. 1. The weight wy,
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connected to the fixed input x, = -1 represents the
threshold value.

Figure 1 Spatial-temporal model of a neuron,
incorporating synaptic FIR filter.

The FIR multilayer network is a feed-forward
neural network whose hidden neurons and output
neurons are replicated across finite duration of time.
The temporal backpropagation learning algorithm is
summarized as follows [11];

wiln+) =wyn) + 7 5 (m)x(n) €9
(- f (i)

if neuroni isin theoutputlayer

Finy=

error is chosen for performing prediction in the on-line
processing phase. The accumulated error should be
smaller than ¢, or using bigger network for training.
Note that in the off-line learning phase, the learning
rate 7in (1) may potentially affect the converge speed
of the training process. For a multilayer neural
networks, the speed of the weight update in earlier
iterations is faster than that of in latter iterations,
therefore we can put a large value 7 at the beginning
of the training process and then replaced it with a
smaller value after a large number of training iterations.
In the on-line processing phase, the trained FIR
multilayer network is used to predict the number of
incoming cells in the next period. If the predicted
number of incoming cells in the next period does not
exceed the buffer capacity, then all the incoming cells
during the next period are admitted to enter the buffer.
Note that it is possible that although the FIR multilayer
network predicts no overflow for the next period, the
overflow does happen at the next time slot. Under this
circumstance, the feedback traffic rate regulator is used
to adjust the source cell rate.
3. Characteristics of self-similar traffic

Most pertinent studies since 1993 [12, 13] have
conferred that self-similar processes in real-world
networking applications aptly describe traffic patterns.
For example, Ethernet traffic, World Wide Web

M . .
F ) T 8, (nt ) wyin) if neuroniisina hiddenlaye WWW) traffic, and video traffic transmitted over

ge¥ n=0

where w; represents the connection weight,7
represents the learning rate, ¢ is the difference between
the desired output the neural network output, f (-)
represents the activation function, M represents the
number of taps in the current layer, and ¥is the set of
all neurons whose inputs are fed by neuron i in (2) a
feedforward manner. The FIR algorithm is composed
of two phases: the off-line learning phase and the on-
line processing phase. The off-line learning phase is
mainly for training the FIR multilayer network, and is
not used for predicting the number of incoming cells at
the next period. Once the off-line learning phase is
finished, the on-line processing phase begins. In the on-
line processing phase, the FIR multilayer network is
used to predict the number of incoming cells in the next
period, and the cell discarding function is implemented
based on the information provided by the FIR
multilayer network. Note that when the accumulated
prediction error is greater than a threshold value ¢,
the FIR multilayer network has to be trained again.

To train the FIR multilayer network in the off-line
learning phase, we can collect the actual number of
incoming cells in the first X periods as the training data
set. The training data set (7DS) is expressed as
TDS(LK)={ G(1),G(2),---,GK) }.

Since there are no rles about how fo properly
design the topology of the FIR multilayer neural
network for a specific problem, different topologies of
FIR network are trained by using the training set
TDS(1,K). The network with the smallest accumulated
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ATM networks are self-similar. Recent studies also
indicate that the self-similar traffic profoundly

influences network performance [12, 13, 14,(5, 16, 17].

In the following sections, we introduce thepdefinition,
measurement, and major characteristics of pelf-similar
traffic.

The Norros effective bandwidth formula can be
utilized to estimate the bandwidth requirement for the
coming traffic. The fact that most traffic patterns have
self-similarity accounts for why developing an effective
bandwidth formula for self-similar traffic is an essential
task. Ilkka Norros [18] performed this task in an earlier
investigation. Assume that the self-similar traffic source
is given along with the mean bit rate m (in bits/sec), the
Hurst parameter H, and the variance coefficient a (in
bit-sec). The variance coefficient is the ratio of the
variance (in bit-bit) over one second interval to the
mean bit rate of the traffic stream.

For a given buffer size B and desired cell loss
ratio ¢, the effective bandwidth C of a self-similar
traffic can be expressed as:

c =m+(k(H)\/—21n£)%*a%H B‘”'%ﬂm}éy 3)

where k(H)=H"1- )T

In sum, the Norros formula can be employed to
estimate the effective bandwidth requirement for self-
similar traffic. According to the Norros formula, the
relationship among the bandwidth requirement, buffer
capacity, desired cell loss rate, and related parameters
for self-similar traffic can be derived. In [13], it
demonstrated that a VBR video source transmitted over
ATM networks is self-similar traffic. By using the



Norros formula, the network resource requirement for
VBR video traffic can be estimated.

