R+ N\ E B E R E®

MPICkpt: A Transparent Checkpointing Tool for MPI

C.R. Dow, J. S. Chen,J. C. Chen, and M. C. Hsich
Department of Information Engineering

Feng Chia University, Taichung, Taiwan

{crdow, jschen, jechen, mchsieh} @crab.iecs.feu.edutw

Abstract

This work designs and implements MPICkpt, a transparent
and multifimctional ~ checkpointing system for MPL In
addition to employing two kinds of checkpointing techniques,
i.e. coordinated and independent, MPICkpt includes various
optimized checkpointing functions, e.g. forked. incremental,
and compressed functions, 1o reduce the checkpointing
overhead. The user can either take checkpoints in some
specified locations of the source program or let the system do
so automatically and in a fully transparent manner. In
addition, a checkpointing visualization facility is developed
and implemenied to evaluate the effectiveness of various
checkpointing techniques. Experimental results indicate that
the performance of checkpointing depends on how the
applications function.

Kevwords: Parallel/distributed systems, MP1, fault-tolerance,
checkpointing, rollback recovery, and visualization tools.

1. Introduction

Checkpointing is extensively wused in many
distributed/parallel applications, such as fault-tolerance {5, 91,
debugging [8, 10, 13], and mobile computing [1, 3, 25].
During normal execution, the state of each process is
periodically saved on stable storage as a checkpoint. When a
failure occurs, each process can then roll back to its previous
checkpoint by reloading the saved state. In a message passing
system, checkpointing consists of two approaches:
coordinated and independent. The former involves a scenario
in which a process coordinates other processes to save their
state simultancously. The latter does not require system-wide
coordination and, therefore, may scale better [9].

The MPI (Message Passing Interface) standard [28-29]
largely focuses on providing a portable, efficient, and feasible
interface for message passing. Although various systems and
tools have been developed and implemented for MPL, e.g.
compilers, debuggers and performance evaluation tools, few
checkpointing systems have been developed for MPL In
general, most checkpointing systems are based on
coordinated checkpointing techniques. However,
demonstrating that coordinated checkpointing is more
appropriate than independent checkpointing techniques for
various applications is impossible. For instance, independent
checkpointing is more appropriate than coordinated
checkpointing with respect to mission-critical
service-providing applications [27). Thercfore, a
comprehensive checkpointing system should provide
coordinated and independent checkpointing facilities.

A checkpointing system is transparent if the user does
not need to change the source code of an application program
to take a checkpoint. Checkpointing transparency allows not

only for the concealment of checkpoints, but also for the user
to complete an application program without knowledge of
communication patterns and behaviors of the program.
Transparency conceals and renders anonymous the resources
of checkpointing that are not directly relevant to the
task-in-hand from the user. Although user level checkpointers
can advance the portability, transparency is difficult to
achieve in a user level checkpointing library [23].

In this work, these problems are resolved by designing
and implementing MPICkpt, a transparent and
multifunctional checkpointing system for MPI. Among the
range of faciliies that MPICkpt supports includes
coordinated and independent checkpointing functions,
sequential, forked, incremental, and compressed facilities, a
fully transparent checkpointing facility, a graphical user
interface, and a checkpointing visualization tool. The rest of
this paper is organized as follows. Scction 2 discusses
background material useful in this work. Section 3 describes
our system architecture. Section 4 presents an independent
checkpointing algorithm implemented in MPICkpt. Next,
Section § describes how to implement MPICkpt. Section 6
then illustrates the MPICkpt prototype and its functionalities.
Section 7 summarizes the experimental studies performed on
the MPICkpt prototype. Finally, conclusions and arcas for
future work are discussed in Section 8.

2. Related Work

Checkpoint-based roliback-recovery techuniques [1, 3-5,
9, 18-21, 27] can be classified into thrce categories:
coordinated checkpointing [1, 25]. independent checkpointing
[4, 9, 18], and communication-induced checkpointing [9, 19].
Coordinated checkpointing is not susceptible to the domino
effect since the processes always restart from the most recent
checkpoint. Also, recovery and garbage collection are both
simplified and stable storage overhead is lower than that for
independent checkpointing. The main disadvantage is the
sacrifice of process autonomy in taking checkpoints,
Independent (or uncoordinated) checkpointing allows each
process to decide independently when to take checkpoints.
The main advantage is the lower runtime overhead during
normal execution. The main disadvantage is the possibility of
the domino effect which may cause a large amount of useful
work to be undone regardless of how many checkpoints have
been taken. Communication-induced checkpointing is another
way to avoid the domino effect in independent checkpointing
protocols. A system-wide constrain on the checkpoint and
communication pattern is specified to guarantee recovery line
progression. Sufficient information is piggybacked on each
message so that the receiver can examine the information and
decide whether to take an adaptive checkpoint.

