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ABSTRACT

A new method is proposed for fusing short-axis and
long-axis MR images using efficient interpolations. It is
suitable for the enhancement of 3-D cardiac reconstruction.
Short-axis cardiac images are similar to regular MR
images, which provide information about the cross-section
of a heart, and long-axis cardiac images contribute
supplementary information in a parallel direction to the
long-axis. Our method can produce higher quality
interpolated images compared to other methods. It
includes five steps: arranging long-axis images in a
circular form, finding a cubic spline curve, circular
interpolation, fast parametric shape-based interpolation of
short-axis images, and fusion of short-axis and long-axis
images. From our experiments, the processing time
improvement is fifty-three times faster than the gray-level
shape-based method with at least 20% less mean square
errors. Compared to the linear interpolation, our method
has improved a minimal of 34% in mean square errors.
This approach can help doctors make their diagnoses faster,
easier, and more precise.

Index Terms Cardiac MR Images, Left Ventricular,
Interpolation, Short-Axis, and Long-Axis.

1. INTRODUCTION

There are three common techniques used for medical
image acquisition: Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), and Ultrasound Imaging (UI).
Medical imaging can display human internal organs. They
provide useful information for doctors to diagnose
patients’ condition. Different modalities are suitable for
different types of organ tissues or body parts. In general,
CT is used for hard objects such as bones, while MRI is
suitable for soft tissue organs such as the liver. Computed
tomography is also called Computer Aided Tomography
(CAT). CT scanners are widely used in hospitals. It emits
X-ray onto objects to generate a state change for acquiring
data, which is then transferred to a host computer. The host
computer converts the data to image slices and displays
them on the monitor. For 3-D medical image applications,
CT imaging can display the internal organs of a human
body. Especially, CT works well with hard tissue objects.

For soft tissue, as we will explain in the next paragraph,
MRI is more appropriate. However, unlike motionless
organs, a beating heart is hard to visualize in digital
images. Although UI can display an embryo in real-time,
the image quality is very poor.

For soft tissue in the human body such as blood vessels or
the heart, CT images contain noises that make them
unsuitable in real applications. For cardiac reconstruction,
echocardiographic imaging produces noises that are more
disruptive than those of CT images. Ultrasound cannot
pass through the air to efficiently inspect the lungs either.
In early years, the MRI sampling technique could only
generate blurred images of a heart because it was too slow.
Recently, the sampling rate of MRI scanners has improved.
In a very short time, 10 ms or less, a clear cardiac image
can be acquired. These cardiac MR images can be used to
reconstruct 3-D models.

MRI scanners usually work on a slice-by-slice basis. To
obtain an image, the patient lies in a torus that generates a
strong static magnetic field, usually 0.5 to 4 tesla. The
field strength is approximately eight orders magnitude
stronger than the Earth’s magnetic field. Generated by the
torus, this field aligns all individual magnetic fields at an
atomic level. This is called static equilibrium. In the
human heart, the left ventricle pathological change is the
focus of research. Since the left ventricle pumps blood to
every part of the body, its ejection fraction (EF) is very
important information [7] and has great prognostic value
to cardiologists. The ejection fraction is defined as
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Here the end systole (ES) and the end diastole (ED) have
reached their fully contracted and fully expanded cardiac
phases, respectively. To measure the volume of the left
ventricle more accurately, cardiac imaging has short-axis
[1, 4] and long-axis [2, 3] images. Short-axis images can
provide cross-section information of a heart. If the distance
between two consecutive short-axis images lengthens, the
interpolation quality becomes poorer. Long-axis images
can reduce this problem by providing supplemental data in
the direction parallel to the long-axis.



2. BACKGROUND

2.1 Fusion methods

There are many methods that can fuse the short-axis and
long-axis images. Kuwahara and Eiho [5] combine LV
boundary contours obtained at three orthogonal
cross-sections of the heart and manually trace ventricular
boundaries with two transverse, two coronal, and two
sagittal cross-sections. Goshtasby [8] fuses short-axis and
long-axis cardiac MR images by mapping the image slices
back into the MR viewing window and estimating the
image entries that are not mapped. It is approximated
using a weighted averaging scheme with weights inversely
proportional to the distances of voxels with known
intensities to the voxel whose intensity is being estimated.
This approximation uses a smoothness parameter that can
be varied to fuse images with different inter-slice distances.
Many researchers use the ellipsoid model [6] to measure
and reconstruct the left ventricle. Using the ellipsoid
model to reconstruct a whole heart is still a problem
because of the complexity of the heart.

