DERBNTHUEZHSNERSTARLE

Proceedings of National Computer Symposium 1995

iR LR A

Parallel Decomposition of Gneralized-Series-Parallel Graphs

R

T 8% X

Sun-Yuan Hsieh and Chin-Wen Ho

BaidhRXETRIL-TRA
Department of Computer Science & Infc ‘mation Engineering
National Central University

Chung-Li 32054, R.O.C.

SRS

ErBEHEXLT AMNBH—MAEK
EHFTREEEHBR-RLATTFITH
¥R I RPEATAREHB IR TR
— AR TR RTFITREEAE
TRHREYFTHAREFRS R E R O0(og
n) W EMABCmn) BRESE o Cmn) £ £ #
¥ 8 M (logarithmic time) 3 & — @ & & m 18
#fe n 1B ¥ 44 B 4 X 48 ik 35 4 (connected
components) f & AR ESER - m R
BN —HILAEFI BB BE
HRERYB LAEHYBBERNEARER
FEHWEB o AR ERHERIFANMNL
B ~HALBRBYIFTFESK

MAEH AR Kk~ —RACA AT
SR TRHATOFAMMERE

o

Abstract

An efficient parallel algorithm for
constructing a decomposition tree of given
generalized-series-parallel (GSP) graphs s
presented. It takes O(logn) time with C(m,n)
processors on a CRCW PRAM, where C(m,n) is
the number of processors required to find
connected components of a graph with m edges and
n vertices in logarithmic time. The class of GSP
graphs belongs to the decomposable graphs which
can be represented by their decomposition trees.
Given a decomposition tree of a GSP graph there
are many graph-theoretic problems can be solved
efficiently. In this paper, we also derive some
interesting properties for GSP graphs based on
their structure characterizations.

481

.of the given decomposable graph

Key words: parailel algorithm, generalized-series-
parallel graphs, decomposition tree, CRCW
PRAM,

1. Introduction

The generalized-series-parallel (GSP) graphs
are those graphs which can be obtained from a set
of single-edges by applying recursively the series,
parallel and generalized-series compositions. Such
graphs belong to a class of k-terminal graphs
defined in [13], since each GSP graph G has two
special vertices called terminals and satisfies the
condition that G is generated by above composition
rules acting only at terminals. The GSP graphs
contain series-parallel (SP) graphs, outerplanar
graphs, trees, unicyclic graphs, CN-trees, C-trees,
2-trees, cacti and filaments (square, triangular and
hexagonal) [13].

The 4-terminal graphs are also called
decomposition graphs which can be decomposed
into a set of primitive graphs by a certain set of
composing rules {3]. The decomposition structure
can be
represented by a decomposition tree in which each
leave represents a primitive graph and each internal
node represents an appropriate composition
operation. Given a GSP graph in the form of its
decomposition tree, there exists linear-time
sequential algorithms for solving many graph-
theoretic problems such as the maximum cut set,
the maximum cardinality of a minimal dominating
set, etc [9]. Furthermore, Bern, Lawler and Wong
[3] shows that by providing a decomposition tree
for the given decomposable graph many
combinatorial optimization problems for finding an
optimal subgraph H can be solved in linear time by
a dynamic programming approach if the desired
subgraph H satisfying a property that is "regular”
with respect to the composition rules. Such
problems include the maximum independent set,

maximum matching set and minimum dominating
set problems [3].

For parallel computations, Yain [14] presents
a cost optimal parallel algorithm for solving above
"regular" optimal subgraph problems by applying
binary tree contraction technique [1] to a
decomposition tree of the given decomposable
graph, which takes O(logn) time with
O(n/logn) processors on an EREW PRAM,

where n is the size of the decomposition tree of the
problem. Consequently, this implies that a wide
class of "regular" optimal subgraph problems on
GSP graphs can be solved optimally. Thus the
problem of constructing decomposition trees is
crucial for sequnetial and parallel GSP graph
computations.

