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Abstract

This paper presents a novel continuous-time Hopfield-
type network which is suitable for temporal sequence
recognition. Since it is difficult to implement a de-
sired flow vector field distribution by using conven-
tional matriz encoding scheme, a lime-varying Hop-
field model (TVHM) is proposed. The weight ma-
triz of the TVHM is constructed in such a way that
its auto-correlation and cross-correlation parts are en-
coded from two different sets of patterns. The proposed
approach is different from the existing methods be-
cause neither synchronous dynamics nor interpolated
training paiterns are required. Ewsperimental results
are presented to illustrate the validity, recall capabil-
ity, and the applications of the proposed model.

Keywords: Hopfield networks, recalling dynamics,
auto-correlation, cross-correlation, pattern sequence
recognition

1 Introduction

Associative neural networks, characterized by in-
formation storage and recall, have given rise to
much interest in recent years, because of their wide
range of applications in areas such as content ad-
dressable memory (CAM) and pattern recognition
[1],[2),[12],[18]. Pattern recognition can be divided
into two cases, i.e., static pattern recognition and pat-
tern sequence recognition. In the first case each train-
ing pattern is stored as a stable (static) attractor in
a corresponding energy landscape. In the second case
each sequence of patterns is stored as trajectory at-
tractors in the energy landscape. In the past fifteen
years several design techniques have been proposed
for static pattern recognition [3]-[5],[12],[13]. However,
the possibility of storing/recalling pattern sequences
by neural networks has received little attention in lit-
erature.

In the recent work of Morita [8], the fundamental
problems of recalling pattern sequences by neural net-
works are investigated. As pointed out by Morita,
when pattern sequences are to be stored, conven-
tional neural networks do not work well unless discrete
synchronous dynamics is used (for a detail of stor-
ing/recalling pattern sequences in discrete synchro-
nous networks, please refer to [6],]11],[13],[14]). Since

flow vectors [8] between two adjacent stored attractors
do not coincide in direction, asynchronous network
dynamic is not suitable for pattern sequence recall
.Sompolinsky and Kanter [9] proposed a continuous-
time asymmetric neural model (see also [10]). In their
model two kinds of weight matrix are used, one for
auto-association and the other for hetero-association
encoding.. The latter is referred to as a synchronizing
mechanism to achieve recall between stored patterns.
However, it may not work well if the network starts
with an initial state which locates midway between
two adjacent stored patterns. Morita [8] proposed the
nonmonotone neural networks with improved continu-
ous dynamics. With his model, a pattern sequence can
be recalled in such a way that network state changes
gradually from one stored pattern to another. How-
ever, his method requires a proper overlap between
adjacent stored patterns. Otherwise, some interpo-
lated patterns must be added between these patterns
to ensure successful in recall.

A new weight matrix formulation ensuring the storage
and recall of pattern sequences by a Hopfield network
is investigated in this paper. Since it is difficult to
implement a desired flow vector field distribution by
using conventional matrix encoding scheme, a time-
varying Hopfield model (TVHM) is proposed. With
this concept, a network can recall pattern sequences
in such a way that neither synchronous dynamics nor
interpolated training patterns are required. The va-
lidity, capacity, recall capability, and the applications
of the proposed model are verified by extensive exper-
imenta] results.

2 Conventional Temporal Association
Geometry
Consider a Hopfield model [2] consisting of N two-
state neurons {2} ;, where z; € {—1,+1} represents
the state of the ith neuron. Let T denotes the ma-
trix of the synaptic weights of this model. Then the
conventional evolution (update) equation of a discrete
synchronous Hopfield model can be represented as

Z(t +1) = sgn{TZ(t)} (1)

where Z(t) = (z1(2), 22(t), .-, 25 (£))7 is the state (at
time t) of the network, The word ” synchronous "means
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all the neurons are updated simultaneously or in par-
allel.
Suppose that a sequence of patterns

U =0 .. S UP (2)
is to be stored in the network. These patterns have
been properly numbered according to their orders in

the sequence. They are stored in the network by using
the cross-correlation weight matrix [8], i.e.,

1 23
- — pt+1irreNT
T N;U (U*) @)

