
1

Render ing Image-based Object Hierarchy

Tong-Yee Lee1, Tai-Cheng Chen, Chao-Hung Lin

Visual System Laboratory
Department of Computer Science and Information Engineering

National Cheng Kung University
Tainan, TAIWAN, R.O.C

tonylee@mail.ncku.edu.tw
Phone: 886-6-2757575 ext. 62531

Fax: 886-6-2747076

1

Corresponding author

Abstract
Image-based representations of objects are
useful in computer game and virtual museum
and art gallery applications. In this paper, we
present a hierarchical image-based object (IBO)
representation for a complex scene. In this
hierarchy, we find a camera-sampling circle for
each node and attempt to optimize the number of
reference images that represent visible objects
inside each node. While rendering this IBO
hierarchy, we adaptively traverse this hierarchy
to the levels with sufficient camera sampling
rates for the output image. We experimentally
evaluate the proposed schemes on a PC for
complex scenes that consist of image-based
objects. The proposed scheme achieves a near
real-time rendering rate for such complex scenes
with more than 1 million polygons.

Keywords: Image-based rendering, Image-based
objects (IBO), 3-D warp, Hierarchical
representation

1. Introduction
Interactive rendering extremely complex
geometric environment has been an important
research issue in computer graphics. Although
the performance of graphics hardware has
improved dramatically in recent years, the
demand for higher performance continues to
grow. Today, a virtual environment containing
many millions of polygons becomes common.
To rapidly visualize such complex scenes, the
rendering algorithms must limit the number of
polygons rendered in each frame. However, this
limited number of polygons is still prohibitive to
achieving a real-time rendering on most
workstations. In past five years, image-based
rendering (IBR) techniques have emerged as a

potential solution to render such complex scenes.
The basic concept of IBR methods is to employ
a set of reference images to represent
three-dimensional scenes instead of geometric
primitives. With IBR methods, the
computational complexity is independent of the
number of geometric primitives. Therefore, IBR
techniques are very attractive for interactive
display of complex scenes.

Image-based object (IBO) is a compact,
image-based representation for
three-dimensional objects with complex shapes
[1]. This representation can be very useful in
games, virtual museum and art gallery
applications. In some sense, the proposed
method is similar to the concept of IBO, but
different in many respects including reference
image acquisition and representation, and
rendering. Given a set of objects comprising a
scene, we build a hierarchical bounding volume
tree [2] by placing partitioning planes inside
gaps between objects. In this tree, the geometry
is stored only at the leaves of this hierarchy. For
each node in this hierarchy, we find a camera
sampling circle and then around the circle the
optimized number of reference images are
captured to represent the visible objects inside
each node. During a walkthrough of the scenes,
the proposed method adaptively traverses the
hierarchy to the levels with sufficient camera
sampling rates for the output image. Whenever a
node sufficiently represents sampling of the
output image, two of reference images stored on
this node are selected to 3D warp. With the
proposed method, a z-buffer is required to
eliminate hidden surfaces. We implemented the
proposed method and rendered scenes with more
than one million polygons on a PC. The
demonstrated rendering performance is very

2

promising near real-time with tolerable loss in
rendering quality.

The remainder of this paper is organized as
follows. The next section reviews related
previous work. Section 3 presents schemes to
construct an IBO hierarchy. We introduce the
rendering of IBO hierarchy in Section 4.
Experimental evaluation of the proposed
schemes on a PC is given and discussed in
Section 5. Finally, Section 6 closes with
conclusions and future work.