The sequential O(n) time algorithm of
recognition GSP graphs is presented in [13], where
n is the number of vertices of input graph. In this
paper, we develop a parallel strategy for
constructing a decomposition tree of the given
graph G if G is recognized as a GSP graph in our
algorithm. The time complexity of the algorithm is
O(logn) and the number of processors used is
C(m,n), where C(m,n) is the number of
processors required to compute connected
components of a graph with m edges and » vertices
in logarithmic time. The best result for C(m,n) is
O((m+ n)x(m,n)/ logn), wheret is inverse
ackermann function [4]. Our algorithm runs on a
deterministic parallel random access machine that
permits concurrent reads and concurrent writes
(CRCW) in its shared memory and, in case of a
write conflict, allows an arbitrary processor to
success [11].

2. Preliminaries

V(G) and E(G) stand, respectively, for the
verticeBet and the edge set of an undirected graph
G. Assume that |V(G)| = n and |E(G)| = m. We
denote an edge between x and y as (x, y). An
undirected graph G = (¥, E) is connected if there
exists a path between any pair of vertices in V. A
connected component for a graph G is a maximal
induced subgraph of G which is connected. A
vertice v € V is an articulation vertex or cut vertex
of a connected undirected graph G = (V, E) if the
subgraph induced by V—{v} is not connected. G is
biconnected if it contains no articulation point. A
bicomponent (or block) of G is a maximal induced
subgraph of G which is biconnected. In this paper,
the graphs we discussed are all connected.

482

The generalized-series-parallel (GSP) graphs
are defined recursively as follows.

Definition 1. (1) A graph consisting of two
vertices # and v, and a single edge (%,Vv) is a
primitive GSP graph with terminals » and v. (2) If
G1 and G2 are two two-terminal GSP graphs with
terminals {#/, v/} and {u2, v2}, respectively, then
the graph obtained by either of following three
operations is a GSP graph:)

(a) The series composition of GI and G2 :
identifying v/ with »2 and specifying u/ and v2 as
the terminals of the resuiting graph. (b) The
parallel composition of GI and G2: identifying u/
with »2 and v/ with v2, and specifying u/ and v/
as the terminals of the resulting graph. (c) The
generalized-series composition of Gl and G2 :
identifying v/ with u2 and specifying u/, vl as the
terminals of the resulting graph.

The family of series-parallel (SP) graphs
consists of those GSP graphs that are obtained by
using only the series and parallel compositions of
Definition 1. A characterization-of SP graphs can
be obtained by the following definitions of two
inverse operations of series and parallel
compositions. Suppose that the degree of a vertice
w in (G) is two, the series reduction of two edges
in series el = (u, w) and e2 = (w, v), is an operation
of replacing e/ and e2 by a new edge e = (u, v).
The parallel reduction of two parallel edges (two
edges with common end vertices) el = (u, v) and
e2 is an operation of replacing e/ and e2 by a new
edge e =(u, v).

Lemma 2.1 [5, 8]. If G is a connected SP
graph then G can be reduced to a single edge by a
sequence of series and parallel reductions.

A GSP graph G can be represented by a
decomposition tree T which is defined as follows.

Definition 2. (1) The tree consisting of a
single vertex labeled by e=(xv) is a
decomposition tree of the primitive GSP graph
G =({u,v},{(x,v)}). (2) Let G be the GSP graph
generated by some composition of two GSP graphs
G and G2 and let T/ and T2 be the decomposition
trees of G/ and G2 , respectively. Then, the
decomposition tree T of G is the tree with the root r
labeled by an appropriate composition (may be
"G", "P" or "S" depending on which composition is
applied to generate G) and with 7/ and 72 as the
left and right child of r, respectively.

The definition of a decomposition tree of an
SP graph is similar with Definition 2, but without
internal node labeled by "G" since each SP graph is
generated only by series and parallel compositions.
Fig. 1. shows a GSP graph with its decomposition
tree.