Here the p patterns U,U2,...,UP € {=1,+1}" are
assumed to be orthogonal (or near orthogonal) to each
other. As pointed out by Morita [8], if Z(0) is close to
U, it is desired that Z(1) = U2, Z(2) = U3, ..., ie.,
the stored sequence is recalled. However, recall is al-
ways impossible if one starts with a Z(0) which located
at the midway between U* and U#*!, In this case the
flow at Z(0) points not to U#*but between U++'and
U#+2, This is the reason that the cross-correlation ma-
trix memory is only suitable for discrete synchronous
dynamics (see Fig. 1 for a schematic representation of
the flow distribution). If asynchronous ( i.e., only one
neuron is allowed to change state at any time instant)
or continuous dynamics are desired, the state changes
gradually from Z(0) to UF*1. To prevent the case
that Z gradually varying its direction of movement, it
is necessary that the flow , alone the path between U#
and UF!) point to U#*L. That is, the desired flow
vector field in the state space should be distributed
as in Fig. 2. However, it is difficult to implement
such flow vector field distribution by using the static
matrix in (3).

3 A Hopfield Model with a Time
~Varying Weight Matrix

Consider an N-neuron continuous-time network whose
dynamics are described by

N
dz’,; )
TE{ =—z +;tijsgn(zj), 1=1,2,.,N (4)

where #; is the input to neuron %, t;; is the connection
weight between the ith and the jth neurons. Further-
more, 7 > 0 is a time constant. Here the weight matrix
T = [ti;] is considered as a time-varying function of
the form

T(t) = Mt)Mq + (1 — \(t)) Ma, (5)
in which
_ 1 T +1 T
My == SooumonT+ S0 urumT ],
peODD we€EVEN ,
(62)
and

Z Up(U;,L)T 4 Z U#-I-I(Uy)T

wEEVEN pEODD

(6b)
In (6) ODD and EVEN denote the sets of pattern
indices corresponding to odd and even numbers, re-
spectively. A pattern is said to be an even (odd) pat-
tern if its pattern index pp € EVEN (ODD). The ma-
trix T'(¢) is made up of two static (constant) matrices:
Miand Ms. In (5) A(?) is a time-varying scaling fac-
tor function, 0 < A\(f) < 1. The weight matrix T'(¢)
is organized by (5) so-that its components are deter-
mined from the weighted average of Myand My. As
seen from (5), if A(t) approaches 1 and 0, T'(¢) will be
dominated by M; and M, respectively. The model is
called the time-varying Hopfield model (TVHM) here
for its time-varying weight matrix.
Myand M in (6) are constructed in such a way that
their auto-correlation and cross-correlation parts are
encoded from two different sets of patterns. For ex-
ample, the cross-correlation part of M;is encoded by
the even patterns whereas the auto-correlation part is
encoded by the odd patterns. The matrix M3 is con-
structed in a similar but contrary way. In fact, M;
and My are complements for each other. First con-
sider an extreme case where A(t) — 1. The matrix
T(t) is dominated by M;. In this case the flow at
each even pattern U# will point to the next pattern
U#*+1. In contrary the flow at each odd pattern will
point to itself. In the other case where A(t) — 0, a
similar but contrary result is obtained. The flow vec-
tor field distribution of the two cases is schematically
represented by Fig. 3 and Fig. 4. The idea behind
the formulation of T'(¢) is that flow vectors between
any two adj/ggent stored patterns (if they exist) are of
the same directions. Furthermore, with the aid of the
time-varying scaling factor \(¢), the flow vector field
distribution around a stored pattern can be modulated
by the time variable .
The following two theorems emphasis how \(t) modu-
lates the directions of the flow vectors within the state
space.
Theorem 1: Suppose that the Hamming distance be-
tween a state Z and a stored pattern U*" is H (Z,U+")
and

.. _N Ld .
H(Z,U“)g—i; 12X =1 = 5~ Jageul | =74 (N)

pEpe
(M)
where «,-, denotes the normalized correlation or
overlap between U and a different stored pattern Uk,
that is,

e = (L/N)(UH)TU. (8)

According to the state equation (4), the flow vector at
Z will point to

- [ A—1,endy’ €ODD
i )
(o) U™ if { A =0, 2nd y* € EVEN
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or

11 A—1,and p* € EVEN
po-1 ]
(b) UF ™ if { A—+0, and u* € ODD
Proof: see Appendix L.
From theorem 1, the following facts can be deduced.

i) Flow vector field in Fig. 3 and Fig. 4 can be
realized if A — 1 and \ — 0, respectively.

if) 7#"(\) can be referred to as the radiz of atirac-
tion (around the pattern U#") and is determined
by the correlations {ap}h_y z,,. 2nd the scal-
ing factor A(t). In other words, the size of a
valid 7" ()\) can be modulated by A(t) as long

P
as Y |apeu) <L
pEpt

Tt is desired that the network starts with an initial
state and visits the transient (unstable) attractors
one by one till the final (stable) attractor is reached.
Flow vector field distribution must be altered back
and forth between those depicting in Fig. 3 and Fig.
4. For this reason, A\(t) must be assigned as a periodi-
cal function of time and its value will change between
0 and 1. Though there are many candidates for A(t),
without loss of generality, only the triangular wave
function is discussed in the rest of this paper. Its
waveform is depicted in Fig. 5.

