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On the cycle embedding of pancake graphs *
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abstract

The ring structure is important for distributed com-
puting, and it is useful to construct a hamiltonian cy-
cle or rings of various length in the network. Kanevsky
and Feng [3] proved that all cycles of length ! where
6 <l <n!-2o0rl=n!canbeembedded in the pancake
graphs Gr. Later, Senoussi and Lavault [9] presented
the embedding of ring of length [, 3 < ! < nl, with
dilation 2 in the pancake graphs G,. These results
prompt us to explore the possibility of embedding a
cycle of length n! — 1 into G, and to establish some
topological properties of the pancake graphs. In this
paper, we prove that there exists a hamiltonian path
joining any two nodes of the pancake graph G». And
we show that the pancake graph still has a hamilto-
nian cycle in the presence of one faulty node. As a
consequence, a cycle of length n! — 1 can be embedded
in Gn. And we expand Kanevsky and Feng’s result as
follows: A cycle of length ! can be embedded in the
pancake graph G, n > 4, if and only if 6 <1 < nl.

Keywords: pancake graph, star graph, fault tolerant,
hamiltonian, hamiltonian connected.

1. Introduction

Since there are a rapid growing need for large scale
computation and an ever increasing density of low
cost VLSI circuit, a number of architectures have been
studied. Most of the well accepted parallel topologies
stem from Cayley graphs. Because these topologies
can be recursively decomposed, they provide a simple
way for the application of recursive algorithms.

Among hierarchical Cayley graphs, other than the
binary hypercube, both the star and pancake inter-
connection networks are attractive alternatives to the
hypercube in several aspects [1, 2]. For example, both
n-star and n-pancake interconnection networks has n!
nodes, and both their degree and diameter are O(n),
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that is, sublogarithmic in the number of nodes, while
a hypercube with n! nodes has degree and diameter of
O(log n!) = O(nlog n), i.e., logarithmic in the number
of nodes {7].

The n-dimensional pancake network, denoted by
G, has several attractive properties. It is vertex sym-
metric, which implies that the congestion problems for
transmission are minimized since the load will be dis-
tributed uniformly through all the vertices. Moreover,
the pancake network has a very simple routing algo-
rithm because it is built using algebraic groups (Cay-
ley groups).- Other attractive properties include that
the pancake graphs are strongly hierarchical, maxi-
mally fault tolerant, hamiltonian, have a small diame-
ter which is smaller than hypercubes [1, 3, 5, 6, 8).

The ring structure is important for distributed com-
puting, it allows communication with low cost because
the number of edges of the ring is low, it is free of
branching, and it is often used in local area networks,
for example, Token Ring [10]. Hence it is useful to
construct a hamiltonian cycle or ring structure in the
network. In [3], Kanevsky and Feng proved that all
cycles of length | where 6 <! < n!—2or!=n!can be
embedded in the pancake graphs G. In [9], Senoussi
and Lavault presented the embedding of ring of length
l, 3 <1 < nl, with dilation 2 into the pancake graph
Gr. These results prompt us to explore the possibility
of embedding a cycle of length n! — 1 into G,. For
example, we can find a cycle of length 4! — 1 in G4, as
shown in Fig 4. )

In this paper, we study some intriguing topologi-
cal properties of the pancake networks G,. First, we
prove that there exists a hamiltonian path between
any two nodes of the pancake networks. Based on the
existence of hamiltonian paths between every pair of
nodes, we then show that there exists a hamiltonian
cycle in the pancake networks with the occurring of
one fanlty node. As a consequence, a cycle of length
n! — 1 can be embedded into G, for any n > 4. We
then expand Kanevsky and Feng’s result as follows:
A cycle of length I can be embedded in the pancake
graphs G,, n >4, ifand only if 6 <1 < nl.

The paper is organized as follows. In Section 2,
we describe the definitions and terminologies used in
this paper. Section 3 is devoted to the Hamiltonian
properties and the embedding of rings in the pancake
networks. Section 4 summarizes the result of this pa-
per.
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Fig 1. Eramples of pancake graphs.

