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Abstract 
 

Geometrical models of full-relaxed interlock knitted structure are proposed in this investigation for two and three dimensional forms. It 
was assumed that the face loops in plain and interlock structures are similar. Therefore, the strophoid classical curve, which was considered as 
a function of an ideal model for a plain knitted structure, was taken and improved as the first segment of structural knit cell (SKC). Another 
segment of SKC, i.e, the linking portion between face and back loops, explained by a quadratic equation. From these models, the Us value as 
an important constant dimensional value was obtained and compared with the measured Us value that was taken from the experimental work 
of previous researcher. Finally a good agreement was observed between the theoretical and experimental results. 
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1.Introduction 
The geometry of interlock structure has received comparatively 
little attention. Knitting loop geometry is the key element in 
understanding the dimensional behavior of knitted fabrics. In the 
theoretical studies of knitted fabric dimensions, emphasis has 
mostly been placed on defining the shape of the loop. Fabric 
dimension, on the other hand, are directly related to those of a unit 
cell defined by joining similar points of loops in adjacent wales and 
courses. One of the major successes of the scientific approach to the 
study of the knitting process has been the realization of the 
importance of loop length (Doyle, 1953,). This fundamental 
parameter, governing most fabric properties, is defined as the length 
of yarn in the smallest repeating unit of the structure. From the 
above concept, Munden (1959) was able to derive four non-
dimensional parameters or K-values, governing the dimensions of 
plain knitted fabrics. Knapton et al (1968) modified Munden’s K-
values by using the following definitions. The effective loop length 
should be the length of yarn in one structure knitted cell (SKC), 
defined as the smallest repeating unit of the structure ( Lu ). Course 
units per unit fabric length (Cu

), wale unit per fabric width (W u ), 

and the number of SKC’s per unit area (S u
). For example, the SKC 

of an interlock structure consists of four single loops. From the 
above definition, they presented the following non-dimensional 
parameters for complex weft-knitted structures: 

uuc
LCU ×=                                                  (1) 

uuw
LWU ×=                                                  (2) 

LSU uus

2×=                                                   (3) 

W
C

U
U

u

u

w

c =
                                                       (4) 

Dimensional stability in knitting fabrics can be attained by 
either mechanical relaxation or chemical treatments. Knapton et al 
(1975) indicated that both mechanically and chemically treatments 
must act very largely through the same fundamental mechanism. 
Munden (1959) suggested that in a fully relaxation state, the knitted 
fabric loop takes up a geometrical shape to establish a state of 
minimum internal energy. In the fully relaxed state when the fabric 
is released from mechanical strains, the loop will tend to take up the 
ideal shape, and the maximum shrinkage is obtained for fabric 
(Semnani, et al., 2003). For this reason, we have suggested (Jeddi 
and Zareian, 2006, Mohammadi and Jeddi, 2006) the ultrasonic 
waves technique as a new method for relaxation processing to 
release more forces imposed on the yarn during knitting. In our 
recent research (Jeddi, et al. 2006) to consider knitted fabric 
relaxation by using ultrasound technique, we concluded that the 
Munden’s suggestion (1959), i.e. “The yarn within a fully relaxed 
fabric structure assume a minimum energy shape” is not generally 
acceptable. But it should be expressed that, the plain knitted fabric 
constructed from cotton yarn within a fully relaxed fabric structure 
assume an optimum energy shape as such as reach to a maximum 
shrinkage. 

In the previous papers of this series (Jeddi et al., Int. J. Eng., 12, 
39-40, 1999, Semnani et al., J. Text. Inst., 94(1), 204-213, 2003, 
Jeddi and Zareian, 2006), we presented theoretically ideal models 
for the plain knitted loop and 1×1 rib knitted structure based on the 
new approach of geometrical and physical  principles. The analysis 
was introduced for two and three-dimensional models. Then to 
obtain the natural or ideal configuration of the knitted loop with the 



  

conditions of minimum energy, we use the ultrasonic wave to 
decrease the potential energy of the fabrics. In this study we attempt 
to develop this kind of ideal model for interlock structure. Then by 
using conventional mechanical relaxation and ultrasonic relaxation 
treatment, the obtained non-dimensional parameters of the fabric 
(Uc, Uw &Us values) are measured and compared with the 
theoretical values. 

