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Abstract 

 
In a roll draft mechanism “draft wave” caused by irregular behavior of floating fibers has been known to occur, which influences 

directly the thickness variation in the output fiber bundle due to the process resonance in bundle flow. However, in spite of such an 
important notion of the draft wave, there have scarcely been studies that could explain the existence or the phenomenon since the first 
conceptual suggestion by W. L. Balls in 1928. In this paper, based on the governing equations (nonlinear PDEs system) for bundle flow, 
we tried to analyze the dynamic characteristics of the bundle flow in a roll draft system by applying both the linear stability and phase 
plane analysis, and thus to verify the occurrence of the draft wave. Therefore, the steady state stability and the eigenvalue problem were 
treated to find the stability diagram, and the solutions of the equations in transient state were obtained by developing a numerical program 
to illustrate the trajectory of output thickness in a phase plane. Results show that the linear stability can be applied to analyze the bundle 
flow dynamics. Nonlinearity of the bundle flow reveals that the system oscillates at the critical draw ratio harmonically, indicating the 
onset of a Hopf bifurcation. For draft ratios above a critical value, the fluctuation in amplitude is amplified, and a sustained oscillation can 
be achieved. We could confirm that the roller drafting operation has a “bifurcation” property with which the topological structure of phase 
portrait changes as the draft ratio and the model parameters are varied. When the process variables or model parameters exceed some 
critical values, fixed points are destroyed and oscillations with the limit cycle occur, which can be called “draft wave”. Particularly, as the 
value of a draft ratio increases, the phase portrait converges to a shell-shaped curve. 
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1. Introduction 

 
Roll drafting, an important operation to attenuate the thickness 

of the bundle and at the same time to get the fibers straightened 
along the bundle axis, is widely used in staple yarn formation 
process as an individual process or as a part of a machine unit. 
However, it is hardly realizable to control the motion of each 
fiber or fiber groups completely by rollers. Result is the 
unevenness of the fiber bundle. The fluctuation of the bundle 
thickness could be more or less minimized in industry by 
experimental trial and error method based on the engineering 
sense, though. There have been many researches performed to 
model the mechanism on the unevenness of fiber bundle 
theoretically [1-4], or to establish a relationship between the 
unevenness and the process factors [5-9]. In spite of so much 
effort to improve the process productivity and textile qualities, 
the question remains still unsolved how to describe the 
mechanism of unevenness occurring during a roll drafting 
theoretically and how to minimize it. 

This paper is to analyze the draft dynamics and the unevenness 
of fiber bundle based on the bundle flow model. By applying the 
linear stability analysis method the criterion of system stability 
was established according to various draft ratios and model 
parameters, namely stability diagram. For a transient flow the 
solutions of the full nonlinear governing equations were obtained 
by developing a numerical analysis program and also the phase 
portraits of them in a phase plane were investigated to various 
process variables. 

2. Governing equations for bundle flow 
 
In a draft system, the fibers nipped by paired rollers restrain the 

free movement of individual fibers, but in the distance between 
the nipping positions the fibers flow shearing each other, which 
cause the number of fibers per cross-section of the flowing 
bundle to reduce, yielding a thickness attenuation. Figure 1 shows 
the schematic representation of bundle flow in a drafting process. 

 

 
Fig. 1 Schematic drawing of the drafting zone 

 
The model describing the fiber bundle flow in a drafting zone 

was suggested in our previous study [10]. It consists of a 
continuity equation, the equation of motion involving velocity 
variance and a constitutive equation. They are described in terms 
of the average velocity of the bundle, the linear density, and 
velocity variance as functions of time and position. 

The governing equations are given as follows: 
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The constitutive equation is assumed as 
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and the velocity variance of fibers could presumably be taken as 
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where lb, v, t, x, f, Var[vi], and L denote the linear density of fiber 
bundle, the mean velocity of fibers, time, distance in the flow 
direction, surface force acting on fibers, velocity variance of 
fibers, and length of flow field(drafting zone), respectively, and 
subscripts denote partial differentiation. μ and a0 represent the 
model parameters that relate to the material properties such as 
inter-fiber friction, surface characteristics of fiber, fiber length 
distribution, fiber orientation, etc., and to the process conditions, 
respectively.  

For convenience to work with the equations, we defined 
dimensionless variables by introducing some scaling factors. 
Applying the scales 
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and rearranging the Eqs. (1)~(4) lead to 
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Substituting Eq. (6) into Eq. (7) yields 
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The boundary conditions at two end-points are 
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0
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Note that the boundary condition at the output part of linear 
density )1,( *** =xtlb

can nor be defined. Form now on we will 
express all the dimensionless variables not using the superscript 
( )* to avoid complicated equation forms. 
 
