
A New Operation for Two R-trees to Efficiently Migrate Spatial Objects

Jeang-Kuo Chen*
Jen-Wei Huang

jkchen@cyut.edu.tw, s9114628@cyut.edu.tw

ABSTRACT
In the past, several papers discussed the access of

individual object in R-tree, but rare mentioned how to
access several objects simultaneously. In this paper, we
propose a new operation, called spatial-migration, for
R-tree. The function of this operation is to combine one
group of objects into another group of objects
according to a special relationship between the two
groups of objects. That is, more than one spatial object
in one R-tree is migrated to another R-tree at the same
time. If objects are migrated one by one, several R-tree
nodes may overflow or underflow repeatedly. The
database performance may decrease because the R-tree
may be reconstructed again and again. When many
single-object insertions/deletions are replaced by a
single multiple objects insertion/deletion, many
redundant node-splits and/or MBR-adjustments can be
omitted. When a node overflows due to the insertion of
many objects, we once generate enough nodes to
contain all the objects inserted into the node. Each node
at most has only one node-split and/or MBR-adjustment.
Therefore, the proposed spatial-migration operation
can efficiently migrate objects between two R-trees
without effecting database performance much.
Keywords: Multiple objects access, Spatial-migration,
R-tree

1: Introduction

Spatial databases have been more and more important
in many applications such as Geographical Information
System (GIS), Computer Aided Design (CAD), etc.
Many dynamic indexes of spatial objects have been
proposed for speeding up object search. In general,
multi-dimensional data can be classified into two types:
zero-size objects and non-zero-size objects. The K-D-B
tree [11], proposed by Robinson, and the G-tree [8],
proposed by Kumar, are index structures for zero-size
objects. The Grid files [9], proposed by Nievergelt et al.,
and the Filter tree [14], proposed by Sevcik and koudas,
are index structures for non-zero-size objects. A detailed
survey on spatial objects access methods can be found
in ”Multidimensional access methods” [3] where the
R-tree family is the most popular one [1,2,4,5,6,7,12,13].
In the past, some papers for the R-tree were proposed to
improve the access speed [2,4], to reduce dead space
[13,14], or to improve storage utilization [1,7]. No paper

mentioned how to access several objects simultaneously.
In general, the R-tree inserts or deletes an object at a time.
However, we may need to move several objects from a
database B into another database A for some reasons. If
each migration includes only one object, we should need
much time to finish the job. The database performance
will be influenced obviously because the corresponding
R-trees of databases A and B also need to be
reconstructed again and again.

Suppose that there is a particular relationship, such as
overlap, between the objects of databases A and B.
Sometimes, some objects in database B must be migrated
to database A because of the overlap relationship. For
example, database A stores the data of community while
database B stores the data of park. If a part has to be
combined to a community which overlaps the park, then
some objects in database B must be taken out to insert
into database A. The traditional operation is to take out
park objects from database B one by one and then to
insert them into database A one by one. It should take
much time to execute the operation of searching,
inserting, and deleting objects repeatedly. Especially,
node-split or MBR-adjustment may occur again and
again in the R-tree for database A. Some leaf nodes in the
R-tree for database B may underflow and all objects in
these nodes must be reinserted. It makes the R-tree be
reconstructed again and again. Hence, the database
performance may decrease dramatically. To speed up the
migration, we propose a new operation, called
spatial-migration, for R-tree. The proposed operation
can efficiently find and move the related objects from
one R-tree into another R-tree. To erase unnecessary
node-splits and/or MBR-adjustment, we in advance
compute enough extra leaf nodes for the inserted objects.
Each node in the R-tree at most has only one node-split
or MBR-adjustment.