The MPI standard has been widely implemented, such

as in MPICH [6] and LAM {7]. Among the many tools (or
products) designed for MPI include p2d2 [13], ARCH (2],
Para++ [30], and MPIgdb [8]. p2d2 is a debugger server that
promotes portability of the user interface code by isolating
the system dependent code. ARCH is an object-oriented tool
for parallel programming on machines using the MPI
communication library. Para++ provides a C++ interface to
the MPI and PVM {11] message passing libraries. This
approach attempts to overload input and output operators to
perform communication. MPIgdb, an integrated debugging
system for MPI om cluster of workstations, provides
interactive and traced-based cyclical debuggirg functions,

Several checkpointing systems have been developed and
implemented, including libckpt [23], ickp [24], CLIP [22],
and CoCheck [26]. Libckpt is a portable checkpointing tool
for Unix. Several optimizations have been implemented in
libckpt to enhance the performance of checkpointing. Ickp is
a library that enables users of the Intel iPSC/860 to preserve
the execution state of their programs to disk. Ickp is an
important piece of work as it is the first checkpointer ever
written for a multicomputer. CLIP consists of two user-level
libraries, libNXckpt and libMPlckpt, thereby allowing NX
and MP1 application programmers to write fault-tolerant code
running on Intel Paragon multi-computers. CoCheck
(Consistent Checkpoints) provides an effective means of
creating consistent checkpoints of parallel applications which
can be used to migrate processes ot a parallel application to
new hosts when a part of the machines becomes unavailable.

3. System Architecture

MPICkpt largely focuses on integrating tault tolerance
to the MPI applications. MPICkpt supports two kinds of
checkpointing techniques, coordinated and independent, and
various optimized checkpointing techniques to reduce
checkpointing overhead and ease the process of
checkpointing MPICkpt consists of four major components:
a multi-functional checkpointing facility, a highly transparent
checkpointing mechanism, a graphic user interfacc. and a
checkpointing visualization facility.

Owing to that MPICkpt is developed for MPI, the
MPICkpt communication world is based on the MPI
communication world. Each node contains a monitor process
used to set up checkpoints, perform the garbage collection,
and ensure the consistency of checkpoints. A profiling
technique is used to wrap the original MPI functions to pack
some checkpointing information. The processes can
communicate with each other or access the file system server
by calling MPI functions. When constructing the MPI
Communication World, a MPI-based application can also
trigger the MPICkpt Communication World. In addition,
MPICkpt provides a graphical user interface to facilitate the
user in performing various checkpointing actions.

Checkpoints can be set up, either by the user to take
checkpoints in some specified locations or by the
checkpointing system to take checkpoints periodically after a
fixed time and without changing the source code. According
to Fig. 1, the MPICkpt system supports coordinated and
independent checkpointing functions, For coordinated
checkpointing, MP1Ckpt supports sync-and-stop technique to
form a consistent global checkpoint. MPICkpt also provides
bound elapsed progress when failures occur. For the
independent checkpointing function, MPICkpt supports an
adaptive independent checkpointing technique, as described

C-290

in Section 4. Moreover, among the various checkpointing
techniques that MPICkpt provides include sequential, forked,
incremental, and compressed techniques to support different
requirements. Sequential checkpointing is an approach for
which checkpointing overhead is essentially identical to
checkpoint latency. The process continues with execution
only after the state is completely saved on stable storage.
Incremental checkpointing can further reduce the overhead
and avoid rewriting portions of the process states that do not
change between consecutive checkpoints. Forked
checkpointing is another approach to reduce checkpoint
overhead. In this approach, a process wanting to take a
checkpoint forks a child process to save its state on stable
storage. These optimized techniques can be performed,
independent or combined with each other, for coordinated or
independent checkpointing,

f |

I MPI Appcations |

MPI Library

MPICkpt Library
Coordinated/Independent
Checkpointing

1DAJ38 LT HOMIN]