2. Definitions and preliminaries

An interconnection network is usually represented
by a graph. Most of the graph definitions used in this
paper are standard (see [4]). Let G = (V,E) be a
graph where V' denotes the vertex/node set and E de-
notes the edge set of G. A cycle that traverses every
vertex of the graph G exactly once is called a hamilto-
nian cycle. A graph G is hamiltonian if it contains a
hamiltonian cycle. A hamiltonian path in graph G is
a path that visits every vertex exactly once. A graph
G is hamiltonian connected if every two vertices of G
are connected by a hamiltonian path. A graph G is
called I-node fault-tolerant hamiltonian, or simply 1-
node hamiltonian, if it remains hamiltonian after re-
moving any single node.

Let (ny = {1,2,...,n}, p = (p1pz...p~) be a
permutation such that p; € (n) and p; # p; for

i 7 j. An n-dimensional pancake graph G, =
(Pn, Br) of dimension n is defined as follows: Pp, =
{(mp2 .. .pn) | pi € {n), pi # p; for i # j} and Bp =
{((prp2 .. . PsPi+1 .- -Pn), (PiPi=1 ... P2P1Pj+1 - . Pn)) |

(mp2...pn) € P, and 2 < j < n}. In other words, the
set of P, of all permutations form the vertices of G,.
Two nodes u and v are adjacent if and only if the
permutation corresponding to node v can be obtained
from that of u by flipping the objects in positions 1
through j. For each permutation, we can flip any num-
ber of objects from 1st to jth positions with 2 < j < n,
thus G, is regular with degree n — 1, |P,| = n!, and
|E,| = n{(n — 1)/2. Examples of G, for 2 < n < 4,
are given in Fig. 1.

Let p = (pip2...pn) be any permutation in P,.
We define Head(p) to be p1, which is the object of the
leftmost position; and define T'ail(p) to be p,, which is
the object of the rightmost position. Moreover, we de-
fine Flip;(p) to be (pipi-1 ...P1Pi+1Di+2 - - - Pa), Which
is obtained by flipping the objects of p between po-
sitions 1 through i for 2 < i < n. Let P,{k] denote
the set of all permutations p with Tail(p) = k. And
let Grlk] be the subgraph induced by P.{k]. Ga[k]
is called the nth projection corresponding to the kth
symbol. The following lemma follows directly from the
definition of pancake networks.

Lemma 1 G.[k] is isomorphic to o (n — 1)-

dimensional pancake graph Gn_;.

The pancake graph can also be defined recursively: G,
is constructed from n copies of (n — 1)-dimensional
pancake graphs G,[k] for 1 < k < n. G.[7] and G.[j],
i # j, are connected by (n — 2)! edges of the form
((G...9),(z...3)). We consider each G,[k] to be a su-
per node. The (n — 2)! edges connecting G»[z] and
Ghljl, i # j, are called esternal edges, while the edges
joining a pair of nodes in the same G, [k] are called in-
ternal edges. We denote those (n — 2)! external edges
collectively to be a super edge between super nodes
Ghlt] and GL{j]. Let G5, = (P;, E;) where Py is the
set of super nodes G.[k], 1 < k < n, and E;, is the set
of super edges between these super nodes. Obviously
the number of super nodes of G5, is |P;| = n, and the
number of super edges of G}, is |E;| = n(n - 1)/2.

By the definition of the pancake graph, we have the
following lemmas.

Lemma 2 Gy, is a complete graph.

Lemma 3 Let p = (pip2...pn) be a node in Grlp.].
Among the n — 1 adjacent nodes of p, exactly one of
them is not in Gp[pr], namely Flip,(p), and the other
n—2 adjacent nodes are all n the same nth projection

Ghlpnl].

In other words, each node p = (pip2...pn) in
Gr[p») has exactly one external edge (p, Flipa(p)) in-
cident to it, and has n — 2 internal edges (p, F'lip;(p))
for 2 < k < n —1 incident to it.

