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Abstract
Image-based representations of objects are 
useful in computer game and virtual museum 
and art gallery applications. In this paper, we 
present a hierarchical image-based object (IBO) 
representation for a complex scene. In this 
hierarchy, we find a camera-sampling circle for 
each node and attempt to optimize the number of 
reference images that represent visible objects 
inside each node. While rendering this IBO 
hierarchy, we adaptively traverse this hierarchy 
to the levels with sufficient camera sampling 
rates for the output image. We experimentally 
evaluate the proposed schemes on a PC for 
complex scenes that consist of image-based
objects. The proposed scheme achieves a near 
real-time rendering rate for such complex scenes 
with more than 1 million polygons.

Keywords: Image-based rendering, Image-based 
objects (IBO), 3-D warp, Hierarchical 
representation

1. Introduction
Interactive rendering extremely complex 
geometric environment has been an important 
research issue in computer graphics. Although 
the performance of graphics hardware has 
improved dramatically in recent years, the 
demand for higher performance continues to 
grow. Today, a virtual environment containing 
many millions of polygons becomes common. 
To rapidly visualize such complex scenes, the 
rendering algorithms must limit the number of 
polygons rendered in each frame. However, this 
limited number of polygons is still prohibitive to 
achieving a real-time rendering on most 
workstations. In past five years, image-based 
rendering (IBR) techniques have emerged as a 

potential solution to render such complex scenes. 
The basic concept of IBR methods is to employ 
a set of reference images to represent 
three-dimensional scenes instead of geometric 
primitives. With IBR methods, the 
computational complexity is independent of the 
number of geometric primitives. Therefore, IBR 
techniques are very attractive for interactive 
display of complex scenes.   

Image-based object (IBO) is a compact, 
image-based representation for 
three-dimensional objects with complex shapes 
[1]. This representation can be very useful in 
games, virtual museum and art gallery 
applications. In some sense, the proposed 
method is similar to the concept of IBO, but 
different in many respects including reference 
image acquisition and representation, and 
rendering. Given a set of objects comprising a 
scene, we build a hierarchical bounding volume 
tree [2] by placing partitioning planes inside 
gaps between objects. In this tree, the geometry 
is stored only at the leaves of this hierarchy. For 
each node in this hierarchy, we find a camera 
sampling circle and then around the circle the 
optimized number of reference images are
captured to represent the visible objects inside 
each node. During a walkthrough of the scenes, 
the proposed method adaptively traverses the 
hierarchy to the levels with sufficient camera 
sampling rates for the output image. Whenever a 
node sufficiently represents sampling of the 
output image, two of reference images stored on 
this node are selected to 3D warp. With the 
proposed method, a z-buffer is required to 
eliminate hidden surfaces. We implemented the 
proposed method and rendered scenes with more 
than one million polygons on a PC. The 
demonstrated rendering performance is very 
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promising near real-time with tolerable loss in 
rendering quality. 

The remainder of this paper is organized as 
follows. The next section reviews related 
previous work. Section 3 presents schemes to 
construct an IBO hierarchy. We introduce the 
rendering of IBO hierarchy in Section 4. 
Experimental evaluation of the proposed 
schemes on a PC is given and discussed in 
Section 5. Finally, Section 6 closes with 
conclusions and future work. 