3. Solution procedure 

 
3.1 Linear stability analysis 

Linear stability analysis is one of the methods to identify the 
status of a system on stability and to establish the range of the 
parameters or process conditions to stabilize the system. That is, 
finding the critical conditions at the onset of instability. The first 
step for the linear stability analysis is to linearize the governing 
equations, Eqs. (6) and (7), by introducing the infinitesimal 
perturbations to state variables around their steady state as 
follows [11]. 

t
bsb exxlxtl ⋅⋅+= λα )()(),(                            (10) 

t
s exxvxtv ⋅⋅+= λβ )()(),(                            (11) 

where subscript s indicates the steady state, α and β are the 
complex perturbation amplitudes of state variable, and λ is a 
complex eigenvalue that accounts for the growth rate of the 
perturbation, where Re(λ) is the growth or decay rate, and Im(λ) 
the disturbance frequency. The equations in the steady-state flow 

are determined from Eqs. (6) and (7) with ∂( )/∂ t=0 [10]. 
Substitution of Eqs. (10) and (11) into the governing equations, 
then, leads to the following linearized governing equations: 
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Boundary conditions: .0)1()0()0( === ββα            (14) 
Here, superscript ( )’ denotes derivative of state variables with 

respect to distance from inlet, x. The above equations with 
boundary conditions constitute an eigenvalue problem. Therefore, 
to evaluate eigenmodes of the linearized equations given above, 
we set up an eigenmatrix system by discretizing Eqs. (12) and 
(13), using a proper finite difference scheme and rearranging 
them: 

γγλ AI =  or ( ) 0~=− γλ IA                         (15) 
where [ ]Tnn 12121 ,,, −= βββαααγ LL  and A is matrix 
whose components are obtained from the algebraic manipulations 
of Eqs. (12) and (13). The stability of system is then determined 
by eigenvalues, λ. If the real part of any eigenvalue of λ for a 
given condition is found positive, then the system is unstable 
indicating an unbounded growth of state variables with time. 
 

 
Fig. 2 Eigenspectra for DR=30, μe=1000, and ae=300. 
 
Figure 2 shows, for instance, a typical result of the eigenvalue 

problem for the given values of DR=30, μe=1000, and ae=300. In 
this case, since all the eigenvalues are laid on the left half-plane, 
this flow is stable. If at least one eigenvalue crosses into the right 
half-plane, the flow becomes unstable.  

Representing the real parts of the largest eigenvalues 
(Re(λ)max.) according to various draft ratios is given in Figure 3. 
For constant μe and ae, there exists only one crossing point where 
the sign of the Re(λ)max. changes against DR. We also can observe 
a crossing point in a higher draft ratio as the dimensionless 
parameter ae increases. Figure 4 shows the profile of Re(λ)max. 
with respect to μe under the constant values of DR and ae. As μe 
increases, the profile of Re(λ)max. intersects with zero value two 



times at point A and A’ for DR=30, whereas it takes zero at only 
one point A” for DR=10. This means that the transition from a 
stable state to an unstable one depends on the relationship of DR 
with the dimensionless parameters. 

In this study, however, we don’t consider the bundle flow at 
the point A’ and A”. (The reason is going to be explained in 
section 4.1.) 

 

 
Fig. 3 Real part of leading eigenvalue with respect to draft ratio 

in different dimensionless parameter ae. 
 

 
Fig. 4 Real part of leading eigenvalue against dimensionless 

parameter μe with the change of draft ratio 
 
3.2 Solution of the nonlinear problem 

Transient solutions of the nonlinear governing Eqs. (6) and (7) 
have been obtained using a FTCS (Forward Time and Backward 
space) differencing based on the Explicit-Implicit hybrid scheme 
to avoid the numerical instability problems due to the model 
parameters. The grid sized for x and t are selected as Δx=2x10-2 
and Δt=1x10-4, respectively, considering the accuracy for 
numerical solutions. The simulation program was developed 
using software MATLAB

®. The produced plots could be saved, 
printed or exported in Windows Bitmap format, while the 
calculated values be viewed and saved. 
 
4. Results and discussion 
 
4.1 Steady state flow 

The bundle flow in a steady state was investigated by varying 
the dimensionless parameter μe=60, 100, and 300 for the draft 
ratio DR=30, and the parameter ae=300. The flow response is 
depicted in Figure 5, where the distributions of the velocity, vs(x), 
and the bundle thickness, lbs(x), in a drafting zone are plotted 
against the position x. From figure 5a), the velocity increases 

monotonically with the position x for a given value of μe=300, 
while the curvature of the profile becomes stronger as the value 
of μe decreases. In particular, for μe=60, the flow shows a 
noticeable behavior that the velocity of bundle is faster than that 
of front roller near the exit.  

