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Abstract

In this paper, we have attempted to apply the
concept of fuzzy sets to machine learning. We
assume, first, that the classification into positive and
negative examples in the training set is a degree of
positiveness and negativeness between 0 and 1,
second, that an inexact matching between a concept
description and an example is allowed; and third,
that data may contain wrong, uncertain, and
linguistic information. A new inductive learning
problem is then formulated so as to induce a concept
description that covers almost all of positive
examples and almost none of negative ones.
Therefore, a fuzzy learning aigorithm by the
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Version-Space strategy is proposed to manage wrong,
uncertain, and linguistic information under
imprecision and noise environments.

Keywords: version space, fuzzy version space,
inductive learning, classification.

1. Introduction

Among the machine learning approaches [9],
inductive learning from examples may be the most
commonly used in many real worlid application
domains. Inductive learning is a process of inferring
a concept description that describes all positive
examples and excludes all negative examples: These
traditional inductive learning procedures are
however inapplicable to some application domains,
since data in the real world usually contain wrong,
uncertain, or linguistic information. A crisp
classification to distinguish positive and negative
examples is often artificial; instead, fuzzy or
ambiguous classification of examples is commonly
seen in the real world.

In real applications, data provided to learning
systems by experts, teachers, or users usually contain
wrong, uncertain, and linguistic information.
Wrong, uncertain, and linguistic information will in
general greatly influence the information and use of
the concepts derived. Modifying traditional
inductive learning methods to work well in noisy and
vague environments is then very important. Several
successful learning strategies based on ID3 have



been proposed [11]{12][13]; most of these used tree-
pruning and fuzzy logic techniques. As to Version-
Space based learning strategies, Mitchell proposed a
multiple version space learning strategy for
managing wrong information [9]. Hirsh handled
wrong information by assuming attribute values had
a known bounded inconsistency [6]. In [7], Hong
and Tseng proposed a generalized version space
learning algorithm to manage both noisy and
uncertain data.

Some kinds of problems for inductive
learning arising in a vague environment were
discussed in [5][8]. How to avoid the problems
arising in learning concept descriptions affected by
noise, uncertainty and vagueness is very important.
Among these solutions, the fuzzy set theory seems as
an appropriate approach to handle these problems.
In this paper, we will propose a fuzzy learning
algorithm based or the Version-Space strategy for
inducing a fuzzy rule base from both numerical and
linguistic information which are respectively
obtained from sensor measurements and human
experts. The learning approach is basically an
extension of the generalized version space learning
algorithm [7], and can overcome problems of
inductive learning in the noisy, uncertain and vague
learning environments.

The remaining part of this paper is organized
as follows. The learning strategy of Version Space,
is first reviewed in Section 2. Some related concepts
of the fuzzy theory are reviewed in Section 3. The
fuzzy Verston Space learning algorithm is proposed
in Section 4. Experiments are made on the IRIS
flower classification problem in Section 5.
Conclusions are finally given in Section 6.

2. Review of the Version-Space Learning
Strategy

The Version-Space learning strategy {9][10],
was proposed by Mitchell in 1978, It is mainly used
for learning from training instances of only two
classes: positive and negative. It then attempts to
induce concepts which include all positive training
instances and exclude all negative training instances.
The term "version space' is used to represent all
legal hypotheses describable within a given concept
description language and consistent with ali observed
training instances. The term "consistent” means
that each hypothesis includes all given positive
training instances and excludes all given negative

ones. A version space can then be represented by
two sets of hypotheses: set S and dual set G, defined
as:

S={s | s is a hypothesis consistent with observed
instances. No other hypothesis exists which is
both more specific than s and consistent with
observed instances};

G={g | g is a hypothesis consistent with observed
instances. No other hypothesis exists which is
both more general than g and consistent with
observed instances}.