2: Previous Work

2.1: R-tree

An R-tree [4] is a height-balanced tree similar to a
B-tree with index records in the leaf nodes containing
pointers to data objects. The B-tree stores
one-dimensional data of character or number, while the
R-tree keeps two (or more) -dimensional data of spatial
objects. There is no order relationship between R-tree
nodes. Each node is composed of several entries. Each

- 1133 -

mailto:jkchen@cyut.edu.tw
mailto:s9114628@cyut.edu.tw

entry includes a minimal bound rectangle (MBR) and a
pointer. The format of an entry in a leaf node is (I,
obj-id). The I is an MBR and obj-id is a pointer to
address a spatial object. The format of an entry in a
non-leaf node is (I, child-pointer). As an MBR, the I
covers all the rectangles of the lower node entries and
the child-pointer is the address of a lower node. We
assume that M is the maximum number of entries in one
node and m is the minimum number of entries in a node.
An R-tree satisfies the following properties. The root
has at least two children unless it is also a leaf node.
Each non-root node has the number of children between
m and M. All leaves appear on the same level.

2.2: Spatial Join

The concept of spatial join has been applied to
several access methods such as spatial-merge join [10].
Brinkhoff et. al. [2] proposed five methods with the
depth-first search to perform spatial join for R-tree.
Each node must be checked to determine whether it
overlaps with other nodes or not. Therefore, the five
methods accomplish only local optimization. Later,
Hung et. al. [5,6] proposed the method Breadth-First
R-tree Join (BFRJ) with the feature of global
optimization for the optimization of memory, buffer
management, and the order of overlap data within
non-leaf nodes. BFRJ adopts the breadth-first search to
traverse nodes from the top of two R-trees
level-by-level to leaf nodes. BFRJ uses search pruning
to reduce the number of node-pair checking. BFRJ also
uses several tables, called intermediate join indexes (IJI),
to save pairs of overlap nodes. Each entry in an IJI
includes two fields to record two overlap nodes
belonging to different R-trees. Search pruning is
performed by using IJI to implement join computation.
Thus, the number of node-pair checking is reduced.

3: Spatial-migration operation

In this section, we describe the spatial-migration
operation how to migrate objects from the combined
R-tree to the combining R-tree at the same time. Assume
that there are two groups of spatial objects associated
with the combining R-tree R and the combined R-tree S,
as shown in Figures 1 and 2, respectively. Figure 3
shows the overlap situation of the two groups of spatial
objects. The spatial-migration operation is composed of
two phases. The first phase is to find the related objects
and the relevant leaf nodes in the two R-trees. Then, take
out these related objects from S to insert into the relevant
leaf nodes in R. The second phase is to delete these
inserted objects from S.

3.1: The first phase of spatial-migration
operation

We must first find the overlap objects that belong to
R or S. With the concept of spatial-join [6], we can finish

the above requirement without IJI tables. Instead, we use
a queue, called Spatial Join Queue (SJQ), and a data
structure, called Overlap Pair of Nodes (OPN), to save
the overlap pair-nodes. SJQ is used to save OPN records.
An OPN is composed of four fields. The parentR and
parentS fields denote a pair of overlap parent nodes that
belong to R and S, respectively. The childR and childS
fields represent a pair of overlap child nodes or objects
that belong to parentR and parentS, respectively.

Our spatial-join action starts from the roots of the two
R-trees with level-by-level to check whether each pair of
nodes at each level overlaps or not. If two nodes have an
overlap, they are stored as an OPN record to SJQ. Next
the first OPN record in SJQ is taken to check whether the
children of the two overlap nodes have an overlap or not.
If yes, an OPN record for the overlap pair of children is
stored to SJQ. A table called PATH is used to record each
ancestor node (at each level) of each object (in R) which
overlaps objects in S. These ancestor nodes can be
referenced when node-split and/or MBR-adjustment
propagate upward. Each row, called a branch, in PATH is
composed of two fields. The field nodeP denotes a
certain node of R which overlaps a certain node N in S.
The field nodeC denotes a certain child node or object of
nodeP which overlaps a child node or object of N. The
process of fetching an OPN record, examining overlap
nodes, producing new OPN records, and storing OPN
records to SJQ is repeated until all related nodes of the
two R-trees are checked. Figure 4 shows the results of
SJQ and PATH after spatial-join.