 

 

 
 

Fig. 5 Distributions of a) dimensionless velocity and b) linear 
density of fiber bundle in a steady state flow. 

      (DR =30, ae=300, μe=60, 100, 300) 
 
The linear density profiles (Fig. 5b) show the reciprocal 

relation to the velocity profiles under the steady state condition. 
For μe=60, especially, the linear density distribution exhibits an 
overflow-like behavior near the inlet. Since the velocity (the 
linear density) distribution, however, should be limited within the 
range of between 1 and DR (the range of [1, 1/DR]) for an 
extensional bundle flow such as drafting process, the flow type 
shown under the condition of μe=60, ae=300, and DR=30 can not 
be expected in a practical process.  

 
Fig. 6 Unattainable region of the dimensionless parameters to 

several draft ratios in an extensional bundle flow. 
Figure 6 shows an unattainable region of the dimensionless 

parameters in an extensional bundle flow. It is shown that the 



extensional bundle flow can take place in a specific region of the 
parameters for a given DR (the right hand side of curve). For 
given values of DR and μe the parameter value of ae is ceiled. 
Note that the A’ and A” pointed out on figure 4 is placed within 
the unattainable region. 

 
4.2 Bifurcations on linear stability 

To establish the criterion for the stability of bundle flow to the 
draft ratio and the dimensionless parameters we estimated the 
critical values in which Re(λ)max. becomes zero, and thus obtained 
a stability diagram as shown in Figure 7. In these figures, solid 
lines denote the critical values which divide the parameter 
domain into stable and unstable zones. Dotted lines stand for the 
boundary between the zone where extension bundle flow occurs 
and the unattainable region. Figure 7a) depicts the critical draft 
ratios (DR)c to the dimensionless parameters. Independently of the 
value of ae, the system can be unstable for a large value of μe, 
when the draft ratio becomes larger than 20.93. As the 
dimensionless parameter ae decreases, the stable chimney region 
is located at lower values of μe.  

 

 

 
Fig. 7 Stability diagram for bundle flow: a) critical draft ratio to 

the dimensionless parameters, b) the relationship between 
dimensionless parameters μe and ae to the draft ratio 

 
Figure 7b) represents the stability diagram in parameter space. 

The parameter plane can be divided into 3 zones, that is, 
unattainable zone, stable zone, and the unstable zone. The stable 
zone is placed between the unattainable zone and the unstable. In 
addition, the stable zone becomes narrow as the draft ratio 
increases, while below DR=20.93, the flow is always stable, 
independent of the parameters μe and ae. In other words, the 
transition from stable behavior to unstable one occurs as DR and 
μe increase and ae decreases. Therefore, we can recognize that the 
bundle flow undergoes a supercritical Hopf bifurcation for DR 

and μe, while it has characteristics of subcritical Hopf bifurcation 
for ae. 

 
4.3 Transient response of the bundle thickness 

Based on the linear stability results and on the numerical 
solutions of the nonlinear governing equations, the nonlinear 
dynamics of the bundle flow was analyzed.  
4.3.1 Unsteady flow 

Figure 8 is a simulation result in a 3-dimensional picture of the 
bundle thickness in a flow field, clearly showing the fluctuations 
with respect to time. The simulation condition of DR=40, 
μe=1,254, ae=300 corresponds to the point D indicated in Figure 
7a), which is located in the unstable zone for the linearized 
system. 

 
Fig. 8 Tree-dimensional transient picture of the bundle thickness 

in a flow field: DR=40, μe=1,254, ae=300. 
 
But the simulation applied to the nonlinear bundle flow system 

shows that the thickness profile fluctuates with a constant 
amplitude and a period T. This is illustrated in Figure 9, where 
the bundle thickness is plotted against the position x at t=0, T/5, 
2T/5, 3T/5, and 4T/5.  

 

 
Fig. 9 Linear density distributions of fiber bundle in a drafting 

zone with time elapse during one oscillation period: 
DR=40, μe=1,254, ae=300 

 
The spatial response of bundle thickness under transient 

condition, namely the dependence of the oscillatory behavior on 
position is depicted in Figure 10, showing the temporal thickness 
behavior at different positions x=1/8, 1/4, 1/2, 3/4, and 1. It is 
shown that the whole system oscillates at the same frequency 
with different phase (the phase is dependent on the bundle 
velocity at a position x). The shape of the waveform near the inlet 



(x=1/8) exhibits an oscillation with broad bell-shaped peaks and 
narrow bottoms. At the midpoint, however, the shape is reversed. 
As the bundle approaches to output position, the picks become 
narrower and the bottoms become wider. 