4. Feedback rate regulator for self-similar VBR
traffic

This section introduces a novel rate-based
feedback controller for self-similar VBR traffic in ATM
networks. A multiple leaky buckets (MLB) mechanism
is used to discard cells when a traffic contract is
violated. When a possible discard is detected, the
network element or switch generates a backward RM-
cell and sets a congestion nhotification (CI) bit. When
the source receives that backward RM-cell, the source
rate must be throttled down. The higher the frequency
of receiving the backward RM-cell implies a higher
likelihood of discarding a cell and, subsequently, the
higher the likelihood that the traffic is regulated at a
lower rate. The following sections thoroughly describe
the MLB mechanism and feedback control scheme.

A, Multiple leaky buckets

In ATM networks, each virtual path (VP) may
contain several traffic sources. Therefore, several
independent leaky buckets may be available that
monitor every traffic source. If these leaky buckets
from all sources collaborate with each other, the
bandwidth and buffer spaces can be effectively used,
thereby reducing the cell loss rate (CLR) significantly.

Ho [20] first proposed the above notion and
applied it to a policing mechanism which implements
the CLB. CLB differs from LB mainly in that if a leaky
bucket becomes empty, its leak rate is distributed to
other buckets. To elevate the performance of CLB, our
results indicate that there is no need to distribute leak
rate to other buckets unless its buffer becomes empty.
Besides, the LB could not only share the leak rate, but
also share the buffer capacity.

However, when all the leaky buckets in the same
VP are integrated, how to distribute the total leak rates
and buffer spaces to each source is of relevant concern.
Herein, we dynamically adjust the leak rate and buffer
capacity for each LB according to their buffer
occupancies.

Assume that there are n traffic sources and n leaky
buckets for each LB that monitor one traffic source.
The ith traffic source and LB have the following
associative parameters:

9 Ml
source (in cell/sec),
e P; : the negotiated peak cell rate of ith traffic

source (in cell/sec),
® R; (1) : the leak rate of ith LB at time # (in cell/sec),

@ B; (1) : the buffer capacity of éth LB at time ¢ (in cel}),

: the negotiated mean cell rate of ith traffic

@ R;(0) : the initial value of R; (#) (in cell/sec):

@ B;(0) : the initial value of B; (1) (in cell),

¢ K; () : the number of cells in the ith buffer at time ¢,

*0(1):the occupancy of ith  buffer
0;()=K;(1) B; (1) ,

. the desired cell loss rate

and

e &
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First, the initial values of the leak rate, R;(0), and
buffer capacity, B;(0), must be determined, where

R;(0) and B;(0) can be expressed as
Ri(0)=y-M,; @
Bi(O)=4-F )

where 7 émd [ are constant. The aggregate leaky rate
and buffer capacity are denoted

by Ry and BO respectively, where Ro is defined as

Ry = 2L R;(0) (6)
i=l

and B, is defined as

Bo = Z B,‘ (V) (7)

i=l

The time interval is denoted by AT. After the
initial values of the related parameters have been settled,
the policing function must obtain the value for the
buffer occupancy O; (1) every AT seconds. From O; (1),
the new leak rate and new buffer capacity can be
calculated. The new leak rate of ith LB is defined as
follows:

Ri(t+1) =R, M
2 R(0)-0;()

i=l

(8)

Assume that the buffer spaces are shared. Thus, we
define the reservation ratio,é , for each LB. Whereas
o can be expressed as

_ reserved buffer size ©)
total buffer size o

The 0 used in FIR multilayer neural networks can be

. €Xpress as

g Leserved YT Stz o))
total buffer size

(10

Where Cr is the cell loss number and the Tr is the total
cell transmitted number.

Clearly, a situation in which the reserved pait is
too large implies that the benefit incurred from buffer
sharing no longer exists. In contrast, if the reserved part
is insufficient and if the source transmission rate is
close to the peak rate, then buffer may quickly become
full, resulting in a large number of cells being discarded.
The new buffer capacity of ith LB should be defined as:

B;(1)-0;(1)
zBi(t)~0,-(t)

i=1

Bi(t+1)=(1-6") By +6°B;(0) (11

where the occupancy O; (1) is an indicator. If O; ()
exceeds the average value, -l-io (1), then the leak
n g

rate, R; (1), and buffer capacity, B; (¢), are reassigned



higher values than their initial ones.