3. Hamiltonian properties and embedding
of cycles

At the beginning of this section, we present the way
how to connect any set of m nth projections G,[i1],
Ghalizl, ..., Galim] by m — 1 external edges. The re-
marks about the notations used in this paper are first
explained. Considering each nth projection Gr[i;] as a
super node for 1 < j < m, the subgraph of G, induced
by Galir], Guliz], ..., Gelim] is a complete graph on
the m super nodes connected by the super edges. To
simaplify the notations, we relabel the nth projections
Ghlix] to be Gofk], 1 < k € m. In the remainder
of this paper, instead of writing Gnli1], Gnliol, ...,
Ghrlim], we will write these nth projections as Gn[1],
G.]2), ..., Golm). The notation s € G[i] signifies
that s is a node in G [4].

Lemma 4 Let {Gr[l],Gr[2],...,Gr[m]} be a set of
nth projections, n > 4. Let u be a node in Gn[l] and
v be a node in Gp(m]. Then G,[i] end Gn[t +1] can
be connected by an external edge (s:,diy1) where s; €
Gali] and diqy € Goli+ 1], for 1 € k < m — 1, such
that s1 # u and dm # v.

Proof. Consider the choice of the first edge (s1,d>).
Because the number of nodes of the form (Z...1) in
Gr[1] is (n—2)! and n > 4, we can always find a nodes
s1 other than u in G,[1] such that Head(s:1) =

Obviously Flip,(s1) is a node in G, [2]. Therefore, we
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G,[3) G,[4]

Fig 2. A pseudo path from G, 10 G, [m]

set da to be Flip,(s1). Then (s1,d2) is an external
edge joining Gi[1] to G[2] such that s1 # u.

Then we choose the external edges (si, di4+1) for 2 <
i < m— 2 as follows. We set s; to be any node of
Ga[i] with Head(s;) =i + 1. Then we set d;+, to be
Flip,(s;). Because Tail(d;+1) is i + 1, di41 is a node
in Gr[i+1]. Thus, (si,dit1) is an external edge joining
Grli] to Gali +1).

Finally, we show the way how to choose the external
edge (sm-1,dm) with di, # v. First, we choose d.,
other than v from G,[m] such that Head(d,) = m—1.
Because the number of nodes of the form (m—1...m)
in Gplm] is (n —2)! and n > 4, there exists at least
one node which satisfies our requirement. Then, we set
Sm—1 to be Flip,(d.,). Because Tail(s;m—1) is m — 1,
Sm-1 is a node in G[m — 1]. Thus, (sm-1,dmn) is an
external edge joining G.[m — 1] to G,[m].

Therefore, the edges (s1,d2), (s2,da), ...
($m-1,dm) satisfy our requirement and this lemma is
proved. (]

In the previous lemma, the m nth projections are
connected by m — 1 external edges to form a “path-
like” structure. We call this “path-like” structure
a pseudo path. More precisely, a psendo path de-
noted by (u; Gin[l], Ga[2], ..., Gnlm]; v) where
u € Gp[l] and v € Gnp|m]| consists of m nth projec-
tions Gr[1], Gx[2],...,Gr[m] and m—1 external edges
(si,dig1) such that s; € Goli], diq1 € Grli+1], 51 # u,
and d,, #v, where2<m<nandl1<i<m-—1. Let
dy be u and s, be v. By Lemma 3 it can be checked
that d; # s; for every ¢. Note that if there exists a
hamiltonian path between d; and s; in each subgraph
Grli) for 1 < ¢ < m, then the psendo path joining
Gar[1] to Go[m] can be extended to form a hamilto-
nian path from v to v in the subgraph of G, induced
by G{1], Ga[2], ..., Gn[m]. See the illustration of Fig
2. The following theorem is motivated by this idea.

Theorem 1 The n-dimensional pancake graph G, is
hamiltonian connected for n > 4.

Proof. We prove this theorem by induction.