 

 
Fig. 10 Temporal pictures at different positions within drafting 

zone: DR=40, μe=1,254, ae=300 
 

4.3.2 Phase plane analysis 
To investigate the effect of draft ratio on the dynamic 

characteristics of bundle flow, the transient behavior of output 
linear density is simulated for three draft ratios: DR=20, 30, and 
40, corresponding to C, A, and D in Figure 7a), while the 
dimensionless parameters μe and ae are set equal to 1,254 and 300, 
respectively (Fig. 11). Figure 11a) shows that, for the draft ratio 
of 20, the output bundle thickness exhibits a damped oscillatory 
behavior. The fluctuations decay with time after “ringing” 
symmetrically with respect to a fixed point for a while, and then, 
the steady state is attained. If the decay becomes slower and 
finally reaches at a critical draft ratio (DR)c, the equilibrium state 
can lose its stability as shown in Fig 11b). As the draft ratio DR 
increases further, the sustained oscillation in output bundle 
thickness changes into the oscillation with increasing amplitude. 
Figure 11c) shows the increasing magnitude of fluctuation. 
However, the rate of fluctuation growth diminishes after some 
time and another sustained oscillation is then achieved. It is noted 
that beyond the critical draft ratio, the oscillations show 
asymmetric shape, having narrow and sharp peaks with wide and 
flat bottoms.  

 

 

 

 
Fig. 11 Temporal pictures of the linear density of output bundle 

to various draft ratios when μe=1,254, and ae=300: 
       a) DR=20, b) DR=(DR)c=30, and c) DR=40. 
 

The analysis results hitherto show that the bundle flow has the 
dynamic characteristics that the draft ratio above a critical value 
does not allow a fixed point to appear but a limit cycle oscillation 
which can be defined as “draft wave” and may derive a process 
resonance. 

Dynamics of bundle flow can be described in a more detailed 
way by the trajectories of the state variables. The output linear 
density and the linear density change rate were taken as state 
variables. Trajectories in the phase plane are given in Figure 12. 
Figure 12a) shows the trajectory that winds down to a stable 
spiral toward a fixed point for DR=20 < (DR)c. For DR >= (DR)c, a 
cyclic pattern appears. The oscillation is purely harmonic (elliptic 
limit cycle) and symmetric (Fig. 12b). When DR=40, the 
trajectory converges to a shell-shaped curve (Fig. 12c). Therefore, 
we can confirm that the roller drafting operation undergoes a 
dynamic change of the output bundle thickness, as DR changes. 

 

 



 

 
Fig. 12 Trajectories of the linear density of output bundle to 

various draft ratios when μe=1254, and ae=300: 
       a) DR=20, b) DR=(DR)c=30, and c) DR=40. 

 
Especially, when the draft ratio is further increased (DR=60), 

the amplitude of oscillation grows rapidly and the flux reaches 
more quickly the sustained oscillation (Fig. 13). The wave peaks 
also become much narrower and sharper with the wave bottoms 
becoming flatter. But the bundle thickness can reach practically 
near zero, which means that the bundle rupture can occur around 
DR=60. 

 

 
Fig. 13 Temporal pictures of the linear density of output bundle 

when DR=60, μe=1254, and ae=300 
 

5. Conclusion 
 
In this research we tried to analyze the draft dynamics and the 

nonlinear characteristics of a bundle flow system based on the 
theoretical model. Linear stability analysis was applied to predict 

the critical threshold of system instability, and phase plane 
analysis was conducted based on the numerical solutions for the 
nonlinear transient response. For the linear stability analysis, the 
eigenvalue problem of the linearized bundle flow model was 
treated. The solution of the nonlinear governing equations system 
was obtained by a numerical analysis program developed with the 
application of FTCS method based on the Explicit-Implicit hybrid 
scheme. The results showed that the linear stability analysis 
agrees excellently with those by nonlinear transient simulation. A 
critical draft ratio could be verified not only by the linear stability 
analysis but also by the transient state analysis. Transition from 
the stable behavior to the unstable occurs as draft ratio and 
inter-fiber friction parameter increase and the parameter for the 
variance of individual fiber speeds decreases. When the draft 
ratio exceeds the critical value, the fixed point is destroyed and 
the limit cycle oscillation appears, which leads to the so called 
"draft wave". For a draft ratio above the specific value, the 
fluctuations increase but arrive at another level of sustained 
oscillation. 

This study shows an intriguing result about the existence of a 
specific draft ratio above which the flow can always be unstable, 
which suggests us a further study on this topic.  
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