The height h and the period of the waveform P have
close relation with the recalling performance of the
network. To emphasize this, the following theorem is
proposed.

Theorem 2: Once the network reaches a stored pattern
U its state will not change as long as A > (p*) (
if u* € ODD) or A < n(p*) (if p* € EVEN) where

" m]?x{nk(p*)} if u* € ODD
n(w) = mkin{nk(p*)} if u* € EVEN ©)

and
z u’;“a,,“ + Z Up Qe
ﬂk(/lv’) — /.LEODDp V peEVEN (10)
Z(“l)”(“g - u’,:"'l)a#,#
=1

Proof: see Appendix II.

The description in theorem 2 implies that the time
duration of the transient (unstable) attractors can be
controlled once the variation of A(t) is under con-
trolled. In other words, the time the system stayed
in a specific state U* is determined proportionally
by the time of which the magnitude of A satisfies
0 < A < p(p) or n(g*) < A < 1. Moreover, since
each stored pattern has to be visited within 2 nonzero
time interval, the height of the triangular wave must
satisfy:

h > 2 max{Amax — 0.5, 0.5 = Amin},  (11)

where

Amin = min . (7(4)}

This property is schematically represented in Fig. 5.
Fig. 6-Fig. 8 show examples of the TVHM recalling
procedure. The stored pattern sequence is generated
by random (each uj takes the values +1 or —1 with
equal probabilities), and the experimental conditions
are: p =6, N = 100, and 7 = 10. The objective is
to store the following relation (a transient sequence of
states leading to an attractor):

U U2 — . = UP— U?

by a TVHM. It is desired that UP is the only stable
attractor, while the others are all transient (unsta-
ble) attractors. Let UP*! = UP be an augmented
vector, the sequence can be stored in M; and Mz
by (6) for p = 1,.., p, p+ L. This is because U?
will be the stable attractor if UP*! = UP. In order
to simulate the dynamics by a computer, here 2 dis-
crete approximation of (4) is applied. Substituting
dz;fdt = {z(t+ A t) — z;(t)}/ At into (4), the follow-
ing equation is obtained:

N
ailt+ 8 8) = (1= A t/T)a(0) + (8 1/7) 3 tsson(z),
j=1
(13)
Fig. 6 “Fig. 9 are obtained by setting A £ = 1, the
period of triangular wave P is set to 67 in Fig. 6.
The magnitude of P should be chosen carefully. In
general, if P small the system dynamics (13) may not
catch up with the variation of ¢ (see Fig. 7). On
the other hand, a too large P may reduce the time
duration of the transient (see Fig. 8). By experiment,
the typical values are found to be 47 < P < 157.
Pig. 6 and Fig. 9 demonstrate how h modulates the
system dynamics. In this example, Amax = 0.5652
and Amin = 0.3059. A perfect recall can be expected
if Amax < 0.5+ h/2 and Apin > 0.5 — h/2 (ref. Fig. 5
& (11)). Fig. 9 shows that it is possible to produce
an imperfect recall if one use a triangular wave with
height h = 0.3 > 2(0.5 — A\pin) = 0.2882.

4 A Way of Increasing the Storage
Capacity of the TVHMSs

M; and M; obtained by (6) may fail to produce cor-
rect sequence when p is large. Due to the use of
outer-product type of correlation matrices, the stor-
age capacity of (6) is very low. However, since the
problem can be transformed to a linear separation
problem {or a perceptron problem [15]). There are
many alternative methods, such as the perceptron al-
gorithm (Minsky and Papert, [15]), the pocket algo-
rithm (Gallent, [16]), the H-K rule (Ho and Kashyap,
[17]), the minimum-overlap algorithm (Krauth and
Mezard, [18]), and the pseudo-inverse technique [19],
which can be utilized to improve the capacity in cer-
tain degree.The following illustration shows how one
can learn M; and My by means of the pseudo-inverse
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technique(PIT, [19]). Note that the problem can be
rewritten as finding My and M, such that