2. Related Work
Shade et al. [3] and Schaufler et al. [4] employ
the image caching or impostor technique to
accelerate walkthroughs of complex scenes.
Although the cached images can be reused in
subsequent frames, the image impostors have to
be regenerated whenever it is no longer suitable
for the new view. Levoy et al. [5] and Gortler et
al.[6] collect a large number of images in the
databases to represent objects. At rendering time,
the images in the databases are resampled to
produce an interpolated view of the objects.
McMillian and Bishop [7] present an efficient
3D image warping framework and a list-priority
solution for the visibility problem. However, this
algorithm cannot be used to warp multiple
images acquired from different COPs
simultaneously. Darsa et al. [8] and Pulli et al. [9]
reconstruct meshes from a dense range maps to
approximate a 3D image warp. To generate a
new view, the meshes are blended on a per pixel
basis and a z-buffer is used to eliminate hidden
surfaces. Grossman et al. [10] use individual
points or a set of points as samples in
image-based rendering. These sampling points
are rendered using a hierarchy of Z-buffer to
detect tear artifacts. Shade et al. [11] use the
Layered Depth Image (LDI) to deal with the
disocclusion artifacts of image warping. Given a
set of nearby reference images, the LDI is
constructed by warping all these reference
images to a carefully chosen camera setup. Later,
Chang et al. [12] propose the LDI tree which
combines a hierarchical space partitioning
schemes with the concept of the LDI. This
scheme preserves the sampling rates of the
reference images by adaptively selecting an LDI
in the LDI tree for each output pixel. Oliveira et
al. [1] introduce the concept of image-based
object (IBO) that is represented by six layered
depth image sharing a single center of projection.
The IBO can be used as a primitive to construct
more complex scenes. In their work, a new
list-priority algorithm for rendering such scenes
and a back-face culling strategy is proposed.
Rafferty et al. [13] attempt to improve upon a
cells and portals framework by using images to

replace geometry visible through portals in a 3D
scene. The above techniques are related
image-based rendering techniques to visualize
complex objects and scenes.

On the other hand, several related non-IBR
techniques for rendering large scenes are
reviewed as follows. Clark [14] and Garlick et al.
[15] investigate visibility culling algorithms to
avoid drawing objects that not visible in the
image. Aiery et al. [16] and Teller [17] consider
the relationships of visibility within a complex
scene. Only the potentially visible set of
polygons is considered to render at each frame.
Green et al. [18] propose a hierarchical z-buffer
to achieve fast visibility culling. Another
hierarchical method is to use Occlusion Maps
[19] that does not use depth information to cull
occluded geometry. Coorg and Teller [20]
attempt to dynamically identify large occluders
as the user moves. Then, these large occluders
are used to perform culling using an octree
structure.

3. Building IBO Hierarchy
In this section, we present the proposed schemes
to create IBO primitives and to construct IBO
hierarchy.

As a preprocessing step, we construct a BSP-tree
like partitioning of a given scene. After this step,
a compact bounding volume hierarchy [2] is
constructed. Generally, the partition scheme
must take the following criteria into account: (1)
make the hierarchy as balanced as possible and
(2) for each node in this hierarchy, make its
bounding volume as compact as possible. The
balanced hierarchy can help make the rendering
time as constant as possible. Since we build an
IBO for each node in the proposed hierarchy, the
second criterion can influence image-sampling
quality. However, these two criteria sometimes
contradict each other. The compactness cannot
always guarantee the perfectly balanced
hierarchy.

Unlike original IBO [1], we build an IBO for
each node in the proposed hierarchy. The
proposed IBO in this paper can represent either a
geometric object or a collection of geometric
objects. For each IBO, we find an optimized
number of reference images to represent objects
by placing these selected cameras along a
camera-sampling circle. The easiest way to
acquire reference images is to place cameras
along this circle in a uniform manner. There are
several problems inherent in this approach: (1)
fixed number of reference images potentially
leads to too much redundancy (waste storage)

3

DwHwmnk 21 +=ε

and (2) without considering geometric
information, this method potentially misses
some geometric details that lead to holes from
image warp. Our method is described as follows.
First, we uniformly place N cameras (i.e., one
camera per

N
360 degrees) along the

camera-sampling circle and assume these N
cameras can sufficiently cover all possible
viewpoints. Let { }NiPP i ,...,2,1== , where Pi is

the position of the ith camera on a given
camera-sampling circle. Ci denotes the reference
image captured at Pi and Wmnk represents the
interpolated image at Pk by 3-D warping Cm and
Cn, where nkm << . Furthermore, we define
an error function mnkε for using Wmnk instead
of Ck in equation (1).

