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Abstract

A target relation of a query is a relation which con-
tains attributes of selected tuples to be outputed. In
this paper, by identifying target relations, we divide
a given tree query into two parts: one final query
tree and zero or more non-final query trees. Since
only the root of each of the non-final query trees will
participate in the final query tree, we can apply a
semijoin program to fully reduce the size of the root
of each of the non-final trees first. Therefore, we can
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reduce the data transmission cost for the final query
tree. Moreover, when there is more than one non-
final query trees, we can process them in parallel,
which can shorten the query response time. Then,
we apply join and semijoin operations together to
optimize the the cost of the final query tree. Con-
sequently, our target-relation-based approach not
only can reduce the data transmission cost but also
the response time. Moreover, the larger the number
of non-final query trees is, the more reduction our
approach can achieve. We show that the proposed
approach to distributed joins can have better per-
formance than other approaches which either apply
semijoins before the join process or apply both joins
and semijoins together.

(Key Words: distributed databases, heuristic joins,
query optimization, relational databases, semijoins)

1 Introduction

In a distributed database, we have the ability to
decentralized data that are most heavily used by
end users at geographically dispread locations and,
at the same time, to combine data from different
sources by means of queries. In a distributed rela-
tional database system, the processing of a query
involves data transmission among different sites (or
nodes) via a communication network. The retrieval
of data from different sites in a network is known
as disiributed query processing. The problem of op-
timal query processing in distributed database sys-
terns was shown to be NP-hard, where an optimal
query processing program is one which requires the
least total data transmission cost to process the
query.

In a wide area network, under the assumptions
that each site contains one relation, there is only



one copy of each relation, and the cost of local pro-
cessing 1s negligible compared to the transmission
cost, a query is usually processed in the following
three phases [6]: (1) local processing phase which
involves all local processing such as selections and
projections, (2) reduction phase where a sequence
of semijoins 1s used to reduce the size of relations,
and (3) final processing phase in which all result-
ing relations are sent to the site where the final
query processing is performed. The semijoin opera-
tion have been extensively studied in the literature
{3, 4, 17]. The semijoin operator takes the join of
two relations, R and S, and then projects back out
on the domains of relation R. For the semijoins to
be performed, only the projection of the joining at-
tribute need be sent. If the size of these projections
1s small relative to the amount by which R and S
are reduced, then the preliminary semijoin will be
profitable.

The first algorithm using semijoins for dis-
tributed query processing was implemented in SDD-
1 in [3]. This SDD-1 algorithm is based on a
hill-climbing strategy that produces efficient, but
not necessarily optimal-query processing strategies.
Theoretical aspects of semijoins were first studied in
[2). Simple queries were studied in [13]. Their algo-
rithm for general queries was improved in [1]. It has
been proved that a tree query can be fully reduced
by using semijoins [2], and there has been much re-
search reported in optimizing semijoin sequences to
process certain tree queries, such as star queries (5]
and chain gqueries {11]. However, the determination
of an optimal semijoin sequence to process certain
tree queries has been proved to be NP-hard [12]. For
general query graphs with cycles, even with one join
attribute, the problem of finding an optimal strat-
egy to minimize the data transmission cost has also
been proved to be NP-hard [12]. Methods based on
dynamic programming to get an optimal semijoin
sequence for tree queries and chain queries, were
studied in [10] and [11], respectively. These meth-
ods based on dynamic programming have a high
computational complexity which limits their appli-
cability. A heuristic approach to finding a semijoin
program that only fully reduces one relation is pro-
posed in [17]. In [4], they describe algorithms to
improve the solutions generated by heuristics.

In addition to semijoins, join operations can also
be used as reducers in distributed query process-
ing to further reduce the communication cost [6, 8].
Moreover, the approach of combining join and semi-
join operations as reducers can result in more ben-
eficial semijoins due to the inclusion of joins as re-
ducer [8]. (Note that such semijoins are referred to
as gainful semijoins.) That is, this approach consid-
ers both phases (2) and (3) together. Both profitable
semjoins and gainful semijoins are called beneficial
semijoins.