Sets S and G, together, precisely delimit the
version space in which each hypothesis is both more
general than some hypothesis in § and more specific
than some hypothesis in ¢. When a new positive
training instance appears, set S is generalized for
including this training instance; when a new
negative training instance appears, set G is
specialized for excluding this training instance

Unfortunately, Version Space only works well
in the ideal domains where no noisy, uncertain, or
linguistic information exists in the data. When the
above information appears, the version space derived
is usually null, thus providing no classification
information at all. However, the effective use of
learning systems in real world applications
substantially depends upon their capability in
handling noisy, uncertain, and linguistic information.
In the paper, we then apply the concept of fuzzy sets
to the version-space learning strategy for solving the
above problem.

3. Review of Related Fuzzy Concepts

A fuzzy set is an extension of the crisp set.
Crisp sets allow only full membership or no
membership at all, whereas fuzzy sets allow partial
membership. In other words, an element may
partially belong to a set. In a crisp set, the
membership or non-membership of an element x in
set A is described by a characteristic function u (x),

where

1 ifxed
u,x(—*)=
0 ifxgAd



Fuzzy set theory extends this concept by
defining partial memberships, which can take values
ranging from Oto 1 :

Us: X —>[0,1]

where X refers to the universal set defined in a
specific problem. Assuming that 4 and B are two
fuzzy sets with membership functions of u,(x) and

ug(x), then the following fuzzy operators can be
defined as follows:

()The intersection operator: wina(x) = u4 (¥) 1

Uz (x), where 7: {0, 1] % [0, 1] = [0, 1] is a -
norm operator satisfying the following conditions

(8}

foreacha b ¢ € [0, 1]

(@a7T l=a

®aTb=bTa

QaTb2cTd ifaz c,b2d
(DaThbTc=aTBTO=@ThTc

Some examples for a f-norm operator g7 b are

min(a,b) anda x b.

(2) The union operator: U, (X) = u,(X) p us(),
where P: [0, 1] % [0, 1] — [0, 1] is a s-norm
operator satisfying the following conditions [8]:

foreacha b, ¢ € [0, 1]:

(a)ap 0=a

(apb=2cpd ifaz ¢,b2 d
®apb=bpPa
Dapbpec=apBpo=@pbpc

Some examples for a s-norm operator 5pp are

max(a,b) anda+b-axb.

(3) The a—cut operator: A« (x)={x €X|us(x)2 '},
where 4, is an a—cut of a fuzzy set 4. Ae
contains all the elements of the universal set .X'

that have a membership grade in 4 greater than
or equal to the specified value of &.

In the next section, these fuzzy concepts and
operators will be used in our learning algorithm to
model the vague knowledge.

4, Fuzzy Version-Space Learning Strategy

Most inductive learning approaches begin with
finding the appropriate training examples. For
achieving this purpose, the attributes must first be
determined, and their feasible values must be
established. These values of attributes can be
determined either by consulting the experts or from
sensor measurements. The values of attributes can
either be numerical (continuous or discrete) or
symbolic (linguistic or crisp). If the values of
attributes are numerical, it may be necessary to
discretize the original values into a number of
possible regions for traditional inductive learning
methods to work with.

Recently, the fuzzy logic is commonly used to
transform a numerical domain into a number of
fuzzy regions (also called fuzzy or linguistic labels).
The use of the fuzzy set theory to replace the
traditional discretization techniques has at least the
following advantages:

1. Each fuzzy region can be interpreted from a
linguistic or semantic point of view; it can then
be understood by the human.

2. It usually provides a small number of fuzzy labels
in the transformed domain, thus making the
learning and reasoning simple.

3. It can help us effectively deal with noise in the
data.

In the next section, we will propose a fuzzy
transformation technique. which can. divide the

continuous values into a number of fuzzy labels.

4.1. Generate Linguistic Cases from Numerical
Data

Suppose we obtain a set of desired input-output
data pairs from sensor measurements as in Table 1.

Table 1 Input-output data pairs

=~ _attnbutes
—. A, A: A. | CLASS

examples ™~ .

(D Ith a5
instance e & a’ - dm | €

@ @ (2) 2
instance €3 |91 G T - | €
. (o) {n) (n) (m)
instance e, 1 a, da: - ae | C




In Table 1, 57 4, .., 4" respectively being
the values of attributes 4, A4, .. , 4, with

continuous domains form the input of the i-th

m

example, and 'V is the output part of the i-th

example. The task here is to transform the
numerical domain into a fuzzy domain. The
approach applied here consists of the foliowing four
steps.

