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ABSTRACT

In this paper, an improved wavelet-based pitch
determination method is presented. Based on the
biorthogonal wavelet transforms and a new formant-
frequency tracing algorithm, the proposed method can
accurately and efficiently extract the pitch information
from the speech signal even for noisy environments. In this
new method, the input speech will be first decomposed
into a formant-contain approximation signal using the
biorthogonal wavelet transforms and the formant-
frequency tracing algorithm. Then, the pitch information
can be detected in the formant-contain approximation
signal via an object-depended maximum extractor and a
pitch correction algorithm. Besides the robustness against
noise, the proposed method does not embed any
segmentation window and predefined threshold which are
usually needed in the conventional wavelet-based pitch
detection algorithms. From the experimental results, one
can find that the proposed method works well for synthetic
and natural speech signals. In addition, it is also shown
that the proposed algorithm can achieve the better
performance than those of the present wavelet-based as
well as the conventional time-domain and spectral-domain
pitch detectors under noisy conditions.

1. INTRODUCTION

The extraction of pitch information is frequently regarded
as an essential task in a variety of speech processing
applications. Here, the pitch information is referred to both
the pitch period and the instants of glottal closure (GCI’s)
in voiced speech. The pitch detectors can be applied to the
high-quality speech coding system [1], the PSOLA based
text-to-speech (TTS) system [2], and the speaker
verification system [3]. Although many pitch detection
algorithms including in the spectral, time or wavelet
domains have been proposed in the literatures [1-6], the
accurate and robust speech pitch determination still
remains an open problem.

The conventional pitch detectors, such as spectral-domain
and time-domain methods, usually have to use certain
thresholds in their algorithms. It is well known that
inappropriate selection of the thresholds, regardless of the
input speech characteristics, will result in performance
degradation. Therefore, they are not suitable for wide
range of speakers. In addition, most of them use some kind
of the segmentation window to determine the pitch
information in a small interval. However, the size and

shape of the segmentation window as well as the position
of segmentation window with respect to the speech can
affect the estimated spectral characteristics. It was also
shown that the fundamental frequency significantly
influences the spectrum if the window length is longer than
one pitch period [7]. Hence, there will be some
ambiguities in the locations of the GCI’s. Moreover, the
performance of these methods generally deteriorates when
the speech signal is corrupted by noise and distortion [7].

In [5], a wavelet-based algorithm was proposed for the
determination of pitch information. This method was based
on the Mallat's work on image [8] essentially. It was
assumed that the locations of GCI’s in the original speech
waveform will the same as those in the several consecutive
scales of the wavelet representations. Therefore, the pitch
information can be extracted from these wavelet
representations instead of original speech waveform. Most
of the subsequent wavelet-based pitch detection algorithms
are originally inspired by the work presented in [5]. On
account of the multiresolution analysis and the time-
frequency localization characteristics of  wavelet
transforms, the pitch detectors embedded wavelet
transforms, in fact, have the better performances than those
of the conventional types [5]. However, these present
wavelet-based methods still have some drawbacks. First,
the segmentation windows and the predetermined
thresholds are still used in certain of the wavelet-based
pitch detection methods [9-10]. As mentioned previously,
the performance of these methods will critically depend on
the segmentation windows and the predetermined
thresholds. Secondly, the wavelet bases applied in most of
these present wavelet-based pitch detection algorithms are
orthogonal bases. From the viewpoint of robustness, the
main disadvantage of using the orthogonal basis is that the
white Gaussian noise remains white after orthogonal
transforms [11]. Above phenomena also explain why the
orthogonal wavelet-based pitch detectors do not have
satisfied results in some kinds of noisy conditions.

To overcome the drawbacks described above, this paper
develops an improved wavelet-based pitch detection
algorithm. Based on the biorthogonal wavelet transform,
the input speech signal will be first decomposed into a
formant-contain approximation signal whose
decomposition level is determined by a new formant-
frequency tracing algorithm. Then, the locations of GCI’s
can be effortlessly detected in the formant-contain
approximation signal via an object-depended maximum
extractor. Finally the pitch correction algorithm is



exploited to achieve an accurate determination of GCI’s
and the pitch period. It is worthwhile to note that the
segmentation windows and the predefined thresholds are
complete avoided in this new type of algorithm. To
illustrate this, the proposed method is applied to both the
synthetic and the natural speech signals. It yields a
considerable performance improvement compared with
other conventional methods and wavelet-based methods
under noisy conditions.