Figure 1: MPICkpt Architecture

4. Adaptive Independent Checkpointing

Conventional independent checkpointing techniques are
susceptible to the domino effect and.are difficult to perform
garbage collection. In this section, we present an adaptive
independent checkpointing algorithm [18] that has been
implemented in MPICkpt. The algorithm can guarantee no
useless checkpoints and a consistent global checkpoint always
exists. Furthermore, the algorithm is effective and has low
overhead in the length of piggybacked information. The
algorithm uses a Boolean vector to determine whether or not
to take an adaptive checkpoint for ecliminating useless
checkpoints. Every bit of this Boolean vector corresponds to
each node in a distributed system. Process P, upon taking a
new checkpoint and received at least one message in
the previous checkpoint™ s interval, sets the values of all bits of
this Boolean wector to true except bit i. This node then sends
the computational message in a piggybacked form with this
vector to other nodes. This control information is used to
inform other nodes that a new adaptive checkpoint may be
necessary to prevent useless checkpoints. Each node
maintains the following data structure:
maybe_useless: an array of » Boolean values at each node.
The vector mayhe_useless; records whether a uscless
checkpoint may occur in process P; or not. Process P, upon
sending a message to process P, piggybacks this information

with the normal message to inform process F; whether an
adaptive checkpoint must be taken to prevent useless
checkpoints in process ;.

send_to: a Boolean flag at each node. send_to; denotes that at
least a message has been sent from process P; after
checkpointing.

has_delivery: a Boolean flag at each process, has_delivery;
denotes that at least a message has been delivered at process
Py

var maybe_uselessin, send_to', has_delivery: boolean,
Actions for the initialization by 77
Y kde maybe_uvselessif) = false enddo;
take_checkpoint;
taken when A
send 1o':= trve;
send{ &, message, maybe_useless) to A,
maybe_uselessi] = ralse,
Actions for nede A when recelving a message from A
receive(, message, maybe_useless) from A,
if send_to' = trve and maybe_useless{] = lrue then take_checkpoint, endif;
has_deliven/:= true,
Vi k# ido maybe._
enddo;
deliver{ message),
Action for Ao take a checkpoint
take _checkpoint;
procedure take_checkpoint is

At)

a ge to /7

7, /,

{4 = maybe_ {4 OR maybe_uselessth1\

P

it has_deliver= truethen ¥ 4 # do maybe

Figure. 2. Adaptive independent checkpointing algorithm

Figure 2 formally describes the algorithm. The algorithm
containg four major phases: the initialization phase,
message-sending phase, message -receiving phase, and
checkpointing phase. Figure 3 illustrates an adaptive
independent checkpointing example. Each process P; is
assumed to take a checkpoint C;; initially and the Boolean
vector muybe_useless is set to false. Process Py must set all
bits of mavbe_useless, flag to true except itsclf after taking a
periodic checkpoint Cy, because process P, takes this
checkpoint after receiving message m, from process Po.
Checkpoint Cy: is useless because messages my, m> and m;
construct a non-causal path. To prevent useless checkpoints,
the rewinding path can be disrupted by taking an adaptive
checkpoint C; >in
process P;. Before receiving message my at process P, an
adaptive checkpoint is unnecessary because send_toy flag is
false. Process P, does not need to take an adaptive checkpoint
although send_toy is true but maybe_useless[0] is false.
Furthermore. Process P, must take an adaptive deckpoint
before receiving message m because send_to, flag is rrue and
maybe_useless,{1] vector is true.

6/ R
A}

Figurc 3 : An cxample

5. Implementation

This section describes how to implement MPICkpt.
Implementation of the MPICkpt library is discussed first. The
transparency facility is then implemented by applying the
profiling technique to emhance MPL functions without

{4 := tue enddo; endif;

L

91

changing the application programs. The implementation of

the MPICkpt user interface and
visualization is finally described.

the checkpointing

5.1. MPICkpt Library

The MPICkpt library includes libckpt-based tunctions
and MPI-based functions, among others. For libckpt-based
functions, this work modifies and extends the libckpt source
code to make it applicable not only for sequential mach ines
but also for parallel/distributed environments. The
incremental and forked checkpointing functions of MPICkpt
are implemented mainly on the basis of libckpt. For
MPI-based procedures, profiling techniques by MPICH are
used to repack communication functions of the MPI library.
in this implementation, checkpointing information deemed
necessary to transit is packed into MPI-based communication
functions. To accumulate information for visualization, some
MPE [28] routines are also packed in MPl-based
communication functions. Functions are implemented to
provide a facility of sync-and-stop coordinated checkpointing.
This work also implements the independent checkpointing
algorithm described earlier and, then, extends the sequential,
forked, and incremental checkpointing routines of the libckpt
library for distributed/parallel programs.