2. Related Work
Shade et al. [3] and Schaufler et al. [4] employ 
the image caching or impostor technique to 
accelerate walkthroughs of complex scenes. 
Although the cached images can be reused in 
subsequent frames, the image impostors have to 
be regenerated whenever it is no longer suitable 
for the new view. Levoy et al. [5] and Gortler et 
al.[6] collect a large number of images in the 
databases to represent objects. At rendering time, 
the images in the databases are resampled to 
produce an interpolated view of the objects. 
McMillian and Bishop [7] present an efficient 
3D image warping framework and a list-priority 
solution for the visibility problem. However, this 
algorithm cannot be used to warp multiple 
images acquired from different COPs 
simultaneously. Darsa et al. [8] and Pulli et al. [9] 
reconstruct meshes from a dense range maps to 
approximate a 3D image warp. To generate a 
new view, the meshes are blended on a per pixel 
basis and a z-buffer is used to eliminate hidden 
surfaces. Grossman et al. [10] use individual 
points or a set of points as samples in 
image-based rendering. These sampling points 
are rendered using a hierarchy of Z-buffer to 
detect tear artifacts. Shade et al. [11] use the 
Layered Depth Image (LDI) to deal with the 
disocclusion artifacts of image warping. Given a 
set of nearby reference images, the LDI is 
constructed by warping all these reference 
images to a carefully chosen camera setup. Later, 
Chang et al. [12] propose the LDI tree which 
combines a hierarchical space partitioning 
schemes with the concept of the LDI. This 
scheme preserves the sampling rates of the 
reference images by adaptively selecting an LDI 
in the LDI tree for each output pixel. Oliveira et 
al. [1] introduce the concept of image-based 
object (IBO) that is represented by six layered 
depth image sharing a single center of projection. 
The IBO can be used as a primitive to construct 
more complex scenes. In their work, a new 
list-priority algorithm for rendering such scenes 
and a back-face culling strategy is proposed. 
Rafferty et al. [13] attempt to improve upon a 
cells and portals framework by using images to 

replace geometry visible through portals in a 3D 
scene. The above techniques are related 
image-based rendering techniques to visualize 
complex objects and scenes. 

On the other hand, several related non-IBR 
techniques for rendering large scenes are 
reviewed as follows. Clark [14] and Garlick et al. 
[15] investigate visibility culling algorithms to 
avoid drawing objects that not visible in the 
image. Aiery et al. [16] and Teller [17] consider 
the relationships of visibility within a complex 
scene. Only the potentially visible set of 
polygons is considered to render at each frame. 
Green et al. [18] propose a hierarchical z-buffer 
to achieve fast visibility culling. Another 
hierarchical method is to use Occlusion Maps 
[19] that does not use depth information to cull 
occluded geometry. Coorg and Teller [20] 
attempt to dynamically identify large occluders 
as the user moves. Then, these large occluders 
are used to perform culling using an octree 
structure.

3. Building IBO Hierarchy
In this section, we present the proposed schemes 
to create IBO primitives and to construct IBO 
hierarchy.

As a preprocessing step, we construct a BSP-tree 
like partitioning of a given scene. After this step, 
a compact bounding volume hierarchy [2] is 
constructed. Generally, the partition scheme 
must take the following criteria into account: (1) 
make the hierarchy as balanced as possible and 
(2) for each node in this hierarchy, make its 
bounding volume as compact as possible. The 
balanced hierarchy can help make the rendering 
time as constant as possible. Since we build an 
IBO for each node in the proposed hierarchy, the 
second criterion can influence image-sampling 
quality. However, these two criteria sometimes 
contradict each other. The compactness cannot 
always guarantee the perfectly balanced 
hierarchy.

Unlike original IBO [1], we build an IBO for 
each node in the proposed hierarchy. The 
proposed IBO in this paper can represent either a 
geometric object or a collection of geometric 
objects. For each IBO, we find an optimized 
number of reference images to represent objects 
by placing these selected cameras along a 
camera-sampling circle. The easiest way to 
acquire reference images is to place cameras 
along this circle in a uniform manner. There are 
several problems inherent in this approach: (1) 
fixed number of reference images potentially 
leads to too much redundancy (waste storage) 
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and (2) without considering geometric 
information, this method potentially misses 
some geometric details that lead to holes from 
image warp. Our method is described as follows. 
First, we uniformly place N cameras (i.e., one 
camera per 

N
360 degrees) along the 

camera-sampling circle and assume these N 
cameras can sufficiently cover all possible 
viewpoints. Let { }NiPP i ,...,2,1== , where Pi is 

the position of the ith camera on a given 
camera-sampling circle. Ci denotes the reference 
image captured at Pi and Wmnk represents the 
interpolated image at Pk by 3-D warping Cm and 
Cn, where nkm << . Furthermore, we define 
an error function mnkε  for using Wmnk instead 
of Ck in equation (1).