3. An Algorithm for Decomposing GSP
Graphs.

[n this section, we first discuss two important
properties of GSP graphs and one result of SP
graphs, then present our decomposition algorithm.

A characterization of GSP graphs can be
derived by three specified operations: the series,
parallel and generalized-series reductions, which
can be viewed as the inverse operations of series,
parallel and generalized-series compositions (the
series and parallel reductions are defined in Section
2). The generalized-serics reduction of two edges
el =(u,v) and e2=(v,w), where w is a pendent
vertex (the vertex with one degree), is an operation
of replacing e/ and e2 by a new edge e=(u,v).

Suppose that T is a decomposition tree of the
given GSP graph G. Consider the following
scheme: Finding some internal node u of T whose
left and right child represent two edges e/ and e2
of G. Then applying some appropriate reduction to
el and e2 according to the label of u (that is, if u is
labeled by "G" then the generalized-series
reduction is applied, the other cases for "P" and "S"
can be described similarily). By definition of
reduction, e/ and e2 are replaced by the new edge
e. Thus the original graph G become another
"smaller" graph and has the decomposition tree
obtained from 7T by replacing the subtree rooted at
u whose two children are e/ and e2 by the new
leave node e. Clearly, if we repeat executing above
scheme then G can be finally reduced to a single
edge. Thus we conclude that a decomposition tree
of G corresponds to a reducing sequence which can
reduce G to a single edge. Note that such reducing
sequence is not unique.

Conversely, given a reducing sequence 3§
which can reduce G to a single edge, we can
construct the unique decomposition tree T
corresponding to 8. The construction of T follows
the process that reduces G to a single edge by &.
We assume that during the reduction process each
edge is associated with a tree structure and when
the reduction process terminates, the tree associated
with the single remaining edge is the
decomposition tree of G. At the beginning, each
edge ¢ of G is associated with a tree consisting of a

483

single node labeled by e. When a generalized-series
reduction is applied to two edges e/ and e2 we
create a new node u labeled by "G and let the trees
associated with el (resp. e2) be the left (resp.
right) child of «. The cases for applying a series or
parallel reduction is described similarily.
Combining above resuits we have the following
lemma.

Lemma 3.1. A graph G is a GSP graph if and
only if it can be reduced to a single edge by a
sequence of series, parallel and generalized-series
reductions.

Assume that G is a GSP graph, then G can be
generated by a sequence of compositions §/,82,...
&k. If some &i is the generalized-series composition
applied to two GSP graphs G! and G2 with
terminals {ul, v/} and {u2, v2}, respectively, the
vertex vl (= u2) will be a cut vertex of G. From the
above observation, it is easy to derive the following
characterization of GSP graphs.

Lemma 3.2 [13]. A graph G is a GSP graph if
and only if each block of G is an SP graph.

Eppstein [6] presents an efficient parallel
algorithm for recognizing biconnected SP graphs.
Given a biconnected SP graph G with an open ear
decomposition D = {P0, Pl,..., Pr-1}(the detail
implementation of finding an open ear
decomposition is described in {16]) the algorithm
can construct a decomposition tree, corresponding
to a reducing sequence which can reduce G to PO,
where PO is an edge of G. By the property of open
ear decompositions and the algorithm for
constructing them {16}, we can easily modify the
algorithm to construct an open ear decomposition
with PO being any arbitrarily selected edge. From
these observations, the following result is obtained.

Lemma 3.3. Given a biconnected SP graph G
and an arbitrarily selected edge e of G. We can
construct in parallel a decomposition tree
corresponding to a reducing sequence 3, such that
G can be reduced to e by 3.