In this paper, different from those algorithms
based on either only the profitable semijoins or the
gainful semijoins to reduce the data transmission
cost in phases (2) or/and (3), we propose a target-
relation-based approach to distributed joins. A tar-
gel relation of a query is a relation which contains
attributes of selected tuples to be outputed. By
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identifying target relations, we divide a given tree
query into two parts: one final query tree and zero
or more non-final query {rees. A final query tree
contains final relations that are target relations and
those relations which are intermediate nodes in the
paths between any two target relations in the given
tree query. A non-final query iree contains those re-
lations which participate in non-final joins, where
a non-final join means that at least one of its join-
ing relations is not a final relation. Since only the
root of each of the non-final query trees will partici-
pate in the final query iree, we can apply a semijoin
program to fully reduce the size of the root of each
of the non-final trees first. Therefore, we can re-
duce the data transmission cost for the final query
tree. Moreover, when there is more than one non-
final query trees, we can process them in parallel,
which can shorten the query response time. Then,
we apply join and semijoin operations together to
optimize the the cost of the final query tree. Con-
sequently, our target-relation-based approach not
only can reduce the data transmission cost but also
the response time. Moreover, the larger the number
of non-final query trees is, the more reduction our
approach can achieve. We show that the proposed
approach distributed joins can have better perfor-
mance than other approaches which either apply
semijoins before the join process or apply both join
and semijoin together.

The rest of the paper is organized as follows. In
Section 2, we give some definitions used in this pa-
per. In Section 3, we present our proposed strategy.
Finally, in Section 4, we give a conclusion.

2 Background

In this section, we describe assumptions and def-
initions used in the paper.

2.1 Queries, Query Graphs, Joins and
Semijoins

A query @ consists of two components: the target
list and the qualification. The gqualification compo-
nent selects the tuples of the referenced relations
that satisfy the qualification, while the target com-
ponent specifies attributes of the selected tuples
which are to be outputed to the users. Given a
query @ with qualification g, we define its corre-
sponding query graph Go(Vg,Eq) as follows:

Vo = {set of all relation names referenced
by ¢ }; .

Eq={(i, j)|¢ # j and some clause of
q references both R; and R; }.

Figure 1 shows the query graph for the following
query, where R;.A is the target list:

A select Ry.A

from R;, Ro, R3

where R{.A = Ry.A and R,.B = R3.B.

We call a query a tree query either if its query
graph is a tree or if it is equivalent to a query whose
query graph is a tree. We assume that we know the
following information about the relations.

For each relation R;, i=1,2,...,m,

|Ri|: number of tuples;

wRg; size (e.g., in bytes) of R;.

For each attribute A of relation R;,



Figure 1: A query graph Ggx

[R;(A)]: cardinality;

pi - selectivity;

wR(4): size (e.g., in bytes) of the data item in
attribute A of relation R;.

The cardinality of attribute A of relation R;, de-
noted as |A|, is the number of distinct values in
attribute A of relation R; and the selectivity p; 4
of attribute A4 is defined as the number of differ-
ent values occurring in the attribute divided by the
number of all possible values of the attribute.

A join clause “R; joins Rs on A” is denoted

by R, 2 R, where R, and R, are relations, and
attribute A is the joining attribute. Associated with
this join are two semnijoins: R; by Rs on A, and R»

by Ry on A, denoted by Ry -2+ Ry, and Ry - R,

respectively. R, -=» R, entails shipping Ri(A4),
attribute A of Ry, to the site where R; resides and
joining R;(A) with Rs. We denote the resulting
relation by R5 (and R, is unchanged).
2.2 Properties of Semijoins

We say that a relation R; is reduced by a relation
R; in a semijoin program if the semijoin program
has an embedded chain such that the head of the
chain is R; and the tail of the chain is R; [16]. For
example, in the semijoin program

Ry — Ry, Ry — R3, R4 — Rs, R3 — R, Rs — Rq,
Rg — Rq,

the following semijoin programs are embedded
chains:

(Ry — R3, Ra — Rg)and(R4 — Rs, Rs — R7).

A relation R; is said to be fully reduced in a query
graph if given any relation R; in the query graph
such that ¢« # j, R; is reduced by R;. A full re-
ducer program for a tree query is a semijoin pro-
gram which reduces each relation in the tree query
fully. An example of a full reducer program for the
juery graph shown in Figure 1 is illustrated as fol-

R1 nd Rg,R3 nd Rz,Rz i Ra,R'g bnad Rl‘

Here R, is fully reduced since R3 is reduced by both
R, and Rg; similarity, Ry and R3 have been fully
reduced.