U# ifpe ODD
l]l—t — — .
My —{ Ul if uc EVEN p=1..p
| (14)
and
Uk if uc EBVEN
B -
MU _{ Ukt i pe ODD p=1..p

Without loss of generality, let UP*! = UP such that
the final pattern UP will be a stable attractor. Then
(14) and (15) can be further reduced to 2 pair of ma-
trix equations

MY = 4; (16a)
and
M% = B, (16b)
where
= (U U%, .., UP), (17)
A (U, U3, U3,..,UPL.UP"2 UP) if peven
- (UL, U3,U3,...,UP,UP) Jif podd
(18)
and B =
(U2,0%,U04, U4, ...,UP,UP) if peven
(U2, 0%, U4 U4,..,UP-L.UP-L UP)  if podd
(19)
Note that 4,B,Z € {—1,1}*P. The solution of (16)
will be
M1 - A2+,
{ e ao (20)

where &% is the pseudo-inverse [14] of £ . For exam-
ple, if T has full column rank, i.e., (SX7) is invertible,
Z* can be computed by using a simple matrix equa-
tion, e.g., £+ = £T(ZZT)~1. When the columns of
are linearly dependent, £ can be obtained by using
the singuler value decomposition (SVD) approach. In
the latter case My = ATt is an approximate solution
of (16a) which minimizes the error £ = ||A — M Z||
(| denctes the Euclidean norm operator).

5 A Pattern Sequence Recognition
Example

This example shows that the TVHM is capable of pro-
ducing many temporal evolutions by only two weight
matrices M, & Ms. The objective is to train a TVHM
to perform the three sequences shown in Fig. 10. Here
all patterns are composed of 9 x 9 small pixels cor-
responding to vectors in {—1, 1}8*. The first row
in Fig. 10 represents digits ”1” to “4”; the second
& third rows are the corresponding numbers in Chi-
nese and Roman representations, respectively. The
weight matrices M; and M, are obtained by using
(20). After learning has been performed, the initial
state of the TVHM was applied externally, and the
sampled state variation Z(0), Z(4), Z(8), ..., Z(92),
was recorded. In this example, the experimental con-
ditionsare: P=47,h=09,7=10,and At=1. Ta-
ble I shows the results of successful pattern sequence
recalling when noisy patterns, U/, U5, and U° are

used as initial states of the TVHM. The noise was cre-
ated by randomly inverting each bit from 41 to —1
or vice versa with a specific Hamming distance. For
2 noisy input, if the corresponding stored stable at-
tractor (pattern) is recalled, it is a success; otherwise
it is a failure. The percentage of successful recall is
summarized in Table I where each datum is obtained
from average of 100 independent trial runs. With 20,
12, and 12 noisy pixels, the TVHM attains approxi-
mately 75% correct recalls for sequences, U1 — U4,
U U 8 and U° — U2, respectively. One example
of the recall procedure is depicted in Fig. 11.

6 Conclusions

In this paper, a possible way of realizing pattern se-
quence recognition using TVHM is proposed. The
training pattern sequence is stored in a TVHM by us-
ing two different but complementary encoded weight
matrices. The model is operated with continuous-
time dynamics in which the weight matrix is varied
with time. Theorems regarding the radii of attraction
and the recalling dynamics of the HTVHM havé been
investigated. On realizing sequence recognition, the
proposed TVHM possesses advantages over the exist-
ing neural models: (i) the structure is simpler than
those modeéls which incorporate delay mechanisms. (ii)
the training set is original; no additional interpolated
patterns required. The validity, recall capability, and
the applications of the proposed TVHM are verified
by computer simulations.
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Appendix I

Proof of theorem 1: Let Z be a state in the defined
state space S. The distribution of flow vectors in S
is tschematically represented by Fig. 3 and Fig. 4.
Flow at any arbitrary state Z is nearly parallel with
the vector V(Z) = T(¢)Z. By (5) and (6), this vector
will be given by V(Z) =T(t)Z =

% A Z U [(U)T2) (22)
#€ODD
A S UR (UM 2]
rEBVEN

+H1=-2 > vr[uHTz)

REEVEN

+H1=N) > e [(uHTZ]
reODD

Now consider the following different cases:
AT A—1
Case 1: Assume Z is closed to a stored pattern U*
where * is an odd number. Then flow at Z will point
to UFif