2.2 Interpolation methods

Interpolation process generates supplemental data for 3-D
reconstruction. Basically, interpolation methods can be
divided into two categories. One is the deterministic
interpolation technique that assumes a constant variability
between the sample points, such as linear interpolation.
Linear interpolation is the most popular technique because
its processing time is very short. However, it can cause the
staircase artifact on the boundary of object images.
Another method is called the statistical interpolation, such
as shape-based interpolation, which can minimize the
estimation error. To meet the demand for higher quality,
most researchers focus on the statistical interpolation of
recent years. For example, the binary shape-based
interpolation approach was proposed in 1992. The
prediction accuracy of interpolation has improved, but it is
only suitable for binary images. Gray-level shape-based
interpolation extends its application to gray-level images.
However, the required processing time is much longer.

A. Linear interpolation

Linear interpolation [10, 13] is very simple to implement.
The greatest advantage of linear interpolation is that the
processing time is short.

It can transform a sequence of medical image slices into an
isotropic volume data set. In the interpolation process, two
source images are needed. One image is called the
reference image IR , and the other is called the target image
IT . The equation to compute the gray-level of an
interpolated image is as follows:
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In Equation (2), ),( yxmI is the gray-level of the mth

interpolated image, and M is the total number of
interpolated images. ),( yxRI is the gray-level of the

reference image, and ),( yx
T

I is the gray-level of the

target image. This simple method only requires a single
step. A two-step incremental linear interpolation algorithm
[11] can produce more accurate images with less time.
However, both methods can cause the staircase artifact on
the object boundary. Shape-based interpolations [12, 14]
can minimize this problem.

B. Binary shape-based interpolation

G. T. Herman [12] proposed binary shape-based
interpolation in 1992. In conventional terms, a pixel inside
(outside) the object will be assigned a positive (negative)
distance value. Initially, one assigns each pixel that is
inside (outside) the object along the border a small
positive (negative) value indicating the distance from the
center of the pixel block to the borderline. All remaining
pixels that are inside (outside) the object, but not on the
border, are assigned a large positive (negative) value.

For efficiency, the representation of distance values can be
implemented in such a way that the actual Euclidean
distance is approximated by integers. Two passes are then
made through the data to assign the distance values via a
mask of values that are minimized to indicate the
minimum distance to the border of the object. This method
can be used for binary images only. Since most medical
images are gray-level images, extensions must be made to
use this approach.

C. Gray-level shape-based interpolation

Gray-level shape-based interpolation [14] enhances the
approach of binary shape-based interpolation to
accommodate gray-level images. It consists of five steps:
lifting, distance transform, interpolation, conversion to
binary, and collapsing. The process of lifting is to convert
an n-dimension (n-D) gray-level scene into an (n+1)-D
binary scene. A distance transform converts the (n+1)-D
binary scene created in the previous step to (n+1)-D
gray-level scene, such that every spatial element contains
the minimal Euclidean distance from the spatial element to
the boundary of the object. The interpolation step can be a
linear interpolation. In the conversion to binary step, it
simply converts the (n+1)-D gray-level scene to an
(n+1)-D binary scene. The final collapsing step is the
complement of lifting. It converts the (n+1)-D binary
scene into an n-D gray-level scene. The conversion of



(n+1)-D binary scene to (n+1)-D gray-level scene in the
distance transform step requires the most processing time.

3. OUR PROPOSED METHOD

In this section, we describe our fusion method for cardiac
MR images. The flow chart of the fusion method is shown
in Fig. 1. Since our research focuses on interpolation, we
assume that the source short-axis and long-axis images
have completed the processes of segmentation and
registration. One of the twelve short-axis images we used
in this study is shown in Fig. 2(a), and one of the nine
long-axis images is shown in Fig. 2(b). After the
segmentation and registration process, the nine long-axis
images are shown in Fig. 3(a). Fig. 3(b) depicts how to
acquire the nine slices of long-axis images by rotating it
around the center z-axis and taking a slice at every twenty
degrees.

Our method has five steps: (1) arranging long-axis images
in a circular form, (2) finding a cubic spline curve, (3)
circular interpolation, (4) fast parametric shape-based
interpolation of short-axis images, and (5) fusion of the
short-axis and long-axis images. Steps 1 to 3 are used to
map long-axis images to short-axis images. Step 4
generates the interpolated image of short-axis. Step 5
combines the mapped images and short-axis images to
produce interpolated images.