Table 1 compares the MPICkpt library and the libckpt
library. The source code of the MPICkpt library is 6608 lines,
which is 1.6 times the size of the libckpt library. Five new
files (2232 lines) are created and seven files are modified to
wrap MPI functions, implement coordinated and independent
checkpointing algorithms, extend the sequential, forked, and
incremental checkpointing techniques, and accumulate data
for checkpointing visualization.

files Somar;::eg;)de Lilzll;aryytess;ize
MPICkpt § 23 6608 207K
Libckpt 18 4503 137K
Table | : Comparison of the MPICkpt library and the libckpt
library

5.2. Transparency Facility

The wrappergen and profiling wrapper generator of the
MPICH system are used to implement the transparency
facility of MPICkpt. The user can write ‘ meta’ wrappers for
various MPI tunctions. The MP1 profiling interface attempts
to ensure that various applications can relatively easy
interface their code to MPI implementations on diftferent
machines. Since MPI is a machine independent standard with
many different implementations. expecting the user to
modify the MPI program in order to use the MPI tools would
be unrealistic. Therefore, the user must be provided with a
tool without modifying the original source programs.

Figure 4 depicts the resolution of the MPICkpt calls,
which contains four layers: application, MPICkpt,
MPI&Libckpt, and physical layers. The application layer
provides an environment for rormal MP1 applications. The
MPICkpt layer provides the feature of fault tolerance for MPI
applications, Additional information about checkpointing is
packed (or unpacked) in this layer and some information for
visualization is also accumulated here. The MPI&Libckpt
layer includes MP1 and libckpt libraries. In this layer,
checkpointing mechanisms are achieved and wrapped

function calls are performed. Notably, the physical layer
provides the mechanisms of communication and storage.

To make the checkpointing transparent for distributed
programs, the same source file can be complied toinclude the
MPICkpt versions of the library, depending on the staic of
PROFLIB macro. Importantly, the standard MPI library must
be built in such a manner that the MPI functions can be
included one at a time. Consider a situation in which
applications call an MPI function. If the function is wrapped
then the call is linked to the profiling library, execute the
extra operation, and call the mpi library to perform the
original function. Otherwise, the call links to the mpi libray
and execute the original mpi function. Figure 4 also depicts
the flow of message passing during execution of MPI
applications. When P; sends a computational message Msg; to
Pj, the message of function MPI_Send() is packed, i.c. new
message Messuge; consists of the computational message
Msg; and piggybacked information Piggy. Then,
PMPI_Send() is called to transmit message Message;. Upon
message Message; arriving to P, from P, P; performs a
tunction, MPI_Receive(). The profiling process of
MPI_Receive() is described as follows. (1) Function
PMPL_Receive() is called to receive message Message;. (2)
Message Message; is unpacked to computational message
Msg; and piggybacked information Piggy,. (3) Function
checkpoint_here() provided by libckpt is called to take an
adaptive checkpoint if the condition of a useless checkpoint
is identified from the piggybacked information Piggy. (4)
Function MPI_Receive() is completed and, then, message
Msg; is delivered by P;

Apptication Layer

Pracess i Process j

MP) Application NPT Applicatios

MPL SNMIAP,, ALITAR \ll"_ﬂw:r;\d\l' - Mg

MPE & Libekpt Layer Cinehpt
Time Oue
MPE Libracy MO Librasy ¥ ~
chechpoins berel);

PMPY_Sendt P Hesagpe) PAPY Receivel P Mrvsayed Reset Timer

v
Physicat Layer
J—

Figure 4: Resolution of MPICkpt calls

Notably, libckpt is not completely transparent because
the initial procedure in C language of libckpt must be
changed trom main() to ckpt_target() to gain control of the
program as it starts. However, MPICkpt applies profiling
techniques to conceal all extra operations in the MPICkpt
layer and achieve fully transparency. For MPI applications,
MPI_Init() that is used to initialize the MPI execution
environment must be included in the beginning of the
application program and the ckpt_target() procedure is

wrapped into MPI_nit() to achieve fully transparency.