According to Lemma 3.2 and the algorithm
presented in [6] we can easily recognize GSP
graphs, but for constructing their decomposition
trees efficiently we need some useful strategy
described in our algorithm. Before preceding to
present our algorithm, we provide the following
definitions which are necessary for the construction
of a decomposition tree of a GSP graph. Suppose
that al, a2,..., ak are the cut vertices of G and BI,
B2,..., Bl are the blocks of G. The block-cut vertex

tree BT is defined as follows [2]. The vertex set of
BTis {al, al,..., ak, b1, b2,..., bl} and (ai, b)) is an
edge of BT if and only if ai is a vertex of Bj. In
addition, we call each bi (resp. ai) a block-vertex
(resp. non-block vertex) of BT. Let BT be the
rooted tree by selecting one block-vertex br of BT
as the root. Then, for each block-vertex bi (i #)
there is a unique directed path P from bi to the root
br. If bj is the first block-vertex of BT" in which &s
encounters in P, we call &/ the parent of bi (denote
as Par(bi)) and Bj (resp. Bi) is the parent block
(resp. a child block) of Bi (resp. Bj). Specially, we
denote Child(Bi) as the set of child blocks of Bi and
call the block with no child block as the leave
block.

Algorithm Decomposing GSP

Step 1. Find the blocks BI, B2,..., Bkof
G.-

Step 2. /* Prepare for constructing the

decomposition tree of G */

2-1. Construct the block-cut vertex
tree BT of G. :
2-2. Transfer BT to a rooted tree BT"

by selecting arbitrary one block-

vertex br as the root. /* thus Br

is the root block of G */
/* The following Steps: 2-3, 2-4, 2-5 and
Step 3 are executed in parallel for each
block Bi (1<i<k) */
2-3. Find the parent and child blocks
for Bi by using BT
For the cut vertex v connecting to
Par(Bi) select one edge
e=(v,w) of Bi and mark it as
the main edge ti. For the root
block Br select arbitrary one edge
as main edge.
For each cut vertex v connecting
to some child of Bi select one
edge e=(u,v) of Bi and mark it
as the reducing edge rv.
Computes the number m of the
edges #i's, where ¢ is the main
edge of some child block of Bi
which is connected to Bi by v.
Then, constructs a left-skew
binary tree structure Ry with
internal nodes labeled by "G",
and with the leave nodes labeled
by #'s and e as follows: ordering
those edges #'s from 1 to m and
constructing m "G" nodes

2-4.

484

denoted by GI, G2,..., Gm, such
that the right child of each Gk
(1<k<m-1) and Gm is the
node Gk+! and e, respectively,
and the left child of each Gk
(1<k<m) is the node labeled
by # (according to the ordering
associated with it).

- /* there may be some edge e of
Bi which is marked as main edge
and also reducing edge, but it
does not effect the results of this
algorithm */

Apply the recognition of SP
graphs algorithm to Bi and
construct its decomposition tree
Ti corresponding to a reducing
sequence which can reduce Bi to
its main edge. If one of the
blocks is not an SP graph, reject.
/* G is not a GSP graph */

/* Construct the decomposition
tree Tof G */

/*. Step 4-1 and 4-2 are executed in

parallel for each reducing eage and main

edge, respectively */

4-1. For each reducing edge

rv=(uv) of Ti if m is also

marked as the reducing edge for

u, then replacing rv by the root of

Ru and replacing the edge (u, v)

(appears as some leave of Ru) by

the root of Rv. Otherwise, replace

rv by the root of Rv.

Replace each # node by the root

of Ti.

Step 3.

Step 4.