STEP 1:
Arranging long-axis

images in circular form

STEP 2:
Finding a cubic

spline curve

STEP 3:
Circular

interpolation

STEP 4:
Fast parametric shape-

based interpolation

STEP 5:
Fusion of short-axis
and long-axis images

Mapping long-axis to
short-axis

Short-axis
interpolation

Result

Long-axis
images

Short-axis
images

Fig. 1. The flow chart of our fusion method.

Fig. 2. Two MR images of a heart. (a) A short-axis
image. (b) A long-axis image.

Step 1—Arranging long-axis images in a circular form

The arrangement of long-axis images is shown in Fig. 3(b).
This way we can reconstruct the actual sampling process
of an MRI scanner. The first image of Fig. 3(a) is placed at
the number 1 position in Fig. 3(b), and the second image
of Fig. 3(a) is placed at the number 2 position in Fig. 3(b),
and so on. They are equally distanced by twenty degrees.
These nine slices of 2-D long-axis images are positioned
to form a partial 3-D image. The x-axis and z-axis can be
viewed as the original long-axis plane, and the x-axis and
y-axis can also be treated as the 2-D coordinates of the
short-axis image. Fig. 4(a) shows a cross-section diagram
of Fig. 3(b) along the z-axis. Fig. 4(b) is an actual
cross-section image showing gray-level information.

Fig. 3. (a) The nine long-axis images after segmentation
and registration. (b) Arranging the nine images circularly
to form a partial 3-D image.

Fig. 4. (a) A cross-section of Fig. 3(b) along the z-axis. (b)
An actual cross-section image showing gray-level
information.

Step 2—Finding a cubic spline curve
A spline function consists of polynomial pieces joined
together under certain conditions. To get a smooth curve, a
natural cubic spline is the most popular curve function that
can be constructed to match the data points. First, starting
from the initial z value, we extract the two end points from
each long-axis image at the cross-section to form the
feature points shown in Fig. 5(a). They are arranged in the
same order as in Fig. 4(a). Secondly, we map this 2-D
information into 1-D as shown in Fig. 5(b), where the y



value is the distance from the center point to the pixel
position. Next, we use the natural cubic spline procedure
to generate the interpolated point of the curve (Fig. 5(c)).
Lastly, we re-map the 1-D information back into 2-D. The
final result is shown in Fig. 5(d).

Fig. 5. (a) Extracted feature points from long-axis
images. (b) Converted 2-D image data as 1-D data. (c)
Generated missing points between the feature points.
(d) Converted 1-D data back as 2-D image.

Step 3—Circular interpolation

After finding the cubic spline curve, we can generate the
points (pixels) in the fan-shaped area inside the curve by
using circular interpolation as shown in Fig. 6. φ is the

angle between the interpolated line of points and the
corresponding reference image line. M� is the angle
between the reference and target image lines. The
gray-level of the interpolated image can be calculated as
follows:
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where )],(max[ yxLR and )],(max[ yxLT are

maximum lengths of the reference and target images’ lines
respectively. ),( yx

C
I is the gray-level of the interpolated

point. ),( yxCRI is the gray-level of the reference point,

and ),( yx
CT

I is the corresponding gray-level of the

target point. ),,(),,( yxIyxI CRC and ),( yxICT are

equidistant to the center point. Fig. 7 shows example
images before and after circular interpolation.

Fig. 6. Circular interpolation.

Fig. 7. (a) A cross-section image before circular
interpolation. (b) Result of the circular interpolation
process.

Step 4�Fast parametric shape-based interpolation of
short-axis images

We use the parametric shape-based method [20] for the
interpolation of short-axis images. Although linear
interpolation requires less processing time, it suffers a
deficiency of image quality known as the staircase artifact
on the image boundary. For convenience, the terms
“reference image” and “target image” are used for the two
consecutive slices used to generate the interpolated slices
in between. The staircase problem occurs when a pixel of
the reference image has a zero gray-level value and the
corresponding value of the target image is non-zero, or
vice versa. Although shape-based interpolation approaches
can resolve this problem, they require a much longer
processing time.