  (1)
                            

     ,where H and D denotes the number of holes and 
the difference of depth between Wmnk and Ck, 
and w1 and w2 are weights for H and D.

Figure 1. Optimal set of reference images

Considering Figure 1, let the sum of error 
functions for a selected (Cm, Cn) reference 
image pair to warp each Pk’s image, k 
=m+1,m+2,… n-1, be denoted as mnε , 
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is to find a optimal set of reference images on 
the camera-sampling circle from P  cameras 

that are placed uniformly. Assume we select S
reference images on this circle. Let 
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21
, where each 

isP is an optimally selected camera position from 

P  camera positions. Define error function for 

selecting these S  reference images by 

equation (2).
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, where 
iSP is in clockwise order and 

1+iSiS PPE denotes the error sum of warping 

iSPC and 
1+iSPC for the other images captured 

(i.e., by uniform placement) between 
cameras

iSP  and 
1+iSP . Apparently, equation (3) 

is minimized as P  = S . To find a minimal 

set of reference, we need to have a constraint on 

S  and to minimize equation (3).

                        (3)

, where w3 is weight for S . In the course of 

minimizing equation (3), if the number of holes 
is over a threshold, we let ∞=

+1iSiS PPE  to 

ensure the quality of image warp. Currently, we 
employ dynamic programming technique [21] 
to solve the minimization of equation (3) and 
thus find these S  optimally selected reference 

images. 

4. Render ing IBO Hierarchy
Once the IBO hierarchy has been built, the 
following pipeline (as shown in Figure 2) is used 
for display. In this pipeline, for each frame, 
visibility culling includes frustum culling, 
background pixel culling on each reference 
image and reference image selection per visible 
IBO node. Additionally, for each visible 
reference image, we compute on-line its 
multi-resolution representation to reduce number 
of warping pixels. Then, we compute splatting 
size of 3D warping and splats are drawn with 
Z-buffer enabled to resolve occlusion. To reduce 
number of holes, we simply find and fill these 
holes depending on their non-hole neighboring 
pixels. Once the position of a viewer is inside 
the bounding volume of leaf nodes in IBO 
hierarchy, we draw polygons instead of splats. 

Figure 2. Pipeline of rendering IBO hierarchy

IBO_Hierachy_Render (node, viewpoint)
Begin

if node is outside the view frustum
return

∑
∪

×+
+

S
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iSiS 31
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else if viewing position is outside this 
node

select two reference images for 
this node
using distance metric, compute 
multi-resolutions, if required
compute splatting size
3-D warping

else if this node is a leaf
draw polygons insdie this node

else 
IBO_Hierachy_Render 
(node.leftchild, viewpoint)
IBO_Hierachy_Render 
(node.rightchild, viewpoint)

End

The above algorithm is used for display and 
several stages of this algorithm are examined in 
detail in the later subsections. Considering 
situation in Figure 3, the original reference 
image (b) is captured on the camera-sampling 
circle. If we render the object from the center of 
projection of image (c) by warping the image (b), 
the possibly insufficient sampling rate of the 
image (b) (i.e., inside the circle) will generate 
many holes (i.e., zoom-in effect) in the image (c). 
In contrast, when we render the object from the 
center of projection of image (a) (i.e., outside the 
circle) by warping the image (b), the excessive 
sampling rate of the image (b) might not affect 
the quality of the output. However, it wastes 
time to process more pixels than necessary. In 
above rendering algorithm, if the viewer is at 
both (a) and (b) positions, we warp the image (b). 
When the viewer is at (c), we continue the next 
level in IBO hierarchy to find appropriate 
reference images with sufficient sampling 
condition. Although our approach is 
conservative, at least, we maintain sufficient 
sampling condition of warping. Later, we will 
attempt to reduce processing redundancy due to 
over-sampling as the viewer is at (a) position. 