Fig. 2 shows the construction of a
decomposition tree for a GSP graph G with four
blocks Bi (1<i<4) in Fig.1. We first select BJ as
the root in Step 2-2 and find Child(BI) = B2 and
Child(B2) = {B3, B4} in Step 2-3. In Step 2-4, the
edgest/ =a,t2=d, t3 = hand t4 = g are selected
as the main edges of Bi (1<i<4). Step 2-5 selects
the edges rv3 = b and {rv¢ = d, rv7 = f} as the
reducing edges of B/ and B2, respectively and then
constructs the tree structures Rv3, Rv4 and Rv7 for
the cut vertices v3, v4 and v7. Step 3 constructs in
parallel the decomposition trees Ti's (1<i<4),
where each 7Ti corresponding to a reducing
sequence which can reduce Bi to its main edge #i.
Finally, the decomposition tree T of G can be
generated in Step 4 by replacing rv3, rv4 and rv7

by Rv3, Rv4 and Rv7 (since each reducing edge is
marked for only one cut vertex), and replacing
each tiby theroot of 77 (1< /< 4).

We first show the correctness of the
algorithm. If G is not a GSP graph, by Lemma 3.2
some block of G is not an SP graph, then G will be
rejected in Step 4. Conversly, if G is a GSP graph,
the blocks of G are all SP graphs by Lemma 3.2.
We will show in the following claim that a
decomposition tree T of G can be constructed
correctly by our algorithm. This claim can be
proved by induction on the number k of blocks.

Claim A: If G is a GSP graph. The algorithm
can construct a decomposition tree T of G, such
that T corrseponds to a reducing sequence which
can reduce G to the main edge of the root block Br
selected in our algorithm.

If k=1, G contains only one block which will
be selected as the root Br in Step 2-2. By Lemma
3.3, we can construct a decomposition tree
corresponding to a reducing sequence which can
reduce Br to its main edge, and thus the claim is
correct. Assume the claim is correct for any GSP
graph with the number of blocks less than £. Now,
let G be a GSP graph with k blocks BI, B2,..., Bk.
We select one block Br as the root and consider the
case of removing Br from G. Then, the resulting
graph contains several connected components
C1,C2,....Cm, where m < k. Clearly, the number
of blocks of each Ci (1<i<m) is less than k.
According to induction hypothesis, our algorithm
can constrcut a decomposition tree Tci of Ci such
that Tci corresponds to a reducing sequence which
can reduce Ci to the main edge ¢ = (ui,vi) of the
root block Bi of Ci. The block Bi is some child
block of Br which is connected to Br by the cut
vertex vi. After reducing each Ci to #i (the edge #i
associated with the decomposition tree Tci) the
graph G is reduced to another graph G’, where G’
contains the block Br and the edges ts (each of
which is connected to Br by vi). Note that the end
vertex ui of each ti = (ui,vi) is a pendent vertex.
Then, we reduce each 1 by applying a generalized
series reduction to the edges #i and some reducing
edge rvi of Br, where rvi and i are two edges
connected by vi. Such reduction can be represented
by a tree structure Rvi generated in Step 2-5. When
each ti (1<i<m) has been reduced, the resulting
graph contains only one block Br. By Lemma 3.3,
our algorithm can construct a decomposition tree
Tr corresponding to a reducing sequence which can
reduce Br to its main edge. Finally, replacing each
reducing edge rvi of Tr by some tree structure and
replacing each # by the root of Tci, the

485

decomposition tree T of G can be generated in Step
4. This is a decomposition tree corresponding to a

-reducing sequence which can reduce G to the main

edge of Br. By induction we prove Claim A, and
hence, we have the following theorem.

Theorem 3.4. The algorithm decomposiiis
GSP can recognize a GSP graph and construct its
decomposition tree correctly.

Now, we show that the time complexity of the
algorithm Decomposing GSP is O(logn) time with
C(n,m) processors.

In Step 1, finding the blocks of G takes
O(logn) time with C(m,n) processors on a
CRCW PRAM [4].

In Step 2-1, the block-cut vertex tree BT can
be constructed in O(1) time with O(k) processors,
where £ is the number of the blocks of G. This can
be simulated in O(logk) time with O(k/logk)
processors by Brent's theorem [11]. In the
following steps, the implementations which take
(1) time with O(k) processors can apply above
simulatting resuit.