First, we examine where the discrepancies between the
actual and interpolated images occur. By working on the
area that can be improved the most, we can increase the
accuracy of interpolation in an effective manner. We define
two kinds of image data sets: Type A and Type B. Type A
denotes any image data set satisfying the condition that
both of its reference and target images have corresponding
pixel values that are non-zero. For a Type B image data set,
either the reference image or the target image has a
corresponding pixel value that is non-zero, but not both of
them.

From an early research result [16], we found that the Type



B image data has more interpolation errors than the Type A
image data does. Therefore, we should try to improve the
quality of interpolation for Type B data sets in order to
acquire the best overall result. Since linear interpolation
has a rather good performance for Type A data sets, we use
it in our method. Our main focus will be on improving the
interpolation quality of Type B data sets. Furthermore, we
found that the changes of gray-level values on the object
boundaries are mostly smooth and gradual. A sudden drop
of gray-level value indicates a possible cause of the
staircase effect.

The following notations are used. S_R(i,j)mxn and S_T(i,j)
mxn arrays store the pixel values of the reference and target
images respectively. Let (i,j) denote the array element at
the i-th row and j-th column and f(i,j) denote the gray-level
of the (i,j) array element. Let m denote the maximum
dimension of a row and n denote the maximum dimension
of a column.

Step 4.1�Extending boundary gray-level

By extending the boundary gray-level to outside pixels and
by coupling it with the distance information from Steps 4.2
and 4.3 to generate a gradually diluted effect, we can
improve the interpolation quality of Type B images. For
illustration purposes, we assume that the source images
have been pre-processed to identify the object boundary.
Retaining the gray-level values of inside pixels, we extend
the gray-level of the object boundary outward to all
outside pixels. There are three phases in Step 4.1:

Phase 1: Assign each of the outside pixels along the object
boundary to the average gray-level value of its non-zero
neighboring pixels.

Phase 2: Assign extended pixel values row by row from
top to bottom and left to right within the rows. For pixel
(i,j) where 2�i�m�and 2�j�n, if both pixels (i-1,j) and
(i,j-1) have gray-level values, assign f(i,j) value to the
average of f(i-1,j) and f(i,j-1). If only one of pixel (i-1,j)
and pixel (i,j-1) exists, use that non-zero value as the
pixel’s gray-level value. Otherwise, the gray-level value is
set to zero.

Phase 3: Assign remaining pixel values row by row from
bottom to top and right to left within the rows. For pixel
(i,j) where 1�i�m-1�and 1�j���1, if both pixels (i+1,j)
and (i,j+1) have gray-level values, assign f(i,j) with their
average gray-level as in Phase 2. If only one of the pixels
(i+1,j) and (i,j+1) exists, use that non-zero value as the
pixel’s gray-level value. Otherwise, the gray-level value is
set to zero. R(i,j)mxn and T(i,j)mxn store the extended
reference and target image data respectively.

Step 4.2�Distance transform

A distance transform converts source image data to the
shortest distance information from each pixel to the object

boundary. This step produces a mask to be used in Step 4.4
to generate a gradually diluted effect such that the farther
away from the boundary, the smaller the gray-level an
interpolated pixel gets. The mask is also used in Step 4.5
to perform linear interpolation. This process is
accomplished by using a similar method from [12]. For
simplicity, positive values are assigned to pixels inside the
object boundary and negative values are for pixels that are
outside. First, we convert original images to binary images
using a specified threshold. To initiate the distance
calculation, replace every zero pixel with a large negative
number (e.g., -99) and replace every one pixel with a large
positive number (e.g., 99). There are two exceptions: if a
zero pixel shares an edge with a one pixel, replace it
with –5; if a one pixel shares an edge with a zero pixel,
replace it with +5. To speed up the shortest distance
calculation from every pixel to the object boundary, two
three by three templates are used. These two templates
have pre-set distance information that is tunable. The first
chamfering updates the pixel row by row from top to
bottom with a left to right ordering within the rows. We
apply the second chamfering to the result of the first one
and update the pixel again row by row from the bottom to
the top with a right to left ordering within the rows. The
result of distance transform for reference and target images
are denoted by DT_R(i,j)mxn and DT_T(i,j)mxn respectively.