Step 1: Transform the numerical domain into a
number of fuzzy regions

Assume that the domain interval of attribute AI,

in the training data is [a a ] where ,; is the

mimmum value of ‘41' and 4’ is the maximum value

of 4 ; Each domain interval is divided into X regions

denoted by R.1>Riz> - >Ri.x, where X is arbitrarily
assigned by the builder and may be different for
different attributes. The length of the regions is not
necessarily equal. Each region is then assigned a
fuzzy membership function. Let D, =

!

{Ri+'R

~~~~~~ R.«x } be a fuzzy domain of attribute .4

Fid

a; and ;- will then respectively fall in R, and R «.
Fig. 2 shows an example where the domain interval
of attribute A; is divided into five regions. These

regions together form a fuzzy domain D;

={RirRi2»-*Ris}. Note that the shape of each

membership function is not necessarily triangular.
The Cartesian product D = D; x D, x .. x D, x

D then forms the complete fuzzy domain of
examples. '

class

ufa; )

id RL.’ R;,j R:.-J Ri,}

1.0

0.0 4.
@ a '
Fig. 2 Transforming the numerical domain of
A, into a fuzzy domain.

2: Generate linguistic cases from given data
pairs

Step

This step transforms each training instance
represented by numerical values into the ones
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represented by fuzzy terms. Assume one instance ¢j,
is given :

(k)
1l

(k)

(k)
k ( Y, F

k
c( )).
e, is then transformed from the numerical

domain into the fuzzy domain according to the fuzzy
regions of each attribute as follows:

e’ (R, gty (01 o e,
g (R y (L LRy (PN) %)

! up,i ! e D ™
,where d =D/ % ..+ D % .. %D}, R, & D, 1<
<ID|, c(k)eDclass, and u, ( U‘)) is the membership

'J

function of label R. . for attribute 4. given ),
ij i a,

Step 3: Assign a membership value to each case

In this step, we will decide a membership value
for an instance described by fuzzy terms according to
its membership values of attributes. Assume that a
linguistic case ekj is given:

(k)
lJ R a

€3] (k)

J (R (a"

N, ... [R . u

my "R )]’C )

The fuzzy intersection operator is then used to
find a membership value u (ke kj) of each instance

follows:
ekjas ollows

ufe ) =iy (a7 -

where T is a t-norm.

(k)
T Uy (g )
my

Step 4: Remove the redundancy and irrelevant
cases

There are usually lots of data pairs in the
original training set and several linguistic cases are
generated for each data pair, so that in the fuzzy
domain redundant cases (i.e., cases that have the
same input and output) and ambiguous cases (i.e.,
cases that have the same input but a different output)
may exist with quite a high probability. These cases
respectively form a redundant training group R and
an ambiguous training group G. In order to remove
the redundancy in the redundant group and



irrelevant cases in the ambiguous group, a solution
applied here consists of the following two phases.

Phase 1 : Remove the redundancy:

If redundant groups exist in the linguistic
training cases generated, the fuzzy union operator p

is used to remove the redundancy. For example, if

the maximum operator is chosen as the p operator,

then in each redundant group only the case with the
maximum membership value is kept, and the others
in the redundant group are removed .

Phase 2 : Remove irrelevant cases.

After the process of removing redundancy, if
ambiguous groups still exist in the linguistic training
cases, then a fuzzy operation o —cuf is used to
remove irrelevant cases in each ambiguous group.
Restated, in each ambiguous group only the cases
with membership values greater than or equal to a
predefined threshold o are kept.

These survived cases of each ambiguous group

G form a new group G Although, the group G
may still contain some inconsistent cases, this way
can prune some irrelevant cases and reduce the
number of cases in the ambiguous group G. The
inconsistency problem is then solved by the proposed
fuzzy learning algorithm in the next section.

Through STEP 1 to STEP 4, the original
input-output data pairs are then transformed into a
set of linguistic cases with the membership values for
belonging to the class. The linguistic case ey
generated is then described as follows:

c(k))

(k) (k) (k)

€y (Riy»-» Rij > Rug»
, with the membership value u (k)(e . ).

4.2 Learning in Vague Environments

The previous section presented a preprocessing
for generating linguistic cases from numerical data.
This section then proposes a fuzzy version space