3.1.1: Delete the invalid OPN records in SJQ

Now, several OPN records are stored in SJQ.
However, some of these OPN records are invalid because
of the following two cases. First, the same object may
overlap different objects in different leaf nodes at the
same time. The same object may be repeatedly inserted
into different leaf nodes. Second, the same object may
overlap different objects in the same leaf node at the
same time. The same object may be repeatedly inserted
into the same leaf node. Therefore, these invalid OPN
records in SJQ must be erased.

To erase the invalid OPN records in case 1, only one
of the different leaf nodes must be determined. The
determined leaf node is the one that contains an object
which has the largest overlap area with the combined
object. Resolve ties by choosing the one with fewer
entries. The remaining OPN records in case 1 must be
deleted after the determined leaf node is found. For
example, object s9 overlaps object r11 in leaf node R4
and object r17 in leaf node R6, respectively, as shown in
Figure 4. We must decide that s9 should be inserted into
R4 or R6. Since the overlap area of objects r17 and s9 is
larger than that of objects r11 and s9, as shows in Figure
3, the determined leaf node is R6. In level-3 SJQ of
Figure 4, the 11th OPN record is retained while the 1st
OPN record is deleted. To erase the invalid OPN records
in case 2, all the OPN records, except one, must be
deleted if these records have the same values of parentR

- 1134 -

and childS. For example, the 2nd to 4th OPN records in
Figure 4 indicate that object s4 will be inserted into leaf
node R7 three times. Thus, only one OPN record is kept,
others must be deleted. The same way is also applied to
records 5th to 7th, records 8th to 12th. The final result of
SJQ is show in Figure 5.

3.1.2: Prepare enough leaf nodes for inserted objects

It is possible to insert a lot of objects into one leaf
node for the spatial-migration operation. The leaf node
may split many times if many objects are inserted one by
one. The more the number of node-split makes the less
the performance of R-tree. To erase redundant
node-splits, we prepare enough extra leaf nodes to
contain the inserted objects at the same time. The number
of prepared leaf nodes can be computed as follows.
Suppose that the maximum number and the possession
number of entries in a leaf node N are MR and MRC,
respectively, in R-tree R while the number of objects to
be inserted into N is MSC. There are two conditions can be
considered. First, if then all the
M

SCRCR MMM +≥

SC can be inserted into N directly. No extra leaf node is
needed. Second, if then one or more
extra leaf nodes are needed. The number of enough leaf
nodes is X=

SCRCR MMM +<

⎡ RSCRC MMM)(+ ⎤ . According to the
node-split technique [4], the MRC+MSC objects must be
divided into X groups to distribute these objects to the X
leaf nodes, respectively. These X leaf nodes later should
be inserted into the parent node P of N. If P also
overflows, the same idea is applied to P until one of P’s
ancestors does not overflow. After node-split process,
the MBR of the leaf nodes must be adjusted in its parent
node and the adjustment must be propagated upward
until the root. Figure 6 shows the final R-tree R after the
insertion of the objects in R-tree S.

3.2: The second phase of spatial-migration
operation

Finally, the related objects should be deleted from S
after they are successfully inserted into R. If a leaf node
in S is underflow, the remainder objects in this leaf node
must be reinserted [4]. When many objects are deleted
once, the number of underflow nodes and reinsertion
times will increase. The corresponding R-tree needs to be
reconstructed again and again. The deletion performance
will be influenced obviously. The deletion of original
R-tree [4] may not be suitable when deleting large
number of objects once. We use a merge method to deal
with the objects in underflow leaf nodes to achieve
optimal results for reconstructing an R-tree. Composed
of four steps, the merge method is described as follows.

