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ABSTRACT

Image compression using vector quantization
has been proved to be an efficient approach. The
speed of codeword search is the key problem for
real-time applications of vector quantization. In
this paper, a new inequality based on the
Hadamard transform is derived. An efficient VQ
codeword search algorithm using this inequality
is proposed for VQ image coding. Experimental
results show that the algorithm performs better
than the PDS, ENNS, IENNS, and WTPDS
algorithms.

1. INTRODUCTION

As an effective technique for data compression,
VQ [1][2] has been successfully used for various
applications such as speech coding and image
transmission. The codeword search problem in

VQ is to assign one codeword ¥’ =(y/,
y!,...,y]) in the codebook C={y' 3*, .., 3"}
to the input vector X =(x,,X,,...,x,) such that the
distortion between this codeword and the input
vector is the smallest among all codewords. The
distortion of representing the input vector x by
the the codeword ¥’ can be measured by the
squared Euclidean distance, i.e.,
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Thus the full search VQ needs to perform AN
multiplications, (2k-1)N addtions and N-1
comparisons for encoding each input vector. In
order to release the computation load of the full
search algorithm, a lot of efficient algorithms

have been presented for fast codeword search.
The PDS algorithm [3] is a simple and efficient
algorithm, which allows early termination of the
distortion calculation between a training vector
and a codeword by introducing a premature exit
condition in the search process. The hypercube
approach [4] is a well know premature method
which is efficient if the difference for any
coefficient is generally larger than the difference
of the other coefficient.

Vidal proposed the approximating and
elimination search algorithm (AESA) [S] whose
computation time is approximately constant for a
codeword search in a large codebook size. The
high correlation characteristics between data
vectors of adjacent speech frames and the
triangular inequality elimination (TIE) criterion
were utilized to VQ-based recognition of
isolated words [6]. A similar idea was also
employed for VQ image coding by Huang and
Chen [7].

The bound for Minkowski metric and quadratic
metric was derived and applied to VQ codeword
search [8]. The partial distortion search
algorithm (PDS) [3], hypercube approach [4]
and absolute error inequality criterion (AEI) [9]
are all special cases in the bound for Minkowski
metric. For the squared Euclidean distortion
measure, the improved absolute error inequality
criterion (IAEI) [10] can be obtained by setting
the parameters from the bound for Minkowski
metric. The Manhattan metric was modified to
match the Euclidean distortion measure using a
suitable training procedure so that the number of
multiplication operations can be drastically
reduced [11].



A fast algorithm [12] was proposed for image
coding based on the assumptions that the
distortion is measured by the squared Euclidean
distance and the vector dimension is 2”7 x2”.
The algorithm uses the mean pyramids of
codewords to reject many unmatched codewords.
A more efficient algorithm based on the same
assumptions as the mean pyramid algorithm was
presented. The mean-variance pyramid data
structure [13] was used to reject many more
unmatched codewords than the mean pyramid
algorithm.

The ENNS algorithm [14] uses the mean of an
input vector to cancel the unlikely codeword. In
the improved ENNS algorithm (IENNS) [15], a
vector is separated into two sub-vectors, and two
inequalities based on the sums of its two sub-
vectors are used to reject unlikely codewords.
Although these algorithms do not arouse
performance degradation, they are spatial-
domain based and not efficient enough. A new
more generalized algorithm based on the sub-
vector techniques is also proposed [16]. Recently,
a new codeword search algorithm based on
wavelet transforms has been presented [17],
which is denoted by WTPDS here. In this paper,
we present a new fast codeword search
algorithm based on Hadamard transform (HT),
which is more efficient than the PDS, ENNS,
IENNS, and WTPDS algorithms.

This paper is organized as follows: Section 2
derives a new inequality based on the property of
Hadamard transform. A novel fast codeword
search algorithm based on this inequality is
proposed in Section 3. Experimental results for
the comparison of several algorithms are
presented in Section 4. The conclusions are
made in the final section.

2.Derivation Of New Inequality

Let H, be the 2" x2” Hadamard square matrix
with elements in the set {1,-1}. Assume all of
the following vectors are A-dimensional vectors
and k& =2"(n>0), some basic definitions and
facts can be shown as follows:

(1) Definition I
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(1) Theorem 1. H,H, =kl , where I, is the

unit identity matrix of order £.
(ii1) Definition 2: The Hadamard-transformed

vector X ofthe vector ¥ can be defined as
X=HJ.
(iv) Definition 3. The sum of the vector ¥ is
k

z x, and the energy of the

i=1

defined as §, =

k
vector ¥ is defined as ||)?|| = z X’
i=0

(v) Theorem 2: X,=S, Where X, is the first

element of X . This equation can be derived
from the fact that each element in the first
line of H, is with the same value ‘1°.