Figure 5 presents an illustrative example of profiling
actions in a MPICkpt function call. This function packs some
information to the PMPI_Send() function, accumulates the
cumulative amount of data spent, and collects information to
upshot-style log file for visualization.

static int totalBytes;

‘static double total Time:

‘char *Piggy;

‘int MPI_Send(void *Msg, const int count. MPI_Datatype datatype, int dest, !

int tag, MPI_comm. comm.) :

i

: double tstart =MPI_Wtime: /# Pass on all arguments ¥/
int extent;
buff= streat (Msg, Piggy): /* Merge two strings */
MPE_Log_cvent(1.0. "start Send"); /* Start Logging ¥/
int result = PMPI_Send(buffer, count, datatype. dest, tag, comm): :
MPE_Log_evvnt(2. 0, "end Send"); /* Log information for visualization *
MPI_Type_size(datatype, &extent); /* Compute Size ¥/ .
total Byte += count * extent:

~ Figwe 5: A profiling example

53. User Interface and Checkpointing Visualization

The MPICkpt user interface is implemented on Sun 4,
SPARC machines under the X Window environment. Tcl/T! k,
a simple scripting language for controlling and extending
applications, is used to construct the major part of the
MPICkpt's user interface. Expectk [17], a toolkit for
wrapping character-oriented interactive programs in GUIs,
can also be used to combine multiple programs together for
achieving synergism.

For checkpointing visualization, the program’s run-time
data are stored on the log file. This upshot -style log file can
be used to monitor the program’ s performance. In this manner,
the user can effectively observe the program’ s execution and
checkpointing status through the visualization tool. upshot
[12]. MPICH can create a customized logfile for upshot by
calling various mpe logging routines. A profiling library
automatically logs all calls to MPI functions. The profiling
library generates logfiles which are files of timestamped
events [16]. During program execution, calls to
MPI_Log_event are made to store events of certain types in
memory: these memory buffers are collected and merged in
paralle! during MPI_Finalize. MPI_Pcontrol is used to
suspend and restart logging operations and analyze the logfile
produced at the end of the program execution with a variety
of tools.

6. MPICkpt Prototype

In this section, we present a novel prototype of
MPICkpt. The MPICkpt prototype runs on a cluster of
Sun-SPARC workstations. The user can control the system
through the graphical user interface. In addition, the
prototype allows the user to make various checkpointing
options.

The checkpointing facility is provided by the MPICkpt
library. The user can allow the system to either take a
checkpoint automatically after a fixed time interval or insert
the checkpoint_here() command into the program’s source.
The user does not need to modify his/her programs to use the
MPICkpt checkpointing system. MPICkpt is a highly
transparent checkpointing system. MPICkpt also provides a
checkpointing visualization tool. Moreover, the user can use

the visualization tool to observe the status of execution and
checkpointing.

lcEms o = = ERE
Exit

Figure 6: A snapshot of the MPICkpt prototype

MPICkpt is a fully transparent checkpointing system,
implying that the user can easily take checkpoints without any
additional programming effort. MPICkpt provides sequential
style options, from file selection, checkpointing and
environment sclections, configuration setup, making an
executable program, and running the program. Herein,
MPICkpt is not treated merely as a checkpointing tool.
MPICkpt also provides * Performance’ and ‘ Help’ functions to
help the programmer visualize and debug a program.
According to Fig. 6, the main window of our MPICkpt
checkpointing system has the following components which
imply an order the user may normally apply.
¢ File: Operations to load and save files and to quit the

systemn.

° Options: System options can be divided into checkpoint
options and environment options. The former provides
various checkpointing techniques and the latter is used to
setup the execution environment.

o Setup: The user can setup the system configuration.

¢ Make: A terminal window is provided and displays the
process of making a specified executable program.

e Rum: MPICkpt provides an option to setup the number of
nodes to be used for the parallel/distributed program.

¢ Performance: It provides visualization functions to Jet
the user observe the checkpointing status and message
passing.

¢ Help: A Help function and the MPIMan function are
provided to the user.