 
2. Theoretical Analysis 

Interlock has the technical face of plain fabric on both sides 
(Spencer, 1983) but its smooth surface can not be stretched out to 
reveal reversed meshed loop wales because the wales on each side 
are exactly opposite to each other and are locked together (Fig.1). 

 

 
Fig.1. The loop model geometry of plain structure. 

 
 each interlock pattern row (Often termed an ‘interlock course’) 

requires two feeder courses each with a separate alternate needles 
producing two half-gage 1×1 rib courses whose sinkers loops cross 
over each other. 

In derivation of the ideal stitch model for interlock knitted 
fabric in an ultimate full-relaxed structure with an optimum internal 
energy (Munden, 1959), the following assumption are made for 
both two and three dimensional models: 
(i) the face loop in plain and interlock structures are similar. 
(ii) the shape of structural knitted cell (Fig.1 and Fig.3) is divided 

into two segments, one segment being the needle loop and two 
arms of four plain-type face loop of cell (Fig.2) which follows 
the mathematical based equation of improved Strophoid curve. 
Another segment is the linking portions between face and back 
loops. 

(iii) Loops of adjacent wales touch at their widest parts. Also, the 
consecutive courses make contact with each other and the arms 
of the loop make contact at the point of the minimum loop 
width, i.e. both length and width jamming of structure occurs 
in the fabric.          

(iv) The narrowest and widest parts of any two interlocking loops 
in the same wale coincide, that is in agreement with Munden’s 
assumption (1959). 

(v) The yarn is assumed to behave as a cylindrical elastica rod and 
follows the elastica property (Leaf, 1958).     

  
2.1. Construction of two-dimensional 

The needle loop and two arms of four plain-type face loops of 
the structural knitted cell for interlock fabric is shown in Figure 2.  

 
 
 
 

 
Fig. 2. The geometrical configuration of interlock structure. 
 
Since this segment of cell is assumed similar to plain-type face 

loops of the structural cell of 1×1 rib fabric (Jeddi and Zareian, 
2006), thus a brief description of its formula is given here. The 
equation of the improved strophic curve for this segment is as 
follows: 
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where h is the maximum height of the loop. 
The extermum points of this function occur at: 

hx 584429.0max =                (6) 

hy 24015.0
max

±=                (7) 

Thus the maximum width of the loop model is determined as: 

hd y 4803.0.2
max

==                (8) 

To calculate the needle loop and two arms, we used parametric 
equation (5). The definite integration was solved using Simpson’s 
method with n=100. Finally the numerical value of the length of the 
needle loop and two arms ( Lplain

) was obtained by using the 

computer program (Jeddi and Zareian, 2006) as follows: 
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where D is yarn diameter. 
 

Structure cell stitch length ( Lu ) 

The structural cell stitch length of interlock fabric can be 
calculated by referring to figures 1and 3 as following: 

LLL linksplainu += 4                          (10) 

By assuming that the same moment force imposed on the two 
ends of the linking portion between face and back loops (P and Q in 
Fig.3), and O is support, therefore OP follows a quadratic equation 
according to: 
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By using Decartian method to calculate the length of Arc OP, 
we have: 
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From Figure 3 we have: 
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where T is fabric thickness. 
 

Fig.3. Plan view of interlock structure.   
 

From the general geometrical model of Postle (1974), base on 
the assumption of a constant unit-cell configuration for a particular 
knitted construction, the ratio  of the geometrical fabric thickness 
(T), to the effective yarn diameter (D), for interlock structure is 4.1. 
Therefore, Dyp

05.1=  and θtan05.1 ×= Dxp
. From Fig.3, θ  can 

be calculated as following: 

55)05.1.(2
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Then we have: 
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By using this estimation, and Mathematica 4 software, the 
Equation (16) was solved as follows: 

DL op 8993.1=                                              (17) 

We have: 
DL Loplinks 1944.158 ==                                                  (18) 

         
And finally: 

DhLu 889.1938768.9 +=                                                 (19) 

 
The constant dimensional parameters ( UUU swc and, ) 