In the first step, we delete the corresponding objects
in S according to the objects identified by the childS
values from SJQ. In the second step, reset PATH and
record the paths of all nodes and objects of S to PATH
level-by-level. The third step is to reconstruct S for all
the objects instead of reinserting the remainder objects.

We assume that the number of all objects in S is Nro and
the maximum number of entries of a leaf node in S is Ms.
The least number of desired leaf nodes is Y= ⎡ ⎤sro MN .
The objects in S must be divided into Y groups with the
following strategy. Add an object to the group whose
covering rectangle will have to be enlarged least to
accommodate the object. Resolve ties by adding the
object to the group with smaller area. The fourth step is to
adjust node’s MBRs ascending from leaf nodes to the
root.

An example is illustrated as follows. First, we
retrieve the records in SJQ to find that six objects, s4, s5,
s9, s10, s11, and s12 should be deleted from S. After the
deletion, we traverse S level-by-level to record all the
branches of all the paths to all nodes and objects in S to
PATH. The result is shown in Figure 7. Now, Nro is 3
(objects s6, s7, and s8) and we need
Y= ⎡ ⎤ ⎡ ⎤ 143 ==sro MN leaf node to contain these
objects. The objects s6, s7, and s8 are inserted into the
same node as shown in Figure 8. Final, the R-tree S has
only one node, the root, as shown in Figure 9.

4: Conclusion

In tradition, the data access operations of R-tree
including search, insert, delete, and update, aim at a
single object. For real applications, the user may need to
process large number of objects simultaneously. It is
necessary to develop a special operation to process
several objects at the same time. This is the motivation
for us to propose the spatial-migration operation to
combine two groups of objects together. The
spatial-migration operation has some characteristics as
follows. The OPN structure can be extended dynamically
to keep information for user's demands such as adding a
field to record the overlap area value of two overlap
objects. Traditional object insertion may lead to many
times of node-splits and MBR-adjustments that decrease
the database performance. We solve the problem by
preparing enough extra leaf nodes to contain all inserted
objects once. Each node has only one node split and/or
MBR-adjustment. In general, a leaf node in R-tree may
be unable to meet the minimum number of entries after
some objects are deleted from that leaf node. All objects
in an under-flow node must be reinserted. Reinsertion
makes database performance degrade. Therefore, our
method deletes all objects from related leaf nodes once.
All objects in the R-tree are redistributed. Our method
avoids the R-tree shorten after some objects are deleted
from the R-tree but recover again after some objects are
inserted into the R-tree.

- 1135 -

References

[1] N. Beckmann, H.P., Kriegel, R. Schneider, B. Seeger,

“The R*-tree: An Efficient and Robust Access Method
for Points and Rectangles,” Proc. ACM SIGMOD Int.
Conf. on Management of Data, Atlantic City, NJ,
pp.322-331, 1990.

[2] T. Brinkhoff, H.P., Kriegel and B. Seeger, “Efficient
processing of spatial joins using R-trees,” in: Proc. ACM
SIGMOD Int. Conf. on Management of Data, pp.237-246,
1993.

[3] V. Gaede and O. Gunther, “Multidimensional access
methods,” ACM Computing Surveys, pp.170–231, 1997.

[4] A. Guttman, “R-trees: a dynamic index structure for
spatial searching,” in: Proceedings of the ACM SIGMOD,
pp.47-57, 1984.

[5] Y.W. Hung, N. Jing, and E.A. Rundesteiner, “Spatial
Joins Using R-trees: Breadth-First Traversal with Global
Optimizations,” in: Proc. 23rd Int. Conf. on VLDB,
pp.396-405, 1997.

[6] Y.W. Hung, N. Jing and E.A. Rundesteiner, “BFRJ:
global optimization of spatial joins using R-trees,” Dept.
of Computer Science, Worcester Polytechnic Institute,
Tech. Report WPI-CS-TR-97-5, January, 1997.

[7] P.W. Huang, P.L. Lin, H.Y. Lin, “Optimizing storage
utilization in R-tree dynamic index structure for spatial
databases,” Journal of Systems and Software of Elsevier
Science, 55(3), pp.291-299, 2001.