 (1)

 ,where H and D denotes the number of holes and
the difference of depth between Wmnk and Ck,
and w1 and w2 are weights for H and D.

Figure 1. Optimal set of reference images

Considering Figure 1, let the sum of error
functions for a selected (Cm, Cn) reference
image pair to warp each Pk’s image, k
=m+1,m+2,… n-1, be denoted as mnε ,

∑
−

+=

=
1

1

n

mk
mnkmn εε .Our goal of camera placement

is to find a optimal set of reference images on
the camera-sampling circle from P cameras

that are placed uniformly. Assume we select S
reference images on this circle. Let

{ }PSPPPS
nsss ⊆= ,....,,

21
, where each

isP is an optimally selected camera position from

P camera positions. Define error function for

selecting these S reference images by

equation (2).

∑
∪

+
=

S
PP iSiS

EE
1

 (2)

, where
iSP is in clockwise order and

1+iSiS PPE denotes the error sum of warping

iSPC and
1+iSPC for the other images captured

(i.e., by uniform placement) between
cameras

iSP and
1+iSP . Apparently, equation (3)

is minimized as P = S . To find a minimal

set of reference, we need to have a constraint on

S and to minimize equation (3).

 (3)

, where w3 is weight for S . In the course of

minimizing equation (3), if the number of holes
is over a threshold, we let ∞=

+1iSiS PPE to

ensure the quality of image warp. Currently, we
employ dynamic programming technique [21]
to solve the minimization of equation (3) and
thus find these S optimally selected reference

images.

4. Render ing IBO Hierarchy
Once the IBO hierarchy has been built, the
following pipeline (as shown in Figure 2) is used
for display. In this pipeline, for each frame,
visibility culling includes frustum culling,
background pixel culling on each reference
image and reference image selection per visible
IBO node. Additionally, for each visible
reference image, we compute on-line its
multi-resolution representation to reduce number
of warping pixels. Then, we compute splatting
size of 3D warping and splats are drawn with
Z-buffer enabled to resolve occlusion. To reduce
number of holes, we simply find and fill these
holes depending on their non-hole neighboring
pixels. Once the position of a viewer is inside
the bounding volume of leaf nodes in IBO
hierarchy, we draw polygons instead of splats.

Figure 2. Pipeline of rendering IBO hierarchy

IBO_Hierachy_Render (node, viewpoint)
Begin

if node is outside the view frustum
return

∑
∪

×+
+

S
PP SwE

iSiS 31

4

else if viewing position is outside this
node

select two reference images for
this node
using distance metric, compute
multi-resolutions, if required
compute splatting size
3-D warping

else if this node is a leaf
draw polygons insdie this node

else
IBO_Hierachy_Render
(node.leftchild, viewpoint)
IBO_Hierachy_Render
(node.rightchild, viewpoint)

End

The above algorithm is used for display and
several stages of this algorithm are examined in
detail in the later subsections. Considering
situation in Figure 3, the original reference
image (b) is captured on the camera-sampling
circle. If we render the object from the center of
projection of image (c) by warping the image (b),
the possibly insufficient sampling rate of the
image (b) (i.e., inside the circle) will generate
many holes (i.e., zoom-in effect) in the image (c).
In contrast, when we render the object from the
center of projection of image (a) (i.e., outside the
circle) by warping the image (b), the excessive
sampling rate of the image (b) might not affect
the quality of the output. However, it wastes
time to process more pixels than necessary. In
above rendering algorithm, if the viewer is at
both (a) and (b) positions, we warp the image (b).
When the viewer is at (c), we continue the next
level in IBO hierarchy to find appropriate
reference images with sufficient sampling
condition. Although our approach is
conservative, at least, we maintain sufficient
sampling condition of warping. Later, we will
attempt to reduce processing redundancy due to
over-sampling as the viewer is at (a) position.