This mechanism is advantageous in that it can
effectively distribute the leak rate and buffer capacity to
reduce the CLR. If the counter is close to the maximum
allowable value, cell loss would likely occur. In
addition, increasing the leak rate and buffer capacity
before cell loss occurs can markedly reduce the CLR..

B. Muliiple leaky buckets with feedback control

Feedback traffic control is used to reduce cell loss
rate by regulating source transmission rate and provide
better protection to well-behaving sources. The ATM
traffic control model using a source rate regulator with
FIR multilayer neural networks is shown in figure 2.

The main purpose of using feedback control is to
reduce cell loss rate by regulating the source
transmission rate and providing better protection to
well-behaving sources. The difficult problem in
preventive congestion control is choosing the right set
of parameters to describe a source and allocate an
appropriate amount of resources for it. In practice, if
several sources generate data at their near-peak rate
simultaneously, cell loss may still occur. In order to
reduce the possibility that many sources request a large
amount of resources during the same time period, use of
the policing mechanism to control the source rate
becomes essential.

To regulate the transmission rate, we defined an
initial threshold value of ith traffic, denoted by 6;(0) .

The new threshold value of ith traffic source, (), is
renewed every AT seconds and defined as:

6;(0)

8.ty = —— il
i1 max{V,,; (), 1}

(12)

In addition, rate regulation can be employed to
protect well-behaving sources. It is feasible to reduce
the transmission rate for a malicious user that violates
the contract. A modified version of feedback traffic
regulation proposed in [1] was employed. The
parameters of LBs are controlled by resource controller
(RC). The RC catches the status of each LB in every
AT seconds and calculates the new leaky rates, new
buffer space and new threshold values from equations
(14), (15) and (16), respectively. The objective of the
source rate regulator (SRR) is to decide whether or not
to throttle down the source transmission rate. When the
occupancy of ith buffer, 0;(r) , exceeds its threshold

value, &;(r) the SRR generates a backward RM-cell in

which the congestion notification (CI) field is set to 1,
and transmits it to source i. When the source [ receives
a RM-cell with CI=1, it decreases its transmission rate

by multiplying the factor &; (1), which is given by:
@, (1) -t (7
! 2-max{V,, (1,1}
Only when the value of 0;(r) is lower then the
threshold, ;(r), the source i can receive a backward

RM-cell with CI=0 and transmit data at the original
transmission rate.
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5. Simmlation Results

Ten MPEGI frame size traces and synthesized
self-similar traffic are utilized herein. The MPEGIL

traces, tracel to trace10, can be found at the ftp site [19].

These frame size traces were extracted from MPEGI
sequences, which have been encoded with the Berkeley
MPEG-encoder (version 1.3). Each MPEG video
consists of 40,000 frames, which is equivalent to
approximately half an hour. The pattern of the MPEG!
stream is IBBPBBPBBPBB, and twenty-four frames are
coded per second. The synthesized self-similar streams
were generated using a fractional ARIMA (Auto-
Regressive Integrated Moving Average) process, which
generated a time series with a specified degree of self-
similarity H.

To determine the network dimensioning, Table 1
lists the mean rate and the peak to mean ratio (P/M) for
each trace. To verify the degree of burtiness and self-
similarity of each MPEG video trace, the variance
coefficient and Hurst parameter are also measured.
Tables 2(a) and 2(b) summarize the statistics of
MPEG]1 and synthesized self-similar  traces,
respectively. Herein, the variance-time plot technique is
applied to estimate the Hurst parameters.

In our simulations, the normalized -effective
bandwidth for each mechanism is plotted. The desired
cell loss rate is set to zero. Figures 5(a)-(c) indicate that
using the leaky bucket has the highest normalized
effective bandwidths and approaches the peak to mean
ratio. However, the curves generated by using MLB
with FIR are close to the curves generated by using
Norros formula which require the lowest effective
bandwidth. Those results further demonstrate that the
multiplexing gain exists, even for heterogeneous traffic.
This observation also implies that a large amount of
bandwidth is wasted when using the conventional leaky
bucket mechanism. Therefore, MLB is a preferred
option.