A single reducer program for relation R; of a
query graph is a semijoin program in which R; is
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the only relation which is fully reduced. For exam-
ple,
Ry — R, R3 — Ha, Ry — Ra,

is a single reducer program for relation Ry of the
query graph shown in Figure 1. One simplest way to
derive a single reducer program based on semijoins
is to include all backward semijoins in a breadth-
first left-to-root order {2]. (Note that each edge of a
rooted join tree has two directions, each correspond-
ing to a semijoin. The one directed toward the root
node is called a backward semijoins.) To derive a
single reducer program, Pramanik et al. [16] have
proposed a strategy based on the concept of a min-
imal cover, Yoo et al. [17] have applied a heuristic
search (based on the A™ algorithm), and Chang et
al. {14] have proposed an Eulerian-path-like-based
strategy.
2.3 Cost and Benefit of Semijoin Re-
ducers

In this paper, we concentrate on reducing the
communication cost. We assume that the local pro-
cessing cost has a negligible contribution to the to-
tal cost. Thus we need to consider only the cost of
transmitting the data. We assume that the trans-
mission cost is given by cost{n) = cg + ¢y * n, where
n is the amount of data transmitted and ¢g and ¢;
are constants. That is, we assume that data trans-
mission cost is proportional to the volume of data
to be transmitted. Let the transmission cost be
one per data unit transmitted. Consider a semijoin

R; A, R; when R; and R; are at different sites.
Then, the cost of the semijoin is

size_of R;[Al,
and the benefit is
size_of Rj before semijoin — sizeof R;

after semijoin,
where the size of the relations is measured in bytes.

A semijoin R; =+ R;, is called profitable if its cost
of sending Ri(A), wr,(a)lRi(A)] = wr,a)lAlpi a,
is less than its benefit, wgr;|R;| — wr,|R;jlpia =
wr,|R;|[(1 — pi.a), where wg;|R;| and wg;|R;|pi a
are the size of R; before and after the semijoin,
respectively.
2.4 Join Reducers and Gainful Semi-
joins
The application of join operations as reducers
may result in more profitable semijoins available.
Those semijoins which become profitable due to the
use of join reducers are termed gainful semijoins [6}.
Consider the query graph shown in Figure 2 with
its profile in Table 1, for example. It can be verified

that the semijoin K3 A, R, is not profitable since
Wry(4) R3(A)] > wr, (1 = p3,4)|Ri|. Note that al-
though this semijoin is not profitable, it is gainful
if we perform R; = R, and Ry => Rj after this
semijoin operation, where R, => R; means that we
ship R, to the site where R, resides and join Ry



Figure 2: A query graph Ggyx»

with R». It can be shown that for the total com-
munication costs required, |R3(A)| + 2|Rylps 4 +
3|RijoinRy|p3 4

~ 2190 < 2|Ry| + 3|RijoinR,| = 2542, mean-
Ing that it is advantageous, as far as the cost of

data transmission is concerned, to perform Rj 4,
Ry, R = Ry and then R}, = Rj, instead of per-
forming directly R; = R, and RY = R3. Thus, it
can be seen that whether a semijoin is gainful or not
depends on the subsequent join operations. {Note
that the effect of a join operation can be determined
according to (57]) For simplicity, both the profitable
semijoins and the gainful semijoins are called ben-
eficial semijoins. In [6], they have proposed a poly-
nomial time algorithm to find a sequence of Join
reducers. In [8], based on the cumulative benefit of
a semijoin, they have used a heuristic to determine
the set of beneficial semijoins to be interleaved into
a given join reducer sequence. In [15], based on the
dynamic cumulative benefit of a semijoin, they have
applied a variant of the A" algorithm to determine
the set of beneficial semijoins to be interleaved into
a given join reducer sequence.

2.5 Final and Non-final Joins

After identifying target relations in a tree query,
we define those relations which are intermediate
nodes in the paths between any two target relations
as related relations [4, 5]. The union of target rela-
tions and related relations are called final relations.
A relation which is not a final relation is called a
non-final relation. For a join, if both of its joining
relations are final relations, we call it a final join.
Otherwise, we call it a non-final join (4]. For the
join tree shown in Figure 3, if the target list con-
tains R;.A and R4.C, then R, and R4 are target
relations, R, is a related relation, and the final re-
lations are Ry, R,, and R4. The final joins are R,