Figure 3. Finding sufficient sampling rate of 
reference image

4.1 Multiresolution 
Considering Figure 4, there are two cameras 
with COP at V1 and V2 and an identical focal 
length d. P1 and P2 are two points in 3D space 

and the distance from V1 and V2 to 21PP  are 
d1 and d2. Let l1 and l2 be projected length of 

21PP  on both image planes. We can have 
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on this simple metric, we compute lower 
resolution as the viewpoint is at far distance 
from objects. In this manner, we attempt to avoid 
warping more pixels than necessary.  

   
Figure 4. Distance metric of multiresolution;

4.2 Hole Filling

Our strategy for detecting holes is very naive but 
very fast. We simply detect holes by checking 
their non-hole neighboring pixels using a 33×
mask. Considering Figure 5, if any of the 
following is true, the pixel at 0 is determined as 
a hole and it is filled with a color that is 
averaged from those of its non-hole neighbors.

  (5)                           

, where ba ≡ returns true, if both a and b are 
similar in color and depth. This method only can 
fix one-pixel wide hole and result in blocky 
artifacts. To better treat hole problem, Grossman 
et al. [10] suggest a hierarchy Z-buffer. In future, 
we might include this option to treat holes. 

Figure 5. Hole detecting mask

5 Exper imental Results
We implemented the proposed methods on a 
Pentium II 350 PC with a 224M main memory 
and a GeForce2 GTS/32M graphics card. We 
built a system prototype in Visual C++ and 
OpenGL. First, we evaluate the proposed camera 
placement using an example as shown in Figure 
6. In this example, the threshold for the 
parameter H is 10% of the number of image
pixels. We originally capture 18 reference 

54,72,63,81 ≡≡≡≡
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images in a uniform manner and from them we 
select 6 images after the optimization of the 
proposed method. To experimentally evaluate 
the proposed method, we also uniformly capture 
6 reference images as indicated in Figure 6. In 
Figure 7, (a) is outputted by rendering polygons. 
From (b) and (c), the proposed method seems 
better than the uniform method. The uniform 
method generates more holes as marked by a 
circle. 

Figure 6. Captured positions of the proposed and 
uniform methods

     (a)    (b)           (c) 
Figure 7. Evaluating the proposed camera 
placement algorithm: (a) polygon drawing; (b) 
proposed method; (c) uniform method

Next, we evaluate the proposed method of 
rendering IBO hierarchy. In the test scene, there 
are many computer-tables on the ground plane. 
In total, there are 1,149,680 polygons in this test 
scene. Using the proposed method, the scene is 
partitioned, as shown in Figure 8 (a), and the 
resulting IBO hierarchy is built with 53 nodes 
and in total 492 reference images used. Before 
the optimization, we capture 18 reference images 
uniformly on each camera-sampling circle. Each 
reference image and output is rendered at 

256256 ×  resolution with FOV = 90 degrees. 
Figure 8 (b) shows a bird’s eye view of the test 
scene and each viewpoint on two 4000-frame 
walkthrough path. There are several viewpoints 
labeled frame number along the path. In our 
experiments, the viewer is currently limited to 
walk on the ground. The first walkthrough was 
performed using a hierarchical view frustum 
culling (using the same IBO hierarchy) but 
rendering all of the original polygons included in 
leaf nodes that are inside the view frustum. The 
second walkthrough was performed using the 
proposed method. Figure 9 shows several frames 
rendered in two walkthroughs. The images in the 

first row are very similar to those in the second 
row.

      (a)           (b)
Figure 8. (a) The partitioning of the scene; (b) A 
bird’s eye view of the test scene.