[8] A. Kumar, “G-tree: A new data structure for organizing
multidimensional data,” IEEE Trans. Knowl. Data Eng.
6(2), pp.341–347, 1994

[9] J. Nievergelt, H. Hinterberger and K.C. Sevcik, “The grid
file: An adaptable, symmetric multikey file structure,”
ACM Trans. Database Syst. 9(1), pp.38–71, 1984.

[10] J.M. Patel, and D.J. DeWitt, “Partition Based
Spatial-Merge Join,” in: Proc. ACM SIGMOD Int. Conf.
on Mangement of Data, pp.259-270, 1996.

[11] J.T. Robinson, “The K-D-B-tree: A search structure for
large multidimensional dynamic indexes,” In Proceedings
of the ACM SIGMOD International Conference on
Management of Data, pp.10–18, 1981.

[12] N. Roussopoulos, D. Leifker, “Direct spatial search on
pictorial databases using packed R-trees,” In:
Proceedings of the ACM SIGMOD, pp.17-31, 1985.

[13] T.Sellis, N. Roussopoulos, C. Faloutsos, “The R+-Tree:
A Dynamic Index for Multi-Dimensional Objects,” Proc.
13th Int. Conf. on Very Large Databases, Brighton,
England, pp.507-518, 1987.

[14] K. Sevcik and D N. Koudas, “Filter trees for managing
spatial data over a range of size granularities,” In
Proceedings of the 22th International Conference on Very
Large Data Bases (Bombay), pp.16–27, 1996.

- 1136 -

R1 R4

r11 R5 r13

r14

r12

R2 R7 r19
r18

r20

R3 r9

r10r8

R6

r15

r16r17

R1 R4

r11 R5 r13

r14

r12

R2 R7 r19
r18

r20

R3 r9

r10r8

R6

r15

r16r17

Figure 1(a) The spatial objects indexed by R-tree R.

s4

s5

s6

s7

s8

s9

s10

s11

s12

S1

S2

S3
s4

s5

s6

s7

s8

s9s9

s10

s11

s12

S1

S2

S3

Figure 2(a) The spatial objects indexed by R-tree S.

R1 R2

R3 R4 R7R6R5

r8 r9 r10 r11 r12 r13 r14 r15 r16 r18 r19 r20r17

R1 R2

R3 R4 R7R6R5

r8 r9 r10 r11 r12 r13 r14 r15 r16 r18 r19 r20r17

Figure 1(b) The structure of R-tree R.

S3S2S1

s5s4 s8s7s6 s12s11s10s9

S3S2S1

s5s4 s8s7s6 s12s11s10s9

Figure 2 (b) The structure of R-tree S.

R1 R4

r11 R5 r13

r14

r12

R2 R7 r19
r18

r20

R3 r9

r10r8

R6

r15

r16r17

s4

s5

s6

s7

s8

s9

s10

s11

s12

S1

S2

S3

R1 R4

r11 R5 r13

r14

r12

R2 R7 r19
r18

r20

R3 r9

r10r8

R6

r15

r16r17

s4

s5

s6

s9

s10

s11

s12

s7

s8

S1

S2

S3

Figure 3 The overlap con of the two groups of dition
spatial objects.