2. Ry and R, < R,

3 The Algorithm

Given a tree query, we can construct a query
graph G = (V, Eg). According to final joins and
non-final joins, we can divide this query graph into
two parts: 1) the final query tree, and 2) the non-
final query trees. A final query tree contains those
final relations and final joins only. A non-final query
tree consisting of non-final joins and those relations
which participate in these non-final joins, is a rooted
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Table 1: Profile for query Ggx» where
[B| = 1000, and |C| = 600

|A] = 500,



a target relation

Figure 3: A query graph GEgx3

tree with its root node a final relation. A tree query
can contain only one final query tree and zero or
more non-final query trees. For example, given a
query graph Ggxa, as shown in Figure 3, Figure 4-
a) shows the related final query tree and Figure 4-
b% shows the related non-final query trees, where
we assume that R; and R4 are target relations. Ac-
tually, to derive the final and non-final query trees,
we simply identify the target relations first. That
is why we call this approach a target-relation-based
approach.

After finishing the above query graph analysis,
we can first focus on those non-final query trees.
For each of those non-final query trees, what we
want to do is to fully reduce the root node-at a
cost as low as possible, which is a single reducer
program problem. After fully reducing the root of
each non-final query tree by using a single reducer
program, we have reduced the size of each of the
final relations. Therefore, we can reduce the data
transmission cost for the final query tree. More-
over, when there is more than one non-final query
trees, we can process them in parallel, which can
shorten the query response time. Consequently, our
target-relation-based approach not only can reduce
the data transmission cost but also the response
time. Moreover, the larger the number of non-final
query trees is, the more reduction our approach can
achieve.

Consider the following query:

select Ry. A, R4y.C

from Rl) R?) RS: R‘h RS

where R1A = RQA and R]B = RJB and
R3.C = R4.C and R3.D = Rs.D

with its query graph Ggx4 shown in Figure 5
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Figure 4: Query graph analysis for Gexs: (2) a
final query tree; (b) non-final query trees.



: a target relation

Figure 5: A query graph Ggxa

and data profile shown in Table 2. Suppose R and
R4 are target relations and H3 is the final site. Let’s
compare the data transmission cost to evaluate this
query by the following three strategies.

Case 1: Using semijoins only as reducers for
query processing [2].

For the data shown in Table 2, we observe that
R3 — R4 and R3 — R, are profitable semijoins and
they should be executed first. The cost required for
this two semijoins are 680 and 864. Next, we need
2112 + 3720 + 4692 -+ 3600 = 14124 units of trans-
mission cost to send relations Ry, Ra, R4, and Rs to
the final site R3. Therefore, the total transmission
cost is 680 + 864 + 14124 = 15668.

Case 2: Using joins and semijoins as reducers
for query processing [8].

Instead of sending all relations toward the final
site, we would like to use joins as reducers and per-

»form R; = R, and then R) = Rj3. In all, the trans-
mission cost for each step is as follows: Rz — R4
(680), Rz — Ry (864), Ry = R (2112), Ry = Rs
(2908), R, = Rz (4692), and Rs = Rj (3600).
Thus, the total transmission cost in Case 2 is 14856,
which is less than 15668 that is required in Case 1.

Case 3: Using the concept of target relations for
query processing. -

According to the query graph shown in Figure 5,
we can obtain a final query tree shown in Figure 6-
(a) and a non-final query tree shown in Figure 6-(b),
where R, and R4 are target relations. For the non-
final query tree, we would like to perform Rs — K3
which needs 1040 x 2 = 2080 units of transmission
cost. Therefore, the size of relation R3 which should
participate in the final join is reduced. Next, for
the final query tree, we apply semijoins and joins
together [8]; we perform Rz — R4.(680), R3 — R,

864), R} = R, (2112), Ry = R3 (2908), R} = Rg3
4692). Then, the total transmission cost in Case 3
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Table 2: Profile for query graph Ggxa, where |A| =
1200, |B| = 1350, |C| = 1000, |D| = 1600, |E] =
1000, and |F| = 1000



(a) D
®
: a target relation (b)

Figure 6: Analysis of query graph Ggx4: (2) a final
query tree; (b) a non-final query tree.

is 2080 + 680 +- 864 + 2112 + 2908 + 4692 = 13336,
which is less than 14856 that is required in Case 2.

4 Conclusion

In this paper, we have shown that by considering
target relations, we can reduce more transmission
cost than simply using semijoins only or combining
semijoins and joins together. Moreover, the larger
the number of non-final query trees is, the more
reduction in transmission cost and response time
our proposed approach can achieve.
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