Figure 3. Finding sufficient sampling rate of
reference image

4.1 Multiresolution
Considering Figure 4, there are two cameras
with COP at V1 and V2 and an identical focal
length d. P1 and P2 are two points in 3D space

and the distance from V1 and V2 to 21PP are
d1 and d2. Let l1 and l2 be projected length of

21PP on both image planes. We can have

d
d

l
L 1

1

= and
d
d

l
L 2

2

= . Thus,
1

2

2

1

d
d

l
l

= . Based

on this simple metric, we compute lower
resolution as the viewpoint is at far distance
from objects. In this manner, we attempt to avoid
warping more pixels than necessary.

Figure 4. Distance metric of multiresolution;

4.2 Hole Filling

Our strategy for detecting holes is very naive but
very fast. We simply detect holes by checking
their non-hole neighboring pixels using a 33×
mask. Considering Figure 5, if any of the
following is true, the pixel at 0 is determined as
a hole and it is filled with a color that is
averaged from those of its non-hole neighbors.

 (5)

, where ba ≡ returns true, if both a and b are
similar in color and depth. This method only can
fix one-pixel wide hole and result in blocky
artifacts. To better treat hole problem, Grossman
et al. [10] suggest a hierarchy Z-buffer. In future,
we might include this option to treat holes.

Figure 5. Hole detecting mask

5 Exper imental Results
We implemented the proposed methods on a
Pentium II 350 PC with a 224M main memory
and a GeForce2 GTS/32M graphics card. We
built a system prototype in Visual C++ and
OpenGL. First, we evaluate the proposed camera
placement using an example as shown in Figure
6. In this example, the threshold for the
parameter H is 10% of the number of image
pixels. We originally capture 18 reference

54,72,63,81 ≡≡≡≡

5

images in a uniform manner and from them we
select 6 images after the optimization of the
proposed method. To experimentally evaluate
the proposed method, we also uniformly capture
6 reference images as indicated in Figure 6. In
Figure 7, (a) is outputted by rendering polygons.
From (b) and (c), the proposed method seems
better than the uniform method. The uniform
method generates more holes as marked by a
circle.

Figure 6. Captured positions of the proposed and
uniform methods

 (a) (b) (c)
Figure 7. Evaluating the proposed camera
placement algorithm: (a) polygon drawing; (b)
proposed method; (c) uniform method

Next, we evaluate the proposed method of
rendering IBO hierarchy. In the test scene, there
are many computer-tables on the ground plane.
In total, there are 1,149,680 polygons in this test
scene. Using the proposed method, the scene is
partitioned, as shown in Figure 8 (a), and the
resulting IBO hierarchy is built with 53 nodes
and in total 492 reference images used. Before
the optimization, we capture 18 reference images
uniformly on each camera-sampling circle. Each
reference image and output is rendered at

256256 × resolution with FOV = 90 degrees.
Figure 8 (b) shows a bird’s eye view of the test
scene and each viewpoint on two 4000-frame
walkthrough path. There are several viewpoints
labeled frame number along the path. In our
experiments, the viewer is currently limited to
walk on the ground. The first walkthrough was
performed using a hierarchical view frustum
culling (using the same IBO hierarchy) but
rendering all of the original polygons included in
leaf nodes that are inside the view frustum. The
second walkthrough was performed using the
proposed method. Figure 9 shows several frames
rendered in two walkthroughs. The images in the

first row are very similar to those in the second
row.

 (a) (b)
Figure 8. (a) The partitioning of the scene; (b) A
bird’s eye view of the test scene.

(a)1500th frame (b)1800th frame (c)2100th frame

Figure 9.Frames from walkthroughs of the test
scene. The first row shows four frames rendered
using the original polygons. The second row
shows the same frames rendered using the
proposed method. In the second row, if the node
is rendered using polygons, its bounding volume
is also shown.

The plot in Figure 10 shows the frame rate
performance for the two walkthroughs. On the
average, the proposed method achieves about 23
frames/second and the other achieves about 2
frames/second. With our method, the peak frame
rate is around 35 to 40 frames/second, but the
slowest is about 8 to 10 frames/seconds. This
performance difference is due to the number of
drawn polygons. When the number of drawn
polygons increases, the performance goes down
such as frames around 1000. Figure 11 shows
the number of drawn polygons using the
proposed method in the 40000-frame
walkthroughs. There is a peak with regard to the
number of drawn polygons around 1000 frames,
too. Next, Figure12 shows the number of warped
images and IBO nodes rendered using polygons.
The number of warping reference images is
significantly more than that of number nodes
rendered using polygons. Thus, the proposed
method can save rendering cost.