Step 2-2 constructs the rooted tree BT’ from
BT by using the Eulerian tour technique described
in [12]. It takes O(logk) time with O(k ! logk)
processors on an EREW PRAM.

In Step 2-3, the parent block Bj of Bi
(I<i<k) can be found by using BT since bj =
par(par(bi)). This can be done in constant time
with O(k) processors. For finding the child blocks
of Bi , we maintain the table containing k entries
corresponding to B/, B2,..., Bk in which each entry
has two fields that record the index i-of Bi and the
index of its parent block. We sort the entries by
index values of their second fields, thus divide the
table into several blocks &(1), &(2),.., b(m),
m < k, such that the entries of 4(7) records all the
bolcks of G with the same parent block Bi. Thus
the child blocks of Bi can be found in constant
time. We make use of the parallel sorting
algorithm described in [7], which runs in O(log)
time with O(n/logn) processors on a CRCW

PRAM to sort #» numbers in the range [1,..., na(l)].

In Step 2-4, the cut vertex v in Bi connecting
to Par(Bi) can be determined in O(1) time and thus
the main edge of Bi (1<i< k) can be selected in
constant time with O(k) processors.

Step 2-5 first selects an edge e = (,v) of Bi
for each cut vertex v connecting to some child of
Bi, and mark it as a reducing edge rv. This can be

done in constant time with O(k) processors. Then,
computes the number of the edges s, where 4 is
the main edge of some child block of Bi which is
connected to Bi by v, by using optimal parallel
prefix sum computation [10]. The ordering of the
edges #'s and making up a left-skew tree structure
Rv can be done by optimal parallel list ranking
[10]. Thus Step 2-5 can be done in O(logn) time
with O(n/logn) processors on an EREW PRAM.

In Step 3, the recognition of SP graphs takes
O(log n) time within C(n,m) processors [6].

In Step 4, for each reducing edge rv=(1,v)
of Bi, checking whether rv is also the reducing
edge selected by u can be determined in constant
time. It is clear that the other implementations of
Step 4-1 and 4-2 can be achieved in O(1) time with
O(k) processors. Hence, we have the following
theorem.

Theorem 3.5. The algorithm decomposing
GSP can recognize a GSP graph and construct its
decomposition tree in O(logn) time with C(m, n)
processors on a CRCW PRAM.

4. Some Properties of GSP Graphs.

In this section, we derive some properties of
GSP graphs from the results obtained in previous
sections.

Suppose that G is a GSP graph. Then, by
definition there exists two special vertices u and v
as the two terminais of G. From the proof of
Lemma 3.1, we observe that G is a GSP graph with
terminals {u,v} if G can be reduced to a single edge
e=(u,v) by a sequence of series, parallel and
generalized-series reductions. Hence, we could not
select arbitrarily any two vertices as the terminals
of the given GSP graph. Fig. 3. shows that G is a
GSP graph with terminals {v2, v3} or {v3, v6}, but
is not a GSP graph with terminals {v2, v5} since no
reducing sequence can reduce G to the edge e =
(v2, v5).

Theorem 4.1. Let G be a GSP. Then, for any
edge e=(%,v) of G, G is a GSP graph with with
terminals {,v}.

Proof. Let G be a GSP graph let e = (u,v) be
an edge of some block Br. If we select Br as the
root and mark e as the main edge of Br. From the
proof of Theorem 3.4, we can construct a
decomposition tree corresponding to a reducing
sequence which can reduce G to the edge

486

e=(v). Hence, G is a GSP graph with terminals
{u,v}.

Theorem 4.2. Let u and v be two vertices of
G. G is a GSP graph with terminals {u,v} if and
only if G'= G +(u,v) is a GSP graph.

Proof. If G is a GSP graph with terminals
{u,v}. It is clear that G'=G +(u,v) is a GSP
graph since G' is generated by applying a parallel
composition to G and the edge ¢=(u,v) (each
edge is a primitive GSP graph with terminals u and
v).