- Without Checkpolinting

4% Checkpomting

_ Sequential ® 1 1ol
¥ Forked _i Compressed
tnterval (B0 soc
. . s
QK _! Cancel |

Figure 7: Checkpoint Options

Figure 7 depicts the prototype for checkpointing options.
The user selects independent checkpointing with 60 seconds
per checkpoint interval, incremental and forked checkpointing
facilities to take a checkpoint, and at most five checkpoints
preserved for each process, ie. garbage collection is

performed every five checkpoints. Figure 8 presents
illustrative examples of matrix multiplication for various
checkpointing technigues using Upshot. Upshot uses parallel
time lines for processes and displays various interactions
between processes. Above figures contain the
message-passing, checkpointing, and piggybacked
information. Figure 8(a) depicts the visualization of matrix
multiplication without checkpointing. This figure indicates
that node 0 communicates frequently with other nodes. Figure
8(b) depicts the visualization of matrix multiplication with
coordinated checkpointing. A ccording to this figure, MP1Ckpt
uses the sync-and-stop (SNS) technique for coordinated
checkpointing. Figure 8(c) depicts the visualization of matrix
multiplication with independent checkpointing. This figure
reveals not only the checkpointing process, but also the
actions of information piggybacking (Piggy).

7. Experimental Results

This section summarizes the experimental results of
MPICkpt:- To evaluate the effectiveness of MPICkpt, some
MPI applications are tested on the MPICkpt system. Our
experimental results include various applications, such as cpi,
mm, pingpong and laplace.

(b) Matrix Multiplication with coordinated checkpointing

(c) Matrix Multiplication with independent checkpointing

Figare & : Matrix m Multiplication with and without
checkpointing

The application program ‘¢pi” used to compute the value
of m is based on the ‘mpic’ of mpich’s testing program.
Herein, we modify the loop to increase the execution time.

15 wWithoutCkpt
@ Unevordinated Chpt Bwithout Ot

B Scquentiot Ckpt | _|
O forked Ckpt
O trerementul Chpt

Fime

15¢¢)

Time (sech

[EY])

Chptsize {Kbytes)

Size (Bytes)

Time{miny -t "
Time tmin)

) W
Figure 9 : Overhead comparisons of program cpi for various checkpointing techniques

B3 Without Chpt

Time
(sec)

¥ 3
Number of nodes Number of nodes

(@ by
a

Clept size (Kbytes)
Chkpt size (Kbytes)

Time (miin)

) (d)
Figure 10: Overhead comparisons of program mm for various checkpointing techniques

C-294

Time (sec)

2 g 3

pingpong
Programs

mm

(a)

Time (sec)

g 88288

cpi mm pingpong

®

Figure 11: Execution time for various checkpointing techniques

The ‘mm’ application program is used to compute matrix
multiplication that assigns the task to nodes 1 to nl and
returns the result to node 0 after each node completes its task.
The application program *pingpong” sends and receives
message that is used to analyze the performance of system
environments. The application * laplace’ is used to solve the
Laplace equations that is designed by SPMD style to
compute 48X48 matrix operation.

For the experimental platform, sixteen SUN SPARC
classic workstations under the NIS network are used. The
workstations can share the network file system between the
network of workstations. In the experiments, the checkpoint
interval is set to | minute and the maximum file number is 5,
ie. the garbage collection is performed every five
checkpoints.

Figure 9 compares the various checkpointing techniques
in terms of overhead of program cpi. In this experiment,
checkpoints are taken by sequential checkpointing and the
average execution time of coordinated/independent
checkpointing is 1.53/1.12 times of the technique without
checkpointing. This figure indicates that independent
checkpointing has a lower overhead than coordinated
checkpointing for program cpi. Figure %(b) depicts the
overhead of the independent algorithm with various
optimized checkpointing techniques. According to this figure,
incremental checkpointing has a lower overhead than forked
and sequential checkpointing. Figure 9(c) depicts the
checkpoint size with 8 nodes for coordinated checkpointing.
Figure 9(d) depicts the average checkpoint size of Figure
XNe).

Figure 10 compares various checkpointing algorithms
with respect to the overhead of program mm. In this
experiment, checkpoints are taken by sequential
checkpointing and the average execution time of
coordinated/independent checkpointing is 1.95/1.45 times of
the execution time of the technique without checkpointing.
This figure indicates that independent checkpointing has a
lower overhead than coordinated checkpointing for program
mm. Figure 10(b) depicts the overhead of independent
algorithm with various optimized checkpointing techniques.
According to this figure, forked checkpointing has a lower
overhead than incremental and sequential checkpointing.