Step 4.3�Setting decreasing parameter

For fine-tuning the dilution effect of the decreasing
process in Step 4.4 to further reduce the staircase artifact,
we introduce a decreasing parameter d. Using this
parameter, we can also adjust the dilution rate to
accommodate various images of organ shapes and tissues.
Therefore,
SDT_R(i, j) = DT_R(i, j) * d
SDT_T(i,j)=DT_T(i,j)*d (4)
1���m and�1����, where d is the decreasing
parameter.
SDT_R(i,j)mxn and SDT_T(i,j)mxn contain the adjusted
distance transform data for reference and target images
respectively. In general, the range of the d parameter is
from 1 to 15, depending on the source images.

Step 4.4�Decreasing process invocation

Step 4 uses the mask of adjusted distance transform data
(Step 4.3) over the extended reference and target images
(Step 4.1) to generate gradually diluted images. If a pixel
is farther away from the boundary, its gray-level is lower.
Otherwise, its gray-level is higher. For an interpolated
pixel (i,j), if its reference image has pixel value and its
target image has no pixel value, f(i,j)=R(i,j)+SDT_T(i,j).
On the other hand, if its reference image has no pixel value
and its target image has a pixel value, then
f(i,j)=T(i,j)+SDT_R(i,j). To bind the gray-level within a



specified range and to avoid a negative gray-level, a
threshold T is used to set f(i,j) to zero if it is below T.
We use DM_R(i,j)mxn and DM_T(i,j) mxn to store the result
of Step 4.4.

Step 4.5�Linear interpolation

A conventional linear gray-level interpolation is used in
this step. For an interpolated pixel (i,j), if the sum of
DT_R(i,j) (distance value on the reference image) and
DT_T(i,j) (distance value on the target image) is greater
than zero, we assign it with the average gray-level

2
),(

DM_T(i,j)DM_R(i,j)
jif

+= . If the sum of

DT_R(i,j) and DT_T(i,j) is equal to zero,

then
4

),(
DM_D(i,j)DM_R(i,j)

jif
+= , otherwise

f(i,j)=0.

From our study, this procedure can produce results as good
as, or even better than, the average case of gray-level
shape-based interpolation. Our interpolated result shows
that the object boundary is very smooth and no staircase
artifact is found. On the other hand, the result of linear
interpolation exhibits severe staircase effect.

Step 5�Fusion of short-axis and long-axis images

In this final step, we employ a simple weighting method to
combine the interpolated short-axis and long-axis images.
Fig. 8 shows the relation between the unsigned gray-level
difference per pixel and the distance from the center of
axial rotation to the pixel’s position. Because the weight of
fusing the long-axis images should be increased for the
pixels near the center of the cross-section, we use the
formula (5) to calculate the weight. This formula came
from the result of our experience. In our experiments, we
use 7.0=startW , 3.0=stopW .
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where
LW is the weight of a pixel of the long-axis image,

SW is the weight of a pixel of the short-axis image,

startW is the heaviest weight for the center point of axial

rotation,
PUdiff is the unsigned gray-level difference

per pixel, ][ PUdiffMax is the maximum value of

PUdiff , stopW is the lowest weight for the maximum value

of
PUdiff , I is the gray-level of a pixel,

SI is the

gray-level of a short-axis pixel, and
LI is the gray-level

of a long-axis pixel.

Fig. 8. The relation between
PUdiff and

CPD .
CPD

is the distance from the center point of axial rotation to
the pixel’s position.

4. EXPERIMENTAL RESULT AND DISCUSSION

In our experiments, we use forty-two slices of 256�256
source images of the human head and twelve slices of 256
� 256 short-axis source images of the human heart.
Long-axis images are acquired by partitioning the 3-D
image parallel to the direction of z-axis as shown in Fig.
3(b). There are nine long-axis images with an angular
separation of twenty degrees.

All experiments are performed on an Intel Pentium II 233
machine. Between two adjacent images, we generate one
intermediate slice. We use quantitative as well as
qualitative measurements to evaluate the interpolation
results [17, 18]. The notations are defined as follows: v
denotes the gray-level of an image pixel, V denotes a 2-D
set of image pixels, N is the total number of 2-D image
pixels, f(v) denotes the gray-level of the interpolated pixel
v, and fa(v) refers to the gray-level of the standard (actual)
image pixel v. We evaluate interpolated images by using
the following measurements: the mean-square difference
of gray-level (Msd), the number of sites of disagreement
(Nsd), the largest difference of gray-level (Ldiff), the
unsigned difference of gray-level (Udiff), and processing
time (time).

1. Mean square difference of gray-level, Msd(v)
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θ denotes the tolerant scope of gray-level, and our
default value is twenty.