The remainder of this paper is organized as follows. In
Section 2, the bases of the biorthogonal wavelet transform
and filter bank are described briefly. In Section 3, the
detailed description of the proposed pitch detection
algorithm will be given. In Section 4, the various
experimental results are illustrated. Section 5 concludes
the paper.

2. BIORTHOGONAL WAVELET TRANSFORM
AND FILTERBANK

Since the wavelet transform provides a tool for both the
time-frequency localization and the multiresolution
analysis, it was shown that the wavelet is highly efficient in
representing the non-stationary signals such as speech
[12]. Theoretically, depended on the definitions of
orthogonality of the wavelet bases, the wavelet transforms
can be categorized into two types, named the orthogonal
and the biorthogonal wavelets [13-14]. The main
difference between the orthogonal and the biorthogonal
wavelet transform is the latter one has two wavelets, one

(denoted (U(2)) for decomposition and the another one
(denoted U(t)) for reconstruction. The wavelet J(?)

and the its dual wavelet (U(¢) can be generated from two

companions #) and @(¢), which are known as the
scaling and the corresponding dual scaling function.
Above four scaling and wavelet functions have to satisfy
the following two-scale difference equations: [13-14]
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Fig. 1. Two-channel biorthogonal analysis/synthesis
filter bank

These four dilation equations listed above can be related to
the two-channel biorthogonal filter bank shown in Fig. 1

where h(n) in Eq.(1) and h (n) in Eq. (2) are low-pass
filters, whereas g(n) in Eq. (3) and g(n) in Eq. (4) are
high-pass filters. Also, the symbols |2 and 12 shown in
Fig. 1 denote the downsampling by 2 and the upsampling

by 2, respectively. It is shown [13-14] that to perform the
biorthogonal wavelet transform, one therefore dose not

require the explicit forms of @(¢), @(f), Y(¢) and

(g (t) but only depends on fT(n) , g(n), h(n), and g(n).
Let {al(”)} -, be the input to the analysis filter bank as

shown in Fig. 1. Then the outputs of the analysis filter
bank are given by

ay(k) =y h(n=2k)a,(n) (5)

dy(k) =y &(n=2k)a,(n) (©)

where a,(k) and d (k) are now called the approximate
coefficients and the detail coefficients of the first level
biorthogonal wavelet transform of a,(n), respectively.
The output of the synthesis filter bank shown in Fig. 1 is

s (n) = ay (k)h(m =26) +
S dy(k)g(m=2k) - (7)

For perfect reconstruction, ie., a,(n)=a,(m), these
four filters have to be related as [13]

gm) = (=D"h(1 =n), g(m) =("h(1 -n). (®)
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Fig. 2. 3-level two-channel biorthogonal analysis
filter banks
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Fig. 3. 3-level two-channel biorthogonal synthesis
filter banks

Note that the Egs.(5) and (6) provide an efficient

pyramidal algorithm that uses /1 (n) and g(n) for the

biorthogonal wavelet decomposition. Each approximate
coefficients can similarly go through the next level of
decomposition. An illustrative example of 3-level two-
channel biorthogonal analysis filter bank is given in Fig. 2



and its corresponding synthesis filter bank is given in Fig.
3.

3. THE PROPOSED PITCH DETECTION
ALGORITHM

This section gives the detailed discussions about the
proposed pitch detection algorithm. First, it will describe
the formant-frequency tracing algorithm which is used to
obtain the formant-contain approximation signal. Then, it
will give a method to extract the pitch period and the
GCI’s from the formant-contain approximation signal by
using an object-depended maximum extractor and a pitch
correction algorithm. Finally the investigation of selecting
the biorthogonal wavelet basis for pitch detection will be
given.