6

Figure 10. Frame rate performance comparison:
rendering IBO hierarchy vs. drawing polygons

Figure 11. The number of drawn polygons using
the proposed method

Figure 12. The number of rendered primitives:
IBO leaf nodes vs. the number of reference
images.

6 Conclusions and Future Work
The proposed rendering of IBO hierarchy has
demonstrated a near real-time performance for a
complex scene with more than one million
polygons. The proposed scheme first partitioned
the scene and built an IBO hierarchy. Each node
in the IBO hierarchy is represented by a selected
set of reference images. Depending on the
viewpoint, we select IBO nodes with appropriate
sampling condition. These selected nodes are
rendered by two reference images. When the
viewer is inside the leaf nodes, the polygons
contained in these leaf nodes are rendered
instead. Thus, the proposed scheme is a kind of
hybrid technique: image-based and
geometry-based. Although we achieve very
promising results, there are several extensions to
be done in near future as follows.

l Currently, the viewer is limited on the
ground plane due to the fact that we
captured the reference images per IBO
node on a camera-sampling circle. All
cameras are placed on the same plane. This
restricts the movements of viewer as well
as visual quality if viewer is allowed to

move freely. It is easy to extend the
camera-sampling circle to a sphere in 3D.
For example, we uniformly place cameras
on a sphere. Each location can be identified
by (φθ ,). Then, we divide the (φθ ,) into
square regions and employ dynamic
programming technique to find an optimal
set of (φθ ,) to represent an IBO node.
During rendering time, the four corners of
the region enclosing the desired viewpoint
are used.

l The current hole-filling method is very
naïve. This method can not fix holes with
more than two-pixel width. Another
limitation is that it is difficult to properly
sample thin spoke-like structure.
Additionally, it can not guarantee correct
detection of holes. Actually, this is really a
difficult problem. A better approach to treat
above problems will be further
investigated.

l In preprocessing, we statically built the
IBO hierarchy. There are many potentials
to miss some sampling details and thus to
yield holes from arbitrary viewpoints. We
can record the locations of uniform camera
placement before optimization. When a
viewpoint and its direction is very different
from these recorded information, we can
dynamically create a new reference image
by rendering polygons. Then, this new
image exists and is warped until it is
replaced by the other new image. In this
manner, we tradeoff the performance and
visual quality.

l Finally, we should say the proposed method
is kind of tradeoff between the performance
and storage. Although the cost of memory
storage continues to decline, we plan to
employ image compression technique to
reduce the storage of these reference
images.

Acknowledgement
This paper is supported by National Science
Council, Republic of China, Taiwan, under
contract No. NSC 89-2218-E-006-028.

Reference
1. Oliveira, Manuel M. and Gary Bishop,

“Image-based Objects,” Proceedings of 1999
ACM Symposium on Interactive 3D
Graphics, April 26-28, 1999, pp. 191-198.

2. Timothy L. Kay and James T. Kajiya, “Ray
tracing complex scenes,” Computer Graphics,
20(4):269-278, August 1986.

3. Jonathan Shade, Dani Lischinski, David H.
Salesin, Tony DeRose and John Snyder,
“Hierarchical Image Caching for Accelerated

7

Walkthrough of Complex Environments,” In
Proceedings of SIGGRAPH 1996, pages
75-82.

4. Gernot Schaufler and Wolfgang Sturzlinger,
“ A Three Dimensional Image Cache for
Virtual Reality, “ In Proceedings of
Eurographics’96, pages 227-236. August
1996.