Level 1

R2Null

R1Null

nodeCnodeP

R2Null

R1Null

nodeCnodeP

PATHSJQ

Null

Null

Null

parentS

Null

Null

Null

parentR

S3R2

S1R2

S3R1

childSchildR

Null

Null

Null

parentS

Null

Null

Null

parentR

S3R2

S1R2

S3R1

childSchildR

Level 2

R1Null

R2Null

R4R1

R7R2

nodeCnodeP

R2 R6

R1Null

R2Null

R4R1

R7R2

nodeCnodeP

R2 R6

PATHSJQ

S3

S3

S3

S3

S1

S1

S3

parentS

R2

R2

R2

R2

R2

R2

R1

parentR childSchildR

s12R6

s11R6

s10R6

s9R6

s5R7

s4R7

s9R4

S3

S3

S3

S3

S1

S1

S3

parentS

R2

R2

R2

R2

R2

R2

R1

parentR childSchildR

s12R6

s11R6

s10R6

s9R6

s5R7

s4R7

s9R4

Level 3 PATHSJQ

r17R6

r16R6

r15R6

r20R7

r18R7

r12R4

r19R7

R1Null

R2Null

R4R1

R7R2

nodeCnodeP

R2 R6

r17R6

r16R6

r15R6

r20R7

r18R7

r12R4

r19R7

R1Null

R2Null

R4R1

R7R2

nodeCnodeP

R2 R6

S3

S3

S3

S3

S3

S1

S1

S1

S1

S1

S1

S3

parentS

R6

R6

R6

R6

R6

R7

R7

R7

R7

R7

R7

R4

parentR childSchildR

s10r17

s9r17

s12r16

s11r16

s10r15

s5r20

s5r19

s5r18

s4r20

s4r19

s4r18

s9r11

S3

S3

S3

S3

S3

S1

S1

S1

S1

S1

S1

S3

parentS

R6

R6

R6

R6

R6

R7

R7

R7

R7

R7

R7

R4

parentR childSchildR

s10r17

s9r17

s12r16

s11r16

s10r15

s5r20

s5r19

s5r18

s4r20

s4r19

s4r18

s9r11

Figure 4 The contents of SJQ and PATH at each
level.

- 1137 -

tS

R6
R6
R6
R6
R7
R7
parentR childSchildR

s9r17
s12r16
s11r16
s10r15
s5r18
s4r18

S3
S3
S3
S3
S1
S1
paren

S3
S3
S3
S3
S1
S1

tS

R6
R6
R6
R6
R7
R7
parentR childSchildR

s9r17
s12r16
s11r16
s10r15
s5r18
s4r18

paren

Figure 5 The SJQ contents after deleting 6 invalid

OPN records.

R1 R4

r11 R5 r
13

r14

r12

R7 r19
r18

r20

R3 r9

r10r8

R2

r15

r16
r17

s9

s10

s11

s12

R6``

R6
R6`R2

r15

r16
r17

s9

s10

s11

s12

R6``

R6
R6`

s4

s5

R7`

R2`

R1 R2

R6

r18 s5 r20r18 s5 r20r16 r11 s12r16 r11 s12s9 r17s9 r17

R6`R6``

s10 r15s10 r15 s4 r19s4 r19

R2`

R7R7` R7R7`

Figure 6 The final result R-tree R after inserting object.

nodeCnodeP

s8S2

s7S2

s6S2

S3Null

S2Null

S1Null

nodeCnodeP

s8S2

s7S2

s6S2

S3Null

S2Null

S1Null

PATH

Remainder objects of R-tree S
after deleting.

S3

S3

S3

S3

S1

S1

parentS

R6

R6

R6

R6

R7

R7

parentR childSchildR

s9r17

s12r16

s11r16

s10r15

s5r18

s4r18

S3

S3

S3

S3

S1

S1

parentS

R6

R6

R6

R6

R7

R7

parentR childSchildR

s9r17

s12r16

s11r16

s10r15

s5r18

s4r18

SJQ

We delete the corresponding

objects in S according to the
objects identified by the childS
values from SJQ.

s4

s5

s6

s7

s8

s9

s10

s11

s12

S1

S2

S3 s4

s5

s6

s7

s8

s9s9

s10

s11

s12

S1

S2

S3

Figure 7 The PATH contents after deleting objects.

S3S2S1

s8s7s6

Figure 8 The structure of R-tree S after deleting

objects.

s8s7s6

Figure 9 The final R-tree S after restruct ring S. u

*Upper case means node
*Lower case means object

- 1138 -