3.1 Formant-Frequency Tracing Algorithm

The objective of the formant-frequency tracing algorithm
is to generate a formant-contain approximation signal from
the wavelet transform of input speech signal. In this
algorithm, the formant-contain approximation signal is
defined as a wavelet representation signal that contains
most of the first formant frequency elements in input
speech signal. Since the first formant frequency directly
relates to the pitch period, the proposed algorithm
therefore can effortlessly extract the pitch information
from the formant-contain approximation signal. In order to
accomplish this objective, the decomposition level of
wavelet transform is needed to determine appropriately. In
fact, this determination procedure should be regarded as
the most important step in all the wavelet-based pitch
detection algorithms. However, due to the first formant
frequencies of human speech signals can vary from 25Hz
to 1000Hz [5], most of the present wavelet-based pitch
detection algorithms use a predetermined decomposition
level to generate a fixed-bandwidth wavelet representation
signal. Generally, the bandwidth of this signal is below
1000Hz [5, 9-10].

The main disadvantage of above setting is that the GCI is
not the only one whose peak value is the local maximum in
the wavelet representation signal. There may exist other
harmonic components which are coexisted with the first
formant frequency components. It goes without saying that
these harmonic components will affect the performance of
pitch detection. Consequently, these present wavelet-based
pitch detection methods have to utilize some kind of
segmentation windows and predetermined thresholds to
eliminate the effects of these harmonic components. As
mentioned in the preceding section, this way does not meet
the requirements of robustness and accurateness.

The proposed formant-frequency tracing algorithm is
described as follows. Let {a1 (n)} o be the input speech

signal and Fs be its Nyquist frequency. If JUN is the
dominant decomposition level, than the following equation
must be satisfied.

E{d (0 (K} > H @, (K .mON

and (J +m) < Eogz @TQSI % 9)
z

ayim(k) and d_,,, (k) are the

approximate coefficients and the detail coefficients of the
(J + m)th level biorthogonal wavelet transform of a,(n).

And E{f(k)}is denoted the energy of f (k) and is
given by

where

E{f ()} =% 1) - (10)

Then, one can obtain the formant-contain approximation
signal A, (t) via

A,() = Z“l-f (k)2 @2t —k) - (11)

0<j<I-1 kT2

3.2 Extract the Pitch Information from
Formant-Contain Approx. Signal

Based on the multiresolution analysis of wavelet
transforms, the GCI is also marked by a sharp
discontinuity in the formant-contain approximation signal

A, (). And it can be detected in either the positive part
of A,(¢) or the negative part of A4,(f) due to the

symmetric oscillation characteristics of speech waveform.
The positive part of A4,(t) is denoted PA,(t) and is
defined as

PA,0) = 2[4, +[4,0] - (12)

Similarly, the negative part of A,(¢#) is denoted
NA, () and is defined as

NA, (0= o= 4,0 +[4, 0] - (13)

The proposed algorithm will select one of them whose
variance is small than that of another one for determining

the locations of GCI’s. Once the PA,(¢) or NA,(¢) is

selected, it will be smoothed using a Gaussian filter to
enhance the GCI’s and to remove the discontinuous in

PA,(t) or NA,(t) before extracting pitch information.
Let B(?) be the selected PA,(¢) or NA,(t), then the
above filtering operation can be expressed as

B(t) = B(t) * G(¢) (14)

where * denotes the convolution operation, and G(¢) is the
Gaussian function defined as

_ 1 (15)

G(1) = (0_27_[)1/4 ¢

with 07 being the variance of B(#) and its duration is
100 sampling points.



Then the GCI detection in B (¢) can be accomplished via
an object-depended maximum extractor. It means that if ¢
—tyisaGClin B (¢), than the following relations must be
satisfied.

B(t,) > B(t, =1) >-->B(t, —P) and (l6a)
B(t,) > B(t, +1) >-->B(t, +P) 16b)
where P is defined as
i 0
p= [The duration of G(¢) . (17)

E Variance ofﬁ(z) E

Finally, the accurate locations of GCI’s and the pitch
period of input speech signal are obtained by a pitch
correction algorithm as follows.