(vi) Theorem 3: H)?H = k||)?|| :
Proof. |X|=X"X =(H,¥) (H,%)
=x"H H x=x"kl X
= K77 % = 4|5,
Where 7 denotes the transposition operation.
(vi) Theorem 4. D(X,Y’)=kD(¥,y’). Where
¥’ is a codeword and X is the input vector.
Proof. Let X—3' =Z and Z=H Z.Then
2] = D, 57) and |Z] = D(X,77).
Therefore, it follows from Theorem 3 that

D(X,77)=|Z| = k7] = k(. 5).

(vii) Corollary I

X, =7 <y/DCX,F7) = JkD(F,7)
3. Proposed Algorithm

Now, suppose there are N codewords in the
codebook C: y', y°,..., ", each one with

dimension k£ =2". Let ¥ be the input vector
with the same dimension as these codewords.



From Theorem 4, we know that the codeword
that is closest to the input vector in the spatial
domain is also closest to the input vector in the
HT domain. Therefore we can find the
corresponding best codeword in the spatial
domain by searching the best codeword in the

HT domain. Let D"(X,¥’) = zlmzl (X, =Y7)

denote the partial distance between X and Y7,
where 1<m <k Before the search process, the
HT is performed on all codewords in the
codebook, and then the transformed codewords
are sort in the ascending order of their first
elements. Note that no multiplication is required
for the HT.

To carry out the codeword search in the HT
domain, we first perform the HT on the input

vector ¥ to obtain X , and initialize the current
closest codeword of X to be Y?, where
p=argmin | X, -Y/ |, and set the current
minimum distortion D, to be D()? Y ). Then,
we perform the codeword search in the order as
shown in Fig.1, and set MINSUM=X  —./D_. ,

MAXSUM=X, +.D_. . For each codeword

1n

Y’ to be searched, if Y/>MAXSUM or
Y/ <MINSUM, then it follows from Corollary 1
that ‘XO—YOJ‘>\/D7M. Hence Y’ is not the
closest codeword to X and can be rejected.

Otherwise, we perform the following PDS
process. Starting from m=2, for each value of m,

m=23,...k, we first evaluate D"(X,Y’). If
D"(X,Y7y>D,,, then Y’ can be rejected.
Otherwise, we go to next value of m and repeat
the same process. This PDS process is repeated

min>»

until ¥’ is rejected or m reaches k. If m=k, then
D(X,Y’) with D, If
then D, is
D(X,Y") and the current closest codeword of

X is set to be ¥/, MAXSUM and MINSUM
are also recomputed. As shown in Fig.1, the
search process can be stopped in the down

direction once Y/ <MINSUM and stopped in

we compare
D(X,Y)<D

min>»

replaced by

the up direction once ¥/ >MAXSUM. After the

best codeword of X in the transformed domain
is found, the corresponding codeword of X in
the spatial domain is also found and D, /k is
the corresponding distance according to
Theorem 4.

min

4. Experimental Results

We performed experiments on Pentium-II PC
using four 512 x 512 monochrome images
‘Lena’, ‘Sonic’, ‘Peppers’ and ‘F16° with 256
gray scales. Each image was divided into blocks
with size 8x 8=64. The codebook was designed

using LBG algorithm [2] with the Lena image as
the training set. The other three images were
used to test the effectiveness of the algorithms.

The proposed algorithm was compared to PDS,
ENNS, IENNS and WTPDS algorithms in terms
of the average CPU time per image and the
arithmetic complexity (the average number of
distance calculations per input vector) for
different codebook sizes as shown in Table 1.
For codebook size 512, the proposed algorithm
needs only about 2% of distance calculations
required by the full search algorithm.

5. Conclusions

The main contribution of this paper is to derive a
new inequality based on the Hadamard transform.
A fast VQ encoding algorithm based on this new
inequality is applied for VQ codeword search.
Preliminary experiments demonstrate that the
proposed algorithm can dramatically reduce the
computational complexity during the codeword
search without sacrificing the coding quality.
Experimental results confirm the effectiveness of
the proposed algorithm.
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Table 1. Complexity comparisons of various fast search algorithms (Dimension for VQsis 8% 8)

Codebook size 256 212
CPU time (s) Complexity CPU time (s) Complexity

Full Search 11.42 256.00 22.78 512.00
PDS 2.20 35.74 4.18 65.26
ENNS 0.79 12.98 1.16 23.98
IENNS 0.77 12.45 1.03 20.09
WTPDS 0.53 821 0.75 13.95
Our algorithm 0.52 8.12 0.71 13.78

Fig. 1 Search order of the transformed codewords in the codebook
(Codewords are sorted in the ascending order of their first elements)
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