5. Marc Levoy and Pat Hanrahan, “Light Field
Rendering,” In Proceedings of SIGGRAPH
1996, pages 31-42.

6. Steven J. Gortler, Radek Grzeszczuk,
Richard Szeliski and Michael F. Cohen,
“Lumigraph,” In Proceedings of SIGGRAPH
1996, pages 43-54.

7. Leonard McMillan and Gary Bishop,
“Plenoptic Modeling,” In Proceedings of
SIGGRAPH 1995, pages 39-46.

8. Darsa, Lucia, Bruno Costa Silva, and
Amitabh Varshney, “Navigating Static
Environments Using Image-Space
Simplification and Morphing,” Proceesings
of 1997 Symposium on Interactive 3D
Graphics, April 27-30, 1997, pp. 25-34.

9. Pulli, Kari, Michael Cohen, Tom Duchamp,
Hugues Hoppe, Linda Shapiro and Werner
Stuetzle, “View-based Rendering:
Visualizing Real Objects from Scanned
Range and Color Data,” Proceedings of 8th

Eurographics Workshop on Rendering, 1997,
pp. 23-34.

10. Grossman, J., Dally, W., “Point Sample
Rendering,” Proceedings of the 9th

Eurographics Workshop on Rendering,
Vienna, Austria, June 1998, pp. 181-192.

11. Jonathan Shade, Steven Gortler, Li-wei He
and Richard Szeliski,” Layered Depth
Images,” In Proceedings of SIGGRAPH
1998, pages 231-242.

12. Chang, Chun-Fa, Gary Bishop, Aneslmo
Lastra, “LDI Tree: A Hierarchical
Representation for Image-based Rendering,”
In Proceedings of SIGGRAPH’99,
pp.291-298.

13. Rafferty, Matthew M., Daniel G. Aliaga,
Voicu Popescu, Anselmo A.Lastra,” Images
for Accelerating Architectural
Walkthroughs,” IEEE Computer Graphics
and Applications, November/December,
1998.

14. James H. Clark, “Hierarchical geometric
models for visible surface algorithms,”
Communications of the ACM,
19(10):547-554, October, 1976.

15. B. Garlick, D. Baum, and J. Winget,
“Interactive viewing of large geometric
databased using multiprocessor graphics
workstations,” SIGGRAPH’90 Course Notes:
Parallel Algorithms and Architectures for 3D
Image Generation, 1990.

16. John M. Aiery, John H. Rohlf, and Fredriick
P. Brooks, Jr., “Towards image realism with
interactive update rates in complex virtual
building environments,” Computer Graphics
(1990 Symposium on Interactive 3D
Graphics), 24(2):41-50,March 1990.

17. Seth J. Teller, “Visibility Computations in
Densely Occluded Polyhedral
Environments,” Ph.D Thesis, Computer
Science Division (EECS), UC Berkeley,
Berkeley, California 94720, October 1992,
Available as Report No. UCB/CSD-92-708.

18. Ned Greene, Michael Kass, and Gavin Miller,
“Hierarchical z-buffer visibility,” In
Computer Graphics Proceedings, Annual
Conference Series, pp. 231-238, August
1993.

19. H. Zhang et al.,” Visibility Culling Using
Hierarchical Occlusion Maps,” Computer
Graphics (Proceedings of SIGGRAPH’97),
pp. 77-88, August 1997.

20. S. Coorg and S. Teller, ”Temporally coherent
conservative visibility,” Proceedings of 12th

Annual ACM Symposium on Computational
Geometry, 1996.

21. Thmomas H. Cormen, Charles E.Leiserson
and Ronald L. Rivest, “Introduction to
Algorithm,” The MIT Press, 1990, ISBN
0-07-013143-0 (McGraw-Hill).

22. X.Decoret, G. Schaufler, F. Sillion and J.
Dorsey, “Multi-layered Impostors for
Accelerated Rendering,” Proceedings of
Eurographics’99, C-61-72, 1999.

23. Szymon Rusinkiewicz, Marc Levoy, “Qsplat:
A Multiresolution Point Rendering System
for Large Meshes,” to appear in the
Proceedings of SIGGRAPH’2000.

	page1
	page2
	page3
	page4
	page5
	page6
	page7