Figure 10(c) depicts the checkpoint size with four nodes for
coordinated checkpointing. Figure 10(d) depicts the average
checkpoint size with four nodes for independent
checkpointing. According to Fig. 10(d), some columms have
no data for checkpoint size because these nodes have already
completed their tasks and are waiting for completion of the
program. '

Figure 11 reveals that the checkpointing performance
depends on how the MPL applications run. Moreover, Fig.
11(a) indicates that the overhead of independent
checkpointing is lower than coordinated checkpointing in
application programs cpi and mm and the overhead of
coordinated . checkpointing is lower than independent
checkpointing in application programs pingpong and laplace.
Furthemore, Fig. 11(b) indicates not only that the overhead
of incremental checkpointing is lower than forked
checkpointing for programs cpi and pingpong, but also that
the overhead of forked checkpointing is lower than
incremental checkpointing for program mm. Therefore, more
etfective means can be adopted to take our checkpoint based
on how the programs function. If the communication is
infrequent, independent checkpointing algorithms can be
chosen. In contrast, coordinated checkpointing algorithms
should be selected.

*8. Conclusions

This work presents MPICkpt, a fully transparent
checkpointing tool for parallel/distributed programs. Some
novel features of MPICkpt are as follows: (1) MPICkpt is
designed for MPI; (2) MPICkpt provides consistent
checkpointing algorithms based on coordinated checkpointing
algorithms and independent checkpointing algorithms; (3)
MPICkpt provides various checkpointing techniques,
including sequential, forked, incremental, and compressed
techniques to reduce checkpointing overhead; (4) MPICkpt is
a highly transparent checkpointing system that can take
checkpoints without changing the source code of application
programs; and (5) MPICkpt also provides checkpointing
nformation by a graphical visualization tool. The user can
easily and effectively observe the checkpointing process of
the parallel/distributed program. Currently, we are
transplanting MPICkpt to Sun Enterprise 10000 and
implementing other independent checkpointing techniques

C-295

and automatic failure detection and recovery mechanisms.
Acknowledgment

The authors would like to thank the National Science Council
of the Republic of China for financially supporting this
research under Contract No. NSC 88-2213-E-035-039.

Reference

[13 A. Acharya and B. R. Badrinath, "Checkpointing
Distiibuted Applications on Mobile Computers," Proc.
Third 1ntl Conf. Parallel and Distributed Information
Systems (September 1994), 73-80.

[2] J. M. Adamo, “ARCH, An Object-Oriented Library for
Asynchronous and Loosely Synchronous System
Programming.” Tech. Rep. ncstrl.comell.tc/95-228,
Institution Cornell University, Theory Center, 1995,

[3]1 S. Alagar and S. Venkatesan, “Causal Ordering in
Distributed Mobile Systems.” IEEE Transactions on
Computers, Vol. 46, No. 3 (M arch 1997), 353-361,.

[4] R.Baldoni, J. M. Helary, A. Mostefaoui, M. Raynal, “On
Modeling Consistent Checkpoints and the Domino Effect
in Distributed Systems,” Tech. Rep. RR-2564. IRISA,
July 1995,

[5] A. Beguelin, E. Seligman, P. Stephan, " Application Level
Fault Tolerance in Heterogencous Networks of
Workstations,” Tech. Rep. CMU-CS-96-157, School of
Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, August 1996,

f6] P. Bridges, N. Doss, W. Gropp, E. Karrels, E. Lusk, and
A. Skjellum, “Users” Guide to Mpich, a Portable
Implementation of MPL" Argonne National Laboratory,
October 1995.

{71 G. Burns, R. Daoud, and J. Vaigl, “LAM: An Open
Cluster Environment for MPL” Ohio Supercomputer
Center, 1994,

[8] C. R. Dow and Y. G. Gou, “A Parallel/Distributed
Debugger for MPL™ Proceedings of 1997 Workshop on

_ Distributed System Techniques and Applications, Tainan,
Taiwan, pp. 556-561, May 1997.

[91 E. N. Elnozahy, D. B. Johnson, and Y.M. Wang, “A
Survey of Rollback Protocols in Message-Passing
Systems™ Tech. Rep. CMU-CS-96-181, School of
Computer Science, Camegic Mellon University, October
1997.