Conversly, suppose that G'=G +(u,v) is a
GSP graph. Let the adding edge €= (u,v) be an
edge in some block Br of G' If G’ contains only
one block Br, then G is an SP graph by Lemma 3.2.
According to Lemma 3.3, we can construct a
decomposition tree T of G’ corresponding to a
reducing sequence & which can reduce G’ to the
edge ¢’ Since G' is biconnected, thus during the
reducing process generated by &, the resulting
graph remains as being biconnected. From this
observation, we can conclude that the root r of T
must not be labeled by "S™ (which contradicts that
G' is biconnected) and thus » is labeled by "P".
Moreover, consider the path of T from the leave e’
to the root r. The internal nodes of such path are all
labeled by "P" (if there exists some internal node
labeled by "S" then vertex u (or v) will be removed
by a series reduction, and hence contradicts that G’
can be reduced to &'=(uv)). Based on the
structure of T, we can apply a reducing scheme
described in the proof of Lemma 3.1, to reduce G’
to another graph. Such reduced graph has a
decomposition tree T which can be obtained from
T by replacing each subtree of T with the root
labeled by "S™, by an appropriate edge (this edge is
generated by executing a reducing sequence
corresponding to above subtree). Hence, all the
internal nodes of 7" are labeled by "P". Then, we
can generate another “"equivalent" decomposition
tree from T™ if e’ has been one child of the root r of
T, then T is the decomposition tree we need,
otherwise we can further transfer T to another tree,
such that e’ is one child of r. Note that this
transform is legal since the internal nodes of 7"
have the same label, i.e. the same operators are
applied in a reducing sequence corresponding to 7"
Hence all the different binary decomposition trees
generated by the same number of internal "P"
nodes and the same set of leaves with 7’ can be
viewed as "equivalent”. By above observation, this
implies that there exists a decomposition tree T of

G' with the root r labeled by "P", and e’ and the
subtree TG are the two children of r, where TG
corresponds to a reducing sequence which can
reduce G to a single edge e=(y,v). Thus TG isa
decomposition tree of G and G is a GSP graph with
terminals {u, v}.

On the other hands, suppose that G’ contains
more than one block. We can select Br as the root
and select the edge ¢'=(uv) as the main edge in
Step 2-4 of our algorithm, such that e’ can not also
be selected as a reducing edge. This can be
achieved since adding e’ to G makes the number of
the edges of Br larger than one. From the proof of
Theorem 3.3, we know that a decomposition tree T
of G'is constructed from the decomposition tree Tr
of Br by replacing each reducing edge of Br by its
corresponding tree structure, and then replacing the
main edges of Child(Br) by their associated
decomposition trees. Moreover, by the proof of
Theorem 3.4, there exists a reducing sequence
which can reduce G' from the leaves to the root
until Br is the only remaining block. Note that any
reduction in above reducing sequence can not
replace e’ since e’ is not a reducing edge of Br.
Combining above observations and the result
shown in previous paragraph, there exists a
decomposition tree T of G’ with the root r labeled
by "P" and with e’ and the subtree 7G as the two
children of », such that TG corresponds to a
reducing sequence which can reduce G to a single
edge e=(u,v). Thus G is a GSP graph with
terminals {u,v}.

5. Conclusion.

In this paper, we present an effecient parallel
algorithm to construct a decomposition tree for the
given GSP graphs. It takes O(logn) time with
C(m, n) processors on a CRCW PRAM. From this
algorithm, we can further obtain another result by
considering the special input instance of the
algorithm. Recall that trees are contained within the
class of GSP graphs. If the input graph is known to
be a tree, then its decomposition structure can be
constructed by our algoritim without executing
Step 1 and Step 3 since each block of trees contains
only one edge. Moreover, because all of the steps
in our algorithm can be done optimally except for
above two steps, the decomposition structure of the
given tree can be constructed in ((logn) time with

O(n/logn) processors on an EREW PRAM.
According to the result shown in [14], that given a

487

decomposition tree of a decomposable graph all
problems satisfy the "regular" property can be
solved by a cost optimal parailel algorithm.
Combining these results we have the following
conclusion: Any "regular' problems for the given
tree can be solved in O(log n) time with O(n/log n)
processors on an EREW PRAM.