For n = 4, it is easy to find all hamiltonian paths
between one fixed node and all the other nodes. For
simplicity, we omit these paths here. )

Assume that this theorem holds for ¥ < n—1. That
is, there exists a hamiltonian path between any two
nodes in a (n — 1)-dimensional pancake graph. Next,
we show the way how to construct a hamiltonian path
between any two nodes u and v in the n-dimensional
pancake graph G,. According to the locations of u
and v, we discuss the following two cases:

1. u and v are not in the same nth projection:
Since G, is a complete graph, to simplify the no-
tations, we may relabel all the nth projections
and assume that v € G,[1] and v € Gi[n]. By
Lemma 4, there exists a pseudo path (u; Ga[1],
Gr[2], ..., Gr[n]; v) such that G,[i] and Ga[i+1]
are connected by an external edge (s;,diy1), 1 <
i <n-—1, where sy Zuand dn, #v. Letdy =u
and s, = v. By induction hypothesis, G,[i] is
hamiltonian connected for each 1 < i < n, so
there exists a hamiltonian path between the node
pair d; and s; in the subgraph G,[i]. Combining
these n hamiltonian paths of each nth projection
with the pseudo path creates a hamiltonian path
from u to v in G, as illustrated in Fig 3(a).

2. v and v are in the same nth projection: With-
out loss of generality, we assume that both » and
v are nodes of G,[n]. By induction hypothesis,
there exists a hamiltonian path H; from u to v
in the subgraph G, [n]. Let (a,b) be an arbitrary
edge of this path H;. Let o’ be Flip,(a) and let b’
be Flip,(b). Because a and b are adjacent nodes,
Head(a) # Head(b). Thus, a’ and b’ are in dif-
ferent nth projections. Since G% is a complete
graph, to simplify the notations, we may rela-
bel all the nth projections and assume that a’ €
Gn[1] and b’ € Gn[n—1]. By Lemma 4, there ex-
ists a pseudo path {a’; Gr[1], G»[2], ..., Galn—
1]; &') such that Gy.[i] and Gn[i+1] are connected
by an external edge (s;,di+1) for 1 < i<n—-2
where 51 # o' and d,—) # b'. Let dp = o' and
$n—1 = b'. By induction hypothesis, G,[i] is
hamiltonian connected for each 1 < ¢z < n—1,
so there exists a hamiltonian path from d; to s;
in the subgraph Gr[i]. Combining these n — 1
hamiltonian paths of each nth projection and the
pseudo path, we get a hamiltonian path H: from
a' to b’ in the subgraph of G, induced by the
n—1 nth projections G,[1], G»[2], ..., Gn[n—1].
Then, combining H; and H», adding two exter-
nal edges (a,a’) and (b, '), and removing the edge
(a,b) in Hi, we have a hamiltonian path from u
to v in G, as illustrated in Fig 3(b).

This completes the proof of the theorem. [}

The following result follows directly from Theorem
1.
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Fig 4. A hamiltonian cycle of G, with one faulty node (1234)

G,ln]
Corollary 1 Given any edge (p,q) in the pancake
] graph G, n > 4, there egists a hamiltonian cycle con-
// taining the edge (p,q).
//

In the following theorem, we show that the pancake
graph still has a hamiltonian cycle in the presence of
one faulty node.

Theorem 2 The n-dimensional pancake graph G is
1-node hamiltonian for n > 4.

‘Proof. We show this theorem by induction.

For n = 4, Fig 4 presents a fault-free hamiltonian
cycle of G4 with one faulty node (1234). The bold
lines indicate a cycle of length 4! — 1 = 23. Since
pancake graph is node symmetric, this theorem holds
for 4-dimensional pancake graph with any one faulty
node.

Assume that this theorem holds for k¥ < n — 1.
That is, there exists a fault-free hamiltonian cycle in
a (n — 1)-dimensional pancake graph G,—1 under any
one faulty node occurring.

Now we show the way how to construct a hamil-
tonian cycle in the n-dimensional pancake graph Gn
in the presence of one faulty node. Without loss of
generality, we assume that the only faulty node, de-
noted by f, is in G,[n]. By induction hypothesis,
there exists a fault-free hamiltonian cycle H; in the
subgraph Gr[n] — f. Let (a,b) be an arbitrary edge
of this hamiltonian cycle, then Head(a) # Head(b).
Let o’ be Flip,(a) and let b’ be Flip,(b). So, a’ and
b’ are in different nth projections. Using the similar
argument in Theorem 1, we assume that o’ € Gyfl]
and b € Ga[n —1]. By Lemma 4, there exists a
pseudo path {a’; Gi[l], Ga[2], ..., Galn —1]; ¥)
such that Gr[i] and G,[: + 1] are connected by the ex-
ternal edge (si,di41) for 1 <i < n— 2 where s1 # a
and do—1 # . Let di = o’ and s,—1 = &'. Since
each G,[i] is a (n — 1)-dimensional pancake graph, by
Theorem 1, there exists a hamiltonian path joining d;
to s; in the subgraph Gy[i], 1 < ¢ < n—1. Combining
these n — 1 hamiltonian paths of each nth projection
and the pseudo path, we get a hamiltonian path H»
from a’ to &' in the subgraph of G, induced by the