[10]J. Fowler and W. Zwaenepoel, "Causal Distributed
Breakpoints,” Proc. 1EEE Intl1 Conf. Distributed
Computing Systems, pp. 134-141, 1990,

{111 A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
V. Sunderam, “PVM 3 User's Guide ad Reference
Manual,” Oak Ridge National Laboratory, May 1993.

[12]1V. Herrarte, E. Lusk, “Studying Parallel Program
Behavior with Upshot,” Tech. Rep. ANL - 91/15,
Argonne National Laboratory, Argonne, 1L 60439, 1991.

[13]R. T. Hood, “The p2d2 :Project: Building a Portable
Debugger,” Proceedings of SPDT'96: SIGMETRICS
Symposium on Paralle) and Distributed Tools, May 1996.

{14]J. L Kim and T. Park, "An Efficient Protocol for
Checkpointing Recovery in Distributed Systems," 1EEE
Transactions on Parallel and Distributed Systems, Vol. 4,
No. 8 (August 1993), 955-960.

[I5]R. Koo and S. Toueg, "Checkpointing and Rellback
Recovery for Distributed Systems." IEEE Transactions
on Software Engineering, Vol. SE-13, No. 1 (January
1987), 23-31.

C-296

[16] L. Lamport, “Time, Clock and the Ordering of Events in
Distributed Systems,” Comm. ACM. Vol. 21, Ne. 7 (July
1978), 558-565.

[17]D. Libes, *X Wrapper for Non-Graphic Interactive
Programs,” Proceeding of X hibition 94, San Jose,
California, June 1994,

[18]C. M. Lin and C. R. Dow, “Efficient Independent
Checkpointing techniques for ~ Message-Passing
Programs,” Tech. Rep., Department of Information
Engineering and Computer Science, FengChia
University, January 1998.

[19]1D. Manivannan and M. Singhal, “A Low-Overhead
Recovery Technique Using Quasi-Synchronous
Checkpointing,” In Proc. IEEE, Int. Conf. Distributed
Comput. Syst., pp. 100-107, 1996.

[20]1D. Manivannan, R. Netzer, and M. Singal, “Finding
Consistent Global Checkpoints in a Distributed
Computation,” IEEE Transactions on Parallel and
Distributed Systems, Vol. 8, No. 6 (June 1997), 623-627.

[2IJR. H. B. Netzer and J. Xu, “Necessary and Sufficient
Conditions for Consistent Global Snapshots,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 6,
No. 2 (February 1995), 165-169.

{22]J. S. Plank, Y. Chen, and K. Li, “CLIP: A Checkpointing
Tocl for Message -Passing Parallel Programs,” Tech. Rep.,
Department of Computer Science, University of
Princeton, 1996.

{23]J. S. Plank, M. Beck, G. Kingsley, ““Libckpt: Transparent
Checkpointing Under Unix,” USENIX Winter 1995
Technical Conference, New Orleans, Louisiana, January
16-20, 1995,

[24]4. S. Plank and K. Li, “Performance Results of Ickp -- A
Consistent Checkpointer on the iPSC/860," Scalable
High Performance Computing Conference, pp. 686-693,
Knoxville, TN, May. 1994,

[25]R. Prakash and M. Singhal, “Low-Cost Checkpointing
and Failure Recovery in Mobile Computing Systems,”
IEEE Transactions on Parallel and Distributed Systems,
Vol. 7, No. 10 (October 1996), 1035-1048.

[26]G. Stellner, “CoCheck: Checkpointing and Process
Migration for MPL™ 10" International Parallcl
Processing Symposium, April 1996.

[271Y. M. Wang, “Consistent Global Checkpoints that
Contain a Given Set of Local Checkpoints,” 1EEE
Transactions on Computers, Vol. 46, No. 4 (April 1997),
456-468.

[28) Message Passing Interface Forum, “MPL: a
Message-Passing Interface Standard.* Tech. Rep.
CS5-94-230, Department of Computer Science, University
of Tennessee, Knoxville, TN, 1994.

[29] Message Passing Interface Forum. “MPI2: Extension to
the Message-Passing Interface,” November 1995,

[30] Para++: C++ Bindings for Message Passing Libraries,
INRIA RT-0174, June 1995,