Yu, Tseng and Lin [15] shows that some
problems for finding a maximun weight
independent set, a maximum weight matching and
a minimum weight dominating set on trees can be
solved in O(logn) time with O(n/logn)
processors on an EREW PRAM. In fact, above
three problems are all "regular", and thus it is a
special case of our results.

]

Fig. 3 G is not a GSP graph with respect o v, and v,.

References

{1

(2

E3]

[4)

B3]

(6]

(1

(8]

(9]

[10]

(1]

(12]

K. Abrahamson, N. Dadoun, D. G.
Kirkpatrick, and T. Przytycka, "1 simple
parallel tree contraction algor thm," J.
Algorithms 10, 1989, pp. 287-302.

A. V. Aho, J. E. Hopcroft, and J. D.
Ullman, "The design and auaiysis of
computer algorithms," Addison-Wesley,
Reading, MA, 1974,

M. W. Bern, E. L. Lawler, and A. L.
Wong, "Linear-time computation of
optimal subgraphs of decomposable
graphs," J. Algorithms 8, No.2 (1987), pp.
216-235.

R. Cole and R. Thurimella, "Approximate
parailel scheduling, II: application to
optimal parallel graph algorithms in
logrithmic time, " Inform. Comput.
91(1991), pp 1-47.

R. J. Duffin, "Topology of series parallei
networks, " J. Math. Appl. 10 (1965), pp.
303-318. :

D. Eppstein, "Parallel recognition of
series-parallel graphs,” Inform. Comput. ,
98 (1992), 41-55

S. Rajasekaran and J. Reif, "Optimal and
Sublogarithmic time randomized parallel
sorting algorithms," SIAM J. Comput 18,
No. 3 (1989), pp. 594-607.

X. He, "Efficient parallel algorithms for
series parallel graphs," J. Algorithms 12,
1991, pp.409-430.

E. Hare, S. Hedetniemi, R. Laskar, K.
Peters and T. Wimer, "Linear-time
computability of combinatorial problems
on generalized-series-parallel graphs,"
Discrete Algorithms and Complexity,
Academic Press, 1987, pp. 437-455.

J. Ja'Ja' "An introduction to parallel
algorithms,” Addison Wesley, 1992.

R. M. Karp and V. Ramachandran,
"Parallel algorithms for shared memory
machines”, in Handbook of Theoretical
Computer Science, North-Holland,
Amsterdan, 1990, pp. 869-941.

R. E. Tarjan and U. Vishkin. "Finding
biconnected components and computing
tree functions in logrithmic parallel time,"

488

[13]

[14]

(15]

[16]

SIAM J. Comput 14, No. 4 (1985), pp
862-874.

T. V. Wimer and S. T. Hedetniemi, "K-
terminal recursive families of graphs,”
Congressue Numerantium, 63(1988), pp.
161-176.

Shi-Jim Yain, "Optimal parallel
algorithms for decomposable graphs,”
Master thesis, 1993, Institute of Computer

Science and Electrical Engineering,
National Central University, Taiwan,
R.O.C.

Ming-Shing Yu, Lin-Yu Tseng, and
Juunn-Horng Lin, "Optimal parallel
algorithm for some problems on trees,"
International Conference on Parallel
Processing, 1992, pp. 160-163.

Y. Maon, B. Schieber, and U. Viskin,
"Parallel ear decomposition search (EDS)
and s-t numbering in graphs", Theoret.
Comput. Sci., 47(1986), pp. 277-298.

	
	
	
	
	
	
	
	
	