From Postle’s work (1974), the value of the ratio LuT for 

interlock fabrics, becomes 0.0569. 
Therefore: LD u013889.0=  , and finally: 

Luh 0771.0=                                            (20) 

From Figure 2, the maximum width and length of the structural 
knit cell for interlock fabrics can be calculated as follows (A knit 
cell of interlock fabric is two times of knit cell of plain fabric): 
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2.2. Construction of three-dimensional model 

A similar manner to plain knitted fabric model was adopted 
(Semnani et al, 2003) to extend two-dimensional analysis to three-
dimensional. Figure 4 shows a side view of the three-dimensional 
loop structure. The same assumptions outlined in the plain knitted 
model are applied here. Therefore, the length of arc AB is the same 
as the height of the loop at two-dimensional model state i.e. AB = h 
+ D/2, and the wale spacing is identical to that model. It should be 
noted that, there is nearly 1.8% difference between the true arc (AB) 
of the yarn follows the path of a deformed elastica, and a part of a 
circle (EF) plus two straight lines (AE and FB). If it is assumed that 
α = π/6 and       AE = FB, the fabric dimensional parameters are 
evaluated for the three-dimensional structure by using Strophoid 
equation as follows:    
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Therefore:  
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Fig. 4.A side view of the three-dimensional interlock structure.  

 
 
3. Comparison between theoretical model and experimental 
results 
  To compare the theoretical non-dimensional parameter or Us 
Value achieved in this method with experimental results, we used 
the experimental Us values which were studied by Anand et al 
(2002). They investigated the effect of laundering on the 
dimensional stability of three popular 100% cotton knitted fabrics 
(plain single-jersey, 1×1 rib and interlock). These fabrics were 
subjected to five cycles of four different washing and drying 
regimes. The fabrics had taken up their fully relaxed dimensions 
after five wash and dry cycles and appropriate conditions for 
launderings had been applied. The average length of yarn in a single 
loop of interlock structure and its stitch density were measured 
respectively 0.270 cm and 301.1 loops per square centimeter. 
Therefore, the smallest repeating unit length yarn of the structure is 
Lu=1.08 cm, and the number of structure knit cell per cm2 is Su= 
150.55. Consequently, the experimental Us value becomes 175.60. 
Therefore, the experimental Us value shows a little difference from 
theoretical values (2.5% higher than two-dimensional model and 
3.5% higher from three-dimensional model). 
 

4. Discussion and Analysis 
  The aim of expression of the experimental data from other 
researcher is to compare their Us value with the theoretical Us value 
which is calculated from the ideal model of interlock structure. The 
experimental data for interlock fabric is obtained in a full relaxation 
state. It is showed that there is a small difference between the 
theoretical model and the experimental Us values. This difference 
may be attributed to the variations of the empirical measurement or 
to the some unreal theoretical assumptions. This small difference 
confirmed that this ideal model is a useful prediction method for 
interlock dimensions in its complete stability state. On the other 
hand, interlock has a more balanced structure, and so a dimensional 
stability occurred when the fabric was subjected to agitation during 
drying. This confirms that in interlock structure, the loops had taken 
up their fully relaxed dimensions after five wash – dry cycles. 
Hence, no another advanced relaxation technique, such as ultrasonic 
wave’s method (Jeddi and Zareian, 2006) appear necessary to reach 
the fabric stabilization to a higher degree. 
 
5. Conclusion 
  Similar to the theoretical analysis for plain and l×l rib knitted 
structures in our previous publications (Jeddi et al, 1999,2003, and 
2006), we presented in this paper an ideal model for interlock 
structure. We assumed here that the face loops in plain and 
interlock structures are similar. Therfore, this segment of structural 
knit cell (SKC) follows the equation of improved strophoid curve 
and another segment of SKC, i.e, the linking protion between face 
and back loops, explained by a quadratic equation. Then, the theory 
was extended to a three dimensional model. 
  For both models, the fabric dimensional parameters were 
estimated. The experimenal value of Us parameter which was 
obtained by previous researcher in fully relaxed interlock structure 
reveals a good agreement with the theoretical Us values. In 
conclusion, we can confirm that this ideal model is a suitable 
method to predict the constant dimensional parameters of interlock 
structure in fully-relaxed state.  
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