(1) Calculate the average distance Da between two
adjacent GCI’s.

(2) Eliminate the GCI whose distance between its
adjacent GCI’s is shorter than 0.5Da or longer than
2Da.

(3) Repeat (1) and (2) until no unsuitable GCI is
available.

(4) Locate the final existed GCIs’ positions and calculate
the reciprocal of average distance between two
adjacent GCI’s as the estimated pitch period.

3.3 The Selection of Biorthogonal Wavelet Basis

Due to the spline functions are symmetric, adjustable, and
have FIR filter coefficients, the biorthogonal wavelet
systems chosen in the proposed algorithm are biorthogonal
spline wavelets developed in [14]. In this type of
biorthogonal wavelet functions, the @(¢) and (J(f) are
both spline functions of compact support [14]. In addition,
to be valid for the robust pitch detection required in this

paper, the scaling function (Np(t) and its corresponding

analysis lowpass filter 3 (n) have to satisfy the following
criteria:

(1) The scaling function (;(t) should correspond to a

reasonably sharp function in order to match the shape
of GCI.

(2) The frequency response of h (n) can emphasize

certain frequency channels in order to increase the
robustness against noise in other frequency channels.

Motivated by the first criterion, four members of the
biorthogonal spline wavelets, called B(2.4), B(2.6), B(2.8)
and B(6.8), are selected and their waveforms are plotted in
Fig. 4. One can find that these analysis scaling functions
have the similar shapes, however, the frequency responses
of their corresponding analysis lowpass filter () are

quite different. The frequency responses of analysis
lowpass filters with B(2.4), B(2.6), B(2.8), and B(6.8) are

shown in Fig. 5. From the viewpoint of the second
criterion, the B(2.8) is the most appropriate biorthogonal
spline wavelet for the proposed algorithm. For more
detailed information about the biorthogonal spline
wavelets, see [13].
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Fig. 4. The @(¢) of (a) B(2.4), (b) B(2.6), (c) B(2.8)
, (d) B(6.8).
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Fig. 5. The frequency response of analysis lowpass
filters.

4. PERFORMANCE EVALUATION AND
EXPERIMENTAL RESULTS

In this section, it will first discuss the performance of the
proposed method on synthetic and natural speech data. The
robustness of proposed method is then examined for
additive white Gaussian noise. In all the illustrations to
follow, the speech signals were sampled at 8 kHz with 8-
bit resolution.

4.1 Illustration of the Method for Synthetic
Speech Data

The synthetic speech data used in this paper consist of five
kinds of voiced phonemes, namely, /a/, /e/, /i/, /o/ and /u/.



Fig. 6(a) shows a synthetic speech signal /a/ whose pitch
period is constant and equal to 10ms, and Fig. 6(b) is its
formant-contain approximation signal (decomposition
level = 5). Fig 6(c)-(d) show the waveform of its

corresponding B(¢) and the locations of GCI’s derived
from l:}(t) in (c), respectively. The estimated pitch period
is 9.9ms.

(a)

sampling point
(d)
Fig. 6. (a) Clean synthetic speech signal /a/. (b) The
corresponding formant-contain approximation signal.
(c) Waveform of B(¢) derived from the signal in (b).

(d) The locations of GCI’s derived from the signal in
(c).

Table 1. The experimental results of the synthetic speech

data
itchPeriod [ Sms | 10ms | 15ms |20 ms | 25 ms
Speech Daty Estimated pitch period (ms)

/al 4.90 9.90 |14.90 [ 19.84 |24.90

lel 4.89 9.86 | 14.80 [ 19.90 [ 24.85

/i/ 491 9.88 | 14.85 [ 19.82 | 24.82

/o/ 5.00 9.92 | 14.80 [ 19.80 |24.80

ha/ 4.90 9.90 |14.90 | 19.82 |24.92
Average Err | 1.6% |[1.0% | 1.0% |0.82% |0.57%

Table 1 gives the experimental results of this new method
on other synthetic speech data. The error rate (denoted
Err)used in Table 1 is defined as

f—T‘

Err = x 100% (18)

where T is the estimated pitch period and the T'is the true
pitch period of the tested synthetic speech signal. The
average error rate of the proposed method on detecting the
pitch period of synthetic speech signal is below 1.5%.