learning algorithm that can successfully handle
training instances with wrong, uncertain, and
linguistic information. The proposed algorithm can
also easily make a trade-off between including "soft"
positive training instances and excluding "sof?"
negative training instances or a trade-off between the
computational time consumed and accuracy of the
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final results. Soft instances differ from conventional
instances in that they are with degrees of truth for
positiveness and negativeness. The membership
function u_.(e) specifies the degree to which

instance e belongs to the positive class ¢”, and the
membership function uc_(e) specifies the degree to

which instance ¢ belongs to the negative class ¢
Sets S and G defined in the original version space
learning strategy are modified to provide these
additional functions. In the proposed method, the
hypotheses in S/G no longer necessarily
include/exclude all the positive/negative instances
presented so far, since noisy, uncertainty and
linguistic information exist in the training set.
Instead, the most consistent i hypotheses are
maintained in the S set and the most consistent j
hypotheses are maintained in the G set (i and j are
two parameters defined by the user). The fuzzy
measure function HSJHg referred to as the true of

including the positiveness information/the true of
excluding the negativeness 1is attached to each
hypothesis in S/G to summarize all positive/negative
information implicit in the linguistic cases presented
so far.

A hypothesis s with a higher H(s) in S
represents more the truth to include "soft" positive
training instances; a hypothesis g with a higher Hg(g)
in G represent more the truth to exclude "soft"

negative training instances. The new sets S and G
are then redefined as follows:

S={s | s is a hypothesis among the first i maximally

consistent hypotheses. No other hypothesis s in
S exists which is both more specific than s and

Hy(s) = Hy)};

G={g | g is a hypothesis among the first j maximaily

consistent hypotheses. No other hypothesis g' in
G exists which is both more general than g and

Ho(®) 2 Ho@)}

The maximum number of hypotheses
maintained in S here is i, and the number in G is /.
The first i/j maximally consistent hypotheses in 5/G,
however, are not necessarily the ones with the largest
HSJHg. A hypothesis in S that includes much

positive information may possibly include much
negative information. A hypothesis in G that



excludes much negative information may also
possibly exclude much positive information. Clearly
these kinds of hypotheses are not necessarily better
than the ones in S, which include both less positive
information and less negative information. Which
hypotheses in S/G are the first i/j maximally
consistent then depends on both sets S and G (and
not only on S itself or on G itself).

For the proposed learning algorithm to make a
trade-off between including "soft" positive training
instances and excluding ‘"soft" negative ones
according to the requirements of specific learning
problems, two parameters respectively called the
Jactor of including positive instances (FIPI) and the
Jactor of excluding negative instances (FENI) are
incorporated into the algorithm. The values of F7P/
1s 1 if the aim of the learning problem must be to
include all of "soft" positive training instances and 0
if the aim of the learning problem is not to include
any of "soft" positive ones. The values of FENI is 1
if the aim of the learning problem must be to exclude
all of "soft" negative training instances and O if the
aim of the learning problem is not to exclude any of
"soft" negative ones. The values of FIP/ and FEN]
are usually between 0 and 1. We then define the
fuzzy measure function Hyo/Hyg to evaluate the fruth

of classification for each hypothesis in S/G according
to the requirements of specific learning problems.

The fuzzy version space learning strategy

consists of two main phases: searching and pruning,

The searching phase generates and collects possible
candidates into a large set; the pruning phase then
prunes this set according to the truth of classification
of each hypothesis in the boundary sets. The same
procedure is repeated until all training instances
have been processed. Finally, two sets of hypotheses
S and G are obtained, and the hypotheses with the
first k& higher truth of classification in S and G are