This experiment attempts to validate the
performance of MLB with FIR when feedback rate
regulator and protection policy are applied as well. This
experiment is divided into two parts: first, we examine
the performance of our simulation model when all input
traffic are well-behaving sources. Second, a malicious
source is added into the network. Knowing the impact
of QoS for each well-behaving source is of relevant
interest.

Figures 4(a)-(b) indicate that the CLR drops to
zero as long as two or more traffic sources are fed into
the MLB. This finding suggests that less bandwidth is
needed to achieve the desired cell loss rate when a
feedback rate regulator is used. Figures 5(a)-(b) reveal
that the MLB with FIR mechanism has the best
performance in practice and can reach the upper bound
1/} , when the number of traffic sources is increased.

Each mechanism has the same protection policy. Our
proposed mechanism, MLB with FIR traffic prediction,
provides the optimum performance in terms of CLR
and Delay. The cell loss rates for each well-behaving
source drops to zero regardless of whether or not the
malicious source is fed.



6. Conclusions

This study presents multiple leaky buckets (MLB)
with an FIR traffic prediction for the feedback traffic
regulator. The proposed mechanism is implemented to
monitor and regulate self-similar VBR traffic to avoid
congestion. To maximize network utilization, the MLB
mechanism integrates all the LBs in the same virtual
path. Simulation results demonstrate that the MLB with
FIR takes advantage of the statistical multiplexing gain
of self-similar VBR traffic. Thus, the MLB with FIR
has three to more than ten thousand times cell loss rate
improvement than the conventional LB mechanism. To
achieve the desired cell loss rate, e.g. CLR=0, the MLB
requires a less effective bandwidth than LB and CLB
mechanism. PFurthermore, the effective bandwidth
requirement approaches that estimated by using the
Norros formula.

When the resource sharing technique is applied,
some other malicious sources must be prevented from
degrading the quality of service to established
connections. A prominent feature of the malicious
source is that its transmission rate is higher than the
negotiated mean or peak rate. Reducing the
transmission rate is a simple yet effective way.

Simulation results demonstrate that, when the
MLB and MLB with FIR traffic prediction and
feedback control mechanism are used, a malicious
source has difficulty in obtaining extra network
resources; the QoS can be maintained for well-behaving
sources as well. Our results further demonstrate that
using the feedback control mechanism with FIR traffic
prediction yields better performance not only for
MPEGI traffic, but also for the data sireams with
higher self-similarity.
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Figure 2 An ATM traffic control model with FIR multilayer neural network using source rate regulator (SRR) on
the multiple leaky bucket with buffer sharing.
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Figure 4 Cell loss rate for aggregated traffics using
feedback control mechanism. (a) MPEGI traces,
y=13, f=0.1 (b) Synthesized self-similar data series,
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Table 1 Statistics of input traffic for (a) MPEG] traces. y=12p=01.
Frames Bit rate
Traces No. Name of Video a H
Mean PM Mean PM
(Kbits/Frame) . (Kbits/sec)
tracel Goldfinger 24.3 10.1 569.7 3.12 77648 0.85
trace2 Dino 13.1 9.1 306.5 3.49 46907 0.76
trace3 Lamb 7.3 18.4 171.4 4.70 61043 0.81
traced StarWars 15.6 119 218.3 3.80 69831 0.83
traceS Terminator IT 10.9 7.3 - 255.6 2.53 26276 0.72
trace6 Movie preview 14.3 12.1 334.9 3.40 76685 0.74
trace7 ' ATP final 21.9 8.7 513.0 2.78 67297 0.71
trace8 Race 30.7 6.6 720.7 3.37 91797 0.76
trace9 Super bowl! 23.5 6.0 550.9 2.68 71035 0.78
tracel0 Soccer 25.1 7.6 588.5 3.66 131266 0.80
(2)
(b) Synthesized self-similar data series
Traces No. Mean (Kbits/sec) PM a H
tracel 428.6 2.64 52341 0.81
trace2 443.1 2.29 43306 0.81
trace3 425.3 2.25 47189 0.82
traced 425.3 2.71 42966 0.84
traces 400.6 260 37991 0.84
trace6 484.2 2.67 31664 0.85
trace? 406.5 3.16 64304 0.85
trace8 594.0 2.81 84140 0.89
trace9 452.1 2.38 66310 0.88
tracel0 358.9 3.24 61147 0.89
(b)
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