(a)1500th frame  (b)1800th frame (c)2100th frame    

Figure 9.Frames from walkthroughs of the test 
scene. The first row shows four frames rendered 
using the original polygons. The second row 
shows the same frames rendered using the 
proposed method. In the second row, if the node 
is rendered using polygons, its bounding volume 
is also shown.

The plot in Figure 10 shows the frame rate 
performance for the two walkthroughs. On the 
average, the proposed method achieves about 23 
frames/second and the other achieves about 2 
frames/second. With our method, the peak frame 
rate is around 35 to 40 frames/second, but the 
slowest is about 8 to 10 frames/seconds. This 
performance difference is due to the number of 
drawn polygons. When the number of drawn 
polygons increases, the performance goes down 
such as frames around 1000. Figure 11 shows 
the number of drawn polygons using the 
proposed method in the 40000-frame 
walkthroughs. There is a peak with regard to the 
number of drawn polygons around 1000 frames, 
too. Next, Figure12 shows the number of warped 
images and IBO nodes rendered using polygons. 
The number of warping reference images is 
significantly more than that of number nodes 
rendered using polygons. Thus, the proposed 
method can save rendering cost.  
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Figure 10. Frame rate performance comparison: 
rendering IBO hierarchy vs. drawing polygons

Figure 11. The number of drawn polygons using 
the proposed method

Figure 12. The number of rendered primitives: 
IBO leaf nodes vs. the number of reference 
images.

6 Conclusions and Future Work
The proposed rendering of IBO hierarchy has 
demonstrated a near real-time performance for a 
complex scene with more than one million 
polygons. The proposed scheme first partitioned 
the scene and built an IBO hierarchy. Each node 
in the IBO hierarchy is represented by a selected 
set of reference images. Depending on the 
viewpoint, we select IBO nodes with appropriate 
sampling condition. These selected nodes are 
rendered by two reference images. When the 
viewer is inside the leaf nodes, the polygons 
contained in these leaf nodes are rendered 
instead. Thus, the proposed scheme is a kind of 
hybrid technique: image-based and 
geometry-based. Although we achieve very 
promising results, there are several extensions to 
be done in near future as follows.

l Currently, the viewer is limited on the 
ground plane due to the fact that we 
captured the reference images per IBO 
node on a camera-sampling circle. All 
cameras are placed on the same plane. This 
restricts the movements of viewer as well 
as visual quality if viewer is allowed to 

move freely. It is easy to extend the 
camera-sampling circle to a sphere in 3D. 
For example, we uniformly place cameras 
on a sphere. Each location can be identified 
by ( φθ , ). Then, we divide the ( φθ , ) into 
square regions and employ dynamic 
programming technique to find an optimal 
set of ( φθ , ) to represent an IBO node. 
During rendering time, the four corners of 
the region enclosing the desired viewpoint 
are used.

l The current hole-filling method is very 
naïve. This method can not fix holes with 
more than two-pixel width. Another 
limitation is that it is difficult to properly 
sample thin spoke-like structure. 
Additionally, it can not guarantee correct 
detection of holes. Actually, this is really a 
difficult problem. A better approach to treat 
above problems will be further 
investigated.

l In preprocessing, we statically built the 
IBO hierarchy. There are many potentials 
to miss some sampling details and thus to
yield holes from arbitrary viewpoints. We 
can record the locations of uniform camera 
placement before optimization. When a 
viewpoint and its direction is very different 
from these recorded information, we can 
dynamically create a new reference image 
by rendering polygons. Then, this new 
image exists and is warped until it is 
replaced by the other new image. In this 
manner, we tradeoff the performance and 
visual quality.

l Finally, we should say the proposed method 
is kind of tradeoff between the performance 
and storage. Although the cost of memory 
storage continues to decline, we plan to 
employ image compression technique to 
reduce the storage of these reference 
images.  
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