chosen as desired hypotheses. Here, k& is determined
by users, and k& must smaller than or equal to the
minimum value of i andj. Below, we shall introduce
the fuzzy version space algorithm as follows:

Fuzzy Version Space Learning Algorithm:

INPUT: A set of n linguistic training instances, each
one with uc(ei), i=1---,n, the values of the
parameters FIP/ and FENI, and the

maximum numbers i, j of the hypotheses
maintained in S and G.
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OUTPUT: The hypotheses with the first 4 highest
truth of classification in sets S and G are
output as desired rules.

1: If appropriate human knowledge expressed by
linguistic hypotheses is available, then adds the
linguistic hypotheses to both § and G. The initial
the truth of including the positiveness/truth of
excluding the negativeness of each newly added
hypothesis hsj / hgj to S/G is assigned Psj / Pgj.

2: If human knowledge does not exist in this
domain, then initialize S to contain only the most

specific hypothesis ¢ with H(¢) = 0 and

initialize G to contain only the most general

hypothesis co with Hg(oo) = 0 in the whole
hypothesis space.

3: If the presented instance e; is "soft" positive, then
do the following steps:

a: Generalize each hypothesis s with H(s) in S to
include the new training instance e;, attach
the new fruth of including the positiveness to
each newly formed hypothesis s in S, where
Hy(s) =H(s)P u o +(e;): call the newly formed

4 .
set .S for convenience.

b: Find the set §” including only the new training
instance ¢; itself, and set the wmuth of

including the positiveness of each hypothesis

s inS tobe u,+(ej)1.e. Hys )= u,+(e)).

c¢: Combine the original S, S’ and §” together to
form a new S. If identical hypotheses with
different truth of including the positiveness
are present in the combined set, only the
hypothesis with the maximum truth of
including positiveness is retained. If a
particular hypothesis is both more general
than another and has an equal or smaller truth
of including the positiveness, discard that
hypothesis.

d: For each hypothesis s with //(s) in the new S,

find the hypothesis g in the new G that is
more general than s and has the maximum
fruth  of excluding negativeness Hg(g)

Calculate the truth of classification as f{sg(.x')

= (H()TFIPI)p(H (2)T FENT) for each
hypothesis s in .S,



e: Retain the hypotheses with the first i highest
truth of classification Hgg in the new S, and

discard the others.
4: If the presented instance e; is "soft" negative,
then do the following steps:

f: Specialize each hypothesis g with Hg(g) in G to
exclude the new training instance e; ; attach the
new truth of excluding the negativeness to each
newly formed hypothesis g' in G, where Hg(g')

= g(g) P u.(ep); call the newly formed set G
for convenience.

g Find the set G" excluding only the new
training instance itself, and set the fruth of
excluding the negativeness of each hypothesis

g"in G tobe u -(e;); i.e. Ho(g" =u.-(e).

h: Combine the original G, G,and G together to
form a new G. If identical hypotheses with
different truth of excluding the negativeness are
present in the combined set, only the hypothesis
with the maximum tuth of excluding the
negativeness is retained. If a particular
hypothesis is both more specific than another
and has an equal or smaller truth of excluding
the negativeness, discard that hypothesis.

: For each hypothesis g with Hg(g) in the new G,

—

find the hypothesis s in the new S that is more
specific than g and has the maximum truth of
including the positiveness H(s). Calculate the

truth  of as Hgs(g) =
(H 7 FIPI) p( Hg(g)‘c FENI) for each

classification

hypothesis g in G.
j: Retain the hypotheses with the first j highest
truth of classification Hgs in the new G, and

discard the others.

5. When there are still new training instances to be
processed, go to STEP 3; otherwise, stop the
learning process, and choose the hypotheses with
first & highest truth of classification in S and G as
the desired rules.

When the learning process terminates, the
hypotheses in sets S and G that result in the first &
highest truth of classification are output to form the
version space, which can then be thought of as being
maximally consistent with the training instances.

5. Experiments
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To demonstrate the effectiveness of the
proposed fuzzy version space learning algorithm, we