3. Large difference of gray-level, Ldiff(v)
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Table 1 – Average quality and processing time of 40
interpolated human head images.
Linear Gray-Level

Shape-Based
Our Method

Msd(v) 187.9 69.4 55.6

Nsd(v) 1663.4 189 187

Ldiff(v) 90.55 74.8 82.5

Udiff(v) 312025 138216 134995

Time (s) 0.25 27.8 0.52

For a qualitative evaluation, human head and heart images
are used in our experiments. Forty-two original slices of
the human head and twelve original slices of the human
heart are selected as short-axis images. Long-axis images
are acquired by partitioning the 3-D image parallel to the
direction of z-axis. There are two sets of nine long-axis
images with an angular separation of twenty degrees.

Table 1 lists the average quality measurements and
processing time of forty interpolated human head images
for the three methods including the linear, the gray-level
shape-based, and our fusion method. Some sample
resultant images are shown in Fig. 9. In Fig. 9, images (a),
(b), and (c) are three consecutive MR slices of the actual
human head. Images (d), (e), and (f) are generated by
using the linear, the gray-level shape-based, and our fusion
method respectively.

Our interpolated result is much more accurate than the
other two methods when they are compared to the standard
image. Gray-level shape-based interpolation performs
better than linear interpolation on the contour, but the
gray-level values of the pixels inside the object are
different from that of the standard image. The result of
linear interpolation is the poorest.

Quantitatively, our fusion method is also better than the
other two methods as shown in Table 1. In Table 1, our
method has the smallest Msd, Nsd, and Udiff while
gray-level shape-based interpolation performs slightly
better than ours in Ldiff. In addition, our Msd value is 20%
less than that of shape-based interpolation and 70% better
than linear interpolation. When comparing processing
speed, our method is only 0.27 seconds slower than linear
interpolation, but it is fifty-three times faster than
shape-based interpolation. The quality and speed of our
fusion method can definitely improve the 3-D
reconstruction of a heart. Table 2 lists the average quality
measurements of ten interpolated human heart images for
the three aforementioned methods. Some images of the
sample results are shown in Fig. 10. In Fig. 10, images (a),
(b), and (c) are three consecutive MR slices of actual
human heart. Images (d), (e), and (f) are generated by
using the linear, the gray-level shape-based, and our fusion

method respectively. The Msd value of our method is 27%
and 34% less than the linear and gray-level shape-based
methods respectively.

Fig. 9. Experimental results of interpolations (human
head).

Fig. 11 shows the 3-D reconstruction of interpolated
images. It uses the ray-tracing technique to render the 3-D
models. The reconstructed result of our method (Fig. 11(a))
shows very little staircase artifact, and the surface of the
heart is very smooth. On the other hand, the linear
interpolated result (Fig. 11(b)) appears with severe
staircase artifact, and it loses the bottom portion of the
heart image.

Fig. 11. The 3-D reconstruction of interpolated images. (a)
Our method (b) Linear interpolation.

Fig. 10. Experimental results of interpolations (human
heart).



Table 2 – Summary of the average quality of 10
interpolated cardiac MR images.

Linear Gray-Level
Shape-Based

Our Method

Msd(v) 299.7 270.7 198.3
Nsd(v) 1623.7 1388.4 1290.5
Ldiff(v) 150.8 138.4 141.4
Udiff(v) 92825.1 81474.5 72803.9

5. CONCLUSION

In this paper, we propose a general method to fuse
short-axis and long-axis slices of cardiac MR images. It
has five steps: (1) arranging long-axis images in a circular
form, (2) finding a cubic spline curve, (3) circular
interpolation, (4) fast parametric shape-based interpolation
of short-axis images, and (5) fusion of the short-axis and
long-axis images. Steps 1 to 3 are used to process
long-axis images, and Step 4 is used to interpolate
short-axis images. Step 5 combines the short-axis and
long-axis images to produce the interpolated images. The
experimental result shows a processing time speedup of
fifty-three times faster than gray-level shape-based
interpolation with at least 20% less mean square errors.
Compared to linear interpolation, our method has a
minimal of 34% improvement in mean square errors.

The circular interpolation has room for improvement since
we know that the weight of fusing the long-axis images
should increase for the pixels near the center of the
cross-section. A better model can be developed to calculate
their weights. To speedup processing time, we will
investigate parallel interpolation algorithms [19].
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