(b) u and v are in the same nth projection

Fig 3. INustration of Theorem 1
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Fig 5. Ilustration of Theorem 2

n — 1 nth projections G[i], 1 <7 < n— 1. Finally,
we combine H; and H by adding two external edges
(a,a’) and (b,b') and removing the edge (a,b) in H;.
The resulting cycle is a fault-free hamiltonian cycle in
Gn — f as illustrated in Fig 5. Thus, this theorem
holds. o

Therefore, deleting any one node from the pancake
network, the resulting graph still has a hamiltonian
cycle. Since a n-dimensional pancake graph has n!
nodes, the following result follows from Theorem 2.

Corollary 2 A cycle of length n! ~ 1 can be embedded
into the n-dimensional pancake graph G, n > 4.

The following theorem is proposed by Kanevsky
and Feng in [3].

Theorem 3 All cycles of length l where 6 <1 < n!-2,
orl = n! can be embedded in the pancake graph Gn.

This theorem does not mention the case I = n! — 1,
or | < 6. We have proven that for [ = n! — 1 the cycle
of length ! = n! — 1 can also be embedded in pancake
graph G,. As for I < 6, the following lemma gives a
negative answer.

Lemma 5 The panceke graph G, does not contain
any cycle of length 1 < 6.

Proof.  We show this lemma by induction. Since
a 2-dimensional pancake graph G» has only one edge,
and a 3-dimensional pancake graph G5 is a 6-cycle,
obviously this lemma holds for n =2 and n = 3.

Assume that the lemma is true for n—1. Thus, each
cycle in a (n—1)-dimensional pancake graph G,— has
length at least 6.

Now we show that each cycle in a n-dimensional
pancake graph G, has length at least 6. Let C be an
arbitrary cycle in G. Suppose that C is totally within
one nth projection. By induction, the length of C is
at least 6.

Assume that C goes through more than three nth
projections. Then C contains at least three external
edges. By Lemma 3, no two external edges are incident
to each other, so C has length at least 6.

Now suppose that C goes through exactly two nth
projections Grfi] and Gr[j]. Then C contains at
least two external edges (a, Flips(a)) and (b, Flip, (b))
where a and b are two nodes in Gy [i], and Flipy(a) and
Flip, (b) are two nodes in G [j]. If (a,d) is an internal
edge in G.{i}, then Head(a) # Head(b). So, Flip,(a)
and Flip,(b) are in different nth projections. This is
not the case. So a and b are not adjacent. Similarly,
Flips(a) and Flip,(b) are not adjacent either. There-
fore, C has length at least 6. This proves the lemma.
[m]

By Corollary 2, Theorem 3, and Lemma 5, we ex-
pand Kanevsky and Feng’s result as follows.

Theorem 4 A cycle of length | can be embedded in
the pancake graph Gn, n > 4, if and only ¢f 6 <1 < n!.

4. Conclusion

The main purpose of this paper is to study some
intriguing topological properties of the pancake net-
works G». We prove that there exists a hamiltonian
path between any two nodes of G,. This result is use-
ful to construct a hamiltonian cycle in a faulty pancake
network. Applying this result we show that there ex-
ists a hamiltonian cycle in G, with the occurring of any
one faulty node. As a consequence, a cycle of length
n! — 1 can be embedded into G, for any n > 4. We
then expand Kanevsky and Feng's result as follows:
A cycle of length [ can be embedded in the pancake
graph Gr, n >4, if and only if 6§ <1 < n!.
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