applied it to classify Fisher's Iris Data [4] which
contains 150 training instances. The data are
inconsistent, so the original version space learning
algorithm yield a null final version space, providing
no information at all.

The Iris problem is as follows. There are three
species of iris flowers to be distinguished: Sefosa,
Versicolor, and Verginica. There are 50 training
instances for each class. Each training instance is
described by four attributes: Sepal Length (S.L),
Sepal Width (S.W), Petal Length (P.L), and Petal
Width (P.W). All four of the attributes are numerical
domains. All values of these four attributes are
continuous, and the ranges of values for the
attributes S.Z, S.W, P.L, and P.W are respectively
[43, 7.9], [2.0, 4.4], [1.0, 6.9], and [0.1, 2.5}
Assume the domain interval of each attribute is
divided into three regions defined as follows:

Dg 1, ={ Short, Medium, Long }
D¢y ={ Narrow, Medium, Wide }
Dpy ={ Short, Medium, Long }
DP.W ={ Narrow, Medium; Wide }.

Fig. 3 shows an example of membership
functions for each attribute (here we use triangular
membership functions).

us.) NOS.W)

Thewt Medim  Lowg. Nasreve Medioom Wi
XX K
3L v
43 12 61 76 19 e 26 . ‘Ll"’l.l
@ ®)
P.L) u(P.W)
Shont Mocam  Lowg Netrrore Modinen W idke
XK N
N e L - o
1e 14 kL) EXE L 2 “r 13 Ly 23
© CY
Fig. 3 Transforming the input spaces of Iris
data into fuzzy regions

Since the training set includes only 150
instances, a method called N-fold cross validation [2]
is adopted for this small set of samples. All
instances are randomly divided into N subsets of as
nearly equal size as possible. For each n, =1, ., N,
the n-th subset is used as a test set, and the other
subsets are combined as a training set. In this
domain, the data are partitioned into ten subsets,
each with fifteen instances composed of five positive
training instances and ten negative training instances.



Since all values of four attributes are continues, all
training instances in the nine of ten data subsets
need to be fuzzified into a set of linguistic cases by a
fuzzy transformation technique. The fuzzy learning
algorithm is then trained using the linguistic cases,
and it tests the most promising version space derived
on the remaining data subset. This is done for each
set of linguistic cases generating from randomly nine
data subsets, and classification rate are averaged
across altl then ten possible groups.

The fuzzy version space learning algorithm
was implemented in C language on an SUN
SPARC/2 workstation. The algorithm was run 100
times, using different random partitions of the
sample set. The accuracy of some other learning
algorithms on the Iris Flower Classification Problem
was examined in [6] by Hirsh. The methods studied
were Hirsh's Incremental Version Space Merging [6],
Aha and Kibler's. noise-tolerant NT-growth [1],
Dasarathy's pattern-recognition approach [3], and
Quinlan's C4 [12]. Table 2 compares the accuracy of
our learning algorithm with that of the others. It can
easily be seen that our method is as accurate as GVS,
and is higher than other learning methods. Beside,
the rules induced from the proposed algorithm are
easily understood by the human since they are
linguistic rules. Experimental results show that our
method yield a high accuracy.

Table 2. Predictive accuracy of six learning

algorithms

dlgont class | Setosa | Viginica | Versicolor Average
Vs 0=100=25)] 100 o 98 96.66
GVS (I=5. =20 100 94 94 96.00
IVSM 100 93.13 94.00 95.78
NTgrowth 100 93.50 91.13 94.87
Dasarathy 100 98 86 94.67

c4 100 91.07 90.61 93.89

6. Conclusion

[n this paper, we propose a fuzzy version space
learning algorithm to generate a version space from
numerical data and linguistic information. Since we
can easily transform a fuzzy version space to a set of
fuzzy rules, this can be considered as a method to
generate fuzzy rules from a set of numerical data by
the inductive learning approach. This approach can
overcome problems of the inductive learning caused
by noisy, uncertain and linguistic information. It can
manage noisy, uncertain, and linguistic instances
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and finds a maximally consistent version space.
Experimental results show that our method yield
accuracy as high as that of some other learning
algorithms. It is a flexible and efficient fuzzy
inductive learning method.
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