[T()Zhut >0,Y &
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, ie., vector sgn[T'(t)Z] and U* are of the same di-
rections. Let D), be the Hamming distance between
Z and a stored pattern U*, D, = H( Z , U*), from
(22),

[T(6) 2ty
A
> | W=2D) - > IN-2D,
p€ODD, p#p*
- 5 IN-2D,] +Q-]_V—’\)
pEEVEN
- Y IN-2DJ = 3 IN-2D,
pEBVEN reODD

% (N=2D,)— > |N—2DPI) (23)

pFEps

1— A
LNy,
p=1
= a

Let o, = (1/N)(U*)TZ and ape, = (1/N)(U*)TUH.
From the triangular inequality of the Euclidean dis-
tance among the relevant vectors, one has

|N ~2D,| = N |oy| < Nloyep| +2D,- (24)

So
N P
a > I (N —=2Dp)— ; [V |aye u| +2D,-] [25)
p I.lv
1-2) [&
_(_N) (Z [V Jorye +2Dp-])
. p=1
- = —2pD,. —N) | >0
pEp

The last inequality in (25) is satisfied whenever

N
Dy 5 2 -1~ _S_:lauyl (26)
pER

Case 2: Assume Z is closed to a stored pattern U*
where ,u is an even number. Then flow at Z will pomt
to UK +1 if

[T() Z]xul +* > 0, k.

From (22), one can obtain the same conclusion as in
(26).

B AN—0

Case 1: Assume Z is closed to a stored pattern U*
where p* is an odd number. Then flow at Z will point
to U+ if

[T(t)Z)ul *' >0,V k.

Case 2: Assume Z is closed to a stored pattern U*
where p1* is an even number. Then flow at Z will point
to U* if .

[T Z)a >0,V k.
Similar analysis has been performed for the above two
cases, the obtained result is

D<]—V-12)\

Z lopepl § - (28)
pEp*

Finally, combining (26) with (28) yields (7). The proof
is thus completed.

Appendix II

Proof of theorem 2:

Case 1: Assume the network reaches a stored pattern
U* where p* € ODD. Its state will not change as long
as

son[T(§)U* | = U* (29)
Condition (29) can be rewritten as
[T@HU* gu” >0, V k. (30)

If U*"is an odd pattern, one can find the lower bound
of A (i.e,, A > me(p®)) which ensures (30). Substi-

tuting Z = U* into (23) and let D,. = O, one has
[TEU* Ty =

A .

A B > (N —2Dy.,.)ulu

pEODD,psp*

+ Y (N—2D ) e
rEEVEN

(1= :
A Z (N = 2D p g,

pE€EVEN

+ 3 (N —2Dp)u”

p€ODD
P X .

= A (DR — u)u oy
=1

ptl, p”
+ E Uy, uk Qe
peEODD
> 0

The last inequality is satisfied whenever (10) hold.
Moreover, since A > ng(p”) must hold for £ = 1,...,N.
One must choose

A > n(p?) = max{ng(p")}

which is the p* € ODD case in (9).

Case 2: Assume the network reaches a stored pattern
U* where p* € EVEN. Substituting Z = U* into (26)
and let D,- =0, similar analysis has been performed
and the result is [T()U* Jyul’ > 0 whenever \ <
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Ne(17). Again, since A < n(u*) must hold for k =
1,...,N. One must choose

A<p(pt) = min{7(p")}

which is the 4* € EVEN ease in (9). The proof is
thus completed.
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Figure 5 — The waveform of A(Z). A triangular wave
with period P and height h
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Figure 9 — Imperfect recall of a pattern sequence due
to an improper value of h (h = 0.3 > 2(0.5 —

0.2882)

I

Figure 10 — Three pattern sequences for the pattern
sequence recognition example

Figure 11 — Convergence of the initial state Z(0) =
U5 (upper-left) to the final state Z (92) = U3(lower-
right). The initial state Z(0) is obtained from invert-
ing ten pixels (about 25 %) of US
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RECALL PROBABILITY AGAINST HAMMING DISTANCE FOR PTVEMS

HO+v#)| 2 1 4l 6| 8 w0 w2|wlws|is]wolax

o -y 1 1 1 1 1 | 099|097 )|089 086 [078]063] 035

U5 —us |09 |os2|o7s|om 0.76 [ 0.76 { 0.73 [ 0.70 | 0.65 | 0.65 | 0.54 | 0.47

g —yn 1 1098|090 |08 [072]075]071]059)057 | 048 | 0.35 | 6.27

Figure 12 ~

B-208