4.2 Illustration of the Method for Natural
Speech Data

Fig. 7 illustrates the experimental result of proposed
method on the syllable /chii/ spoken by a male voice. This
syllable consists of a unvoiced segment /ch/ and a voiced
segment /i/. Fig. 7(a)-(d) show the original speech
waveform, the corresponding formant-contain
approximation signal (decomposition level = 5), the

corresponding waveform of B(r), and the estimated
locations of GCI’s, respectively.

(a)

(b)
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(c)

sampling point
(d)
Fig. 7 (a)Clean natural speech signal /chii/. (b) The
corresponding formant-contain approximation signal.
(c) Waveform of B(¢) derived from the signal in (b).

(d) The locations of GCI’s derived from the signal in
(©).




In the analysis of continuous speech signal, the each
syllable in the input speech sentence will be separated by
the segmentation method given in [15]. And then the pitch
information of each syllable can be extracted individually.
Fig. 8 illustrates the experimental result of proposed
method on the initial part of the utterance “ANY TIME
any where....” Spoken by a male voice. Fig. 8(a) and (b)
show the speech waveform and the estimated locations of
GCTI’s, respectively.

(a)

sampling point
(b)
Fig. 8. Illustration of the method for a continuous
speech “ANY TIME...”: (a) Speech waveform; (b) the
locations of GCI’s.

4.3 Robustness of the Method

Finally, the robustness of the proposed method is
evaluated under additive noisy conditions. A white
Gaussian noise was added to the clean speech, and the
performance is evaluated at SNR’s 30, 25, 20, 15, 10, 5,
and 0dB, respectively. To illustrate this, Fig. 9 shows the
experimental results of the natural speech signal of Fig.
7(a) at a SNR of 5dB.

Table 2. Performance of the proposed algorithm at
different SNR’s

NR (dB) 30 [ 25 20 15 10 5 0

Methods Average Err (%)

Wavelet-based in [5] 1.2 |14 |27 |49 | 7.5 [12.4 |23.6

Wavelet-based in [10] | 1.1 | 1.3 [ 24 | 42 [ 69 | 8.6 [17.8

Cepstrum-based in [6] | 1.4 | 1.6 | 3.2 [ 5.7 | 8.6 |16.8 |32.2

Time-domain in [1] 07 | 1.2 |26 |53 |10.4 |28.7 |49.6

Proposed method 1.1 | 1.2 |22 (34 |51 79 |12.1

The robustness of the proposed method is also compared
against the other present pitch detection methods including
in the spectral, time and wavelet domains, and the results
are given in Table 2. The definition of Err used in Table 2

is similar to that used in Table 1 with modifying 7T be the
estimated pitch period under noisy condition and the T be
the pitch period of clean speech. From these experimental
results, one can find that the pitch information can be

accurately and effortlessly extracted by using the proposed
method.

(a)

(b)

sampling point
(d)
Fig. 9. (a) Natural speech of Fig. 7(a) with 5dB
Gaussian white noise. (b) The corresponding formant-
contain approximation signal. (c) Waveform of é(t)

derived from the signal in (b). (d) The locations of
GCTI’s derived from the signal in (c).

5. CONCLUSIONS

An improved wavelet-based pitch detection algorithm was
presented. In this paper, the biorthogonal spline wavelet
transform and the formant-frequency tracing algorithm
were proposed to improve the accuracy and the robustness
of the conventional wavelet-based pitch detection
algorithm. In comparison with the other present pitch
detection schemes, the proposed algorithm does not need
to use any segmentation window as well as the
predetermined threshold. The performance of the proposed
algorithm was evaluated on synthetic and natural speech
signals. Compared to other time, spectral and wavelet
domain pitch detection methods, it was also shown that the
proposed method has the better performance under noisy
conditions.
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