P TR Y 5

PASSIVITY BASED PROCESS CONTROL

Peter L. Lee! and Jie Bao’

'Division of Engineering Science and Computing, Curtin University of Technology
GPO Box Ul1987, Perth, WA 6845, Australia

2School of Chemical Engineering & Industrial Chemistry
The University of New South Wales
UNSW, Sydney NSW 2031, Australia

Abstract:

The concept of passive systems and associated stability conditions have been
one of the corner stones of nonlinear control theory. This paper summarises recent
developments of process control techniques based on passivity. This includes
passivity based robust control, fault tolerant control, and controllability analysis.
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1. INTRODUCTION

The concept of passivity plays an important role in
modern control theory. It originated from studying input-
output properties of electric circuits in the 1960s. In
terms of circuit theory, a passive network has a positive
resistance. That is, the network will dissipate energy or
at least not generate energy while moving from one state
to another.

A gravity tank is an example of passive process system.
Consider the tank system illustrated in Figure 1. Assume
the input is the inlet flowrate (F;) and the output and
state variables are the liquid level (4). Suppose the outlet
is flowing out without an exogenous force, i.e.,

F, = CVJZ where C, denotes the valve coefficient.
The mass balance is given by:

h=(F~F,) a=(F-c,Vh) 4, M

where A4 is the cross sectional area of the tank. The
energy stored in the tank is the potential energy:

S(h) =+ Ahpgh =1 Apgh’, 2

which is called the storage function in passivity theory.
The inlet flow into the system increases the potential
energy in the tank. The increment of potential energy per
unit time can be represented by a function of input and
output w(¢t) = pgF; (£)h(¢) . This is called the supply rate.
The rate of change of the storage function is given by the
following equation:

dS &S dh 3)

1
2 T~ Apghl —(F, - C,\h
Sk pg[A(, vw/_)}

= —Cvpgh\/z+ng,h = —cvpthZ+ w.

Note that in the range of definition of 4, the first term is
always negative. Therefore the rate of change of the
stored energy in the tank is less than the power supplied
to it. Therefore this process is said to be strictly passive.
If C, =0, that is the outlet valve is completely shut off,
then the energy flow into the tank is totally stored. In this
case, this process becomes lossless.

If we generalise the concept of energy to any non-
negative function of the states, then we can define a class
of nonlinear processes:

Definition 1. Passive systems (Willems, 1972a)
A system X is said to be passive if there exists a
nonnegative real function S(x): S(x) =X — R* (called
the storage function), and a supply rate w(¢) = y"' (Hu(t)
such that, forall ¢, >¢, 20,x, € X andueU,

S(x) - S(xg) < J' w(t)dt . 4)

0

The passivity of a control affine process can be
determined using the following KYP Lemma:

Theorem 1 (Hill and Moylan 1976) Consider the
following process:
x = f(x)+ g(x)u

(5)
y = h(x),
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where x, u# and y are the state, input and output vectors
respectively. The process is passive if the following
conditions are satisfied:

T
150=2 1 <o, ©
T
and L,S(x) = ﬁék(x) g(x)= K ().

A linear time invariant system is passive if and only if its
transfer function matrix is positive real. In this case
Condition (6) is reduced to the following condition:

A system with a state space representation (4, B, C, D) is
passive if and only if there exists a positive definite
matrix P such that:

A'P+PA PB-C" Q)
r »[<0.

B'P-C -D-D

Obviously, a passive system is Lyapunov stable (when

u=0). The passivity property can be used to determine

the stability of interconnected systems.

Theorem 2 Passivity Theorem (van der Schaft 1997)

Consider the closed-loop system of G;, G, (as shown in
Figure 2) with e,=0 so that:

up = e =Gy (uy) )
uy =Gy (),

with Gy, Gy: L}, — L%,. Assume that for any e;e L7,
there are solutions u;, u,e L5, . If G, is passive and G is
strictly passive, then u,=G,(u;)e L’;’ . That is, the closed-
loop system is asymptotically stable.

Passive processes are minimum phase. Linear passive
systems are phase bounded (within [-90°,+90°]). As a

result, a strictly passive process is very easy to control —
it can be stabilized by any passive controller (provided
that the process is zero state detectable). Such controllers
include multi-loop PI/PID controllers with any positive
controller gains. This motivates control design based on
passivity. The basic idea is to “passify” the process first
and then design a passive controller to control the
passified system. Furthermore, the excess or shortage of
“passivity” of a given process can also be used to
analyse whether this process can be easily controlled and
the achievable performance under feedback control.

Recent development of passivity based process control is
summarised in this paper, including feedback /
feedforward passification, robust control, decentralized
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Figure 2. Passivity Theorem
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Figure 1. A gravity tank system

fault tolerant control and process controllability analysis.

2. PASSIFICATION OF PROCESS SYSTEMS

As illustrated in Figure 3, a non-passive process (G) can
be rendered passive by using an output feedback system
(Gpy) and/or an input feedforward system (Gg).

One necessary condition for the existence of an output
feedback controller that passifies a process is that the
process is weakly minimum phase. For input
feedforward passification, the process needs to be stable.
For linear systems, the passifiers can be obtained by
solving a matrix inequality problem such that the overall
system (with the feedback or feedforward system)
satisfies the linear version of the KYP Lemma
(Inequality (7)). In this approach, one will encounter
bilinear matrix inequality constraints as both matrices A4
and P are decision variables. Variable transformations
are required to convert the bilinear constraints to linear
constraints (e.g. Sun et al 1994). For input feedforward
passification, the bilinear matrix inequality problem can
be avoided by assuming the passified system has the
same matrices 4 and B as the original process
(Suryodipuro et al 2004). Passification of control affine
nonlinear systems can also be performed based on the
nonlinear version of the KYP lemma (e.g., Byrnes et al
1991).

The excess or shortage of passivity for a given process
can be quantified by an input feedforward passivity (IFP)
index or an output feedback passivity (OFP) index
(Sepulchre et al 1997). These indices measure how much
feedforward/feedback is required (or is in excess) for a
process to be passive. If a stable process G is not passive,
and a minimum feedforward vl (v>0) is required such
that (G+ vI) is passive then G is said to be IFP(-v). If
(G-vI) is passive, then G is [FP(v), having excessive IFP.

It is noted that the concept of passivity was generalised
to dissipativity (e.g., Hill and Moylan 1980), where the
supply rate was extended to a quadratic weighted form
of the input and output vectors. Clearly, for a process to
have the above passivity indices is equivalent to being
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Figure 3. Feedback and feedforward passification
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Figure 4. Block diagram of feedback control

dissipative with the following quadratic supply rates:

= A system of IFP (v) is dissipative with respect to

w(u,y)z u'y—vu'u.

= A system of OFP (p) is dissipative with respect to
wlu,y)=u'y-—p'y.

The Passivity Theorem can be extended using the notion
of IFP and OFP:

Condition 1. For the feedback configuration shown in
Figure 3, if Gy is IFP(v) and G, is OFP(p), then the
closed-loop system is stable if p+v>0.

3. PASSIVITY BASED ROBUST CONTROL

Robustness is an important issue in process control.
Since uncertainties in process models are inevitable and
could be significant in many cases, it is important that
the controller designed based on these models be robust.
Consider the control problem illustrated in Figure 4,
where G(s) is the process model and A(s) is the
multiplicative uncertainty. A robust controller K(s)
should be able to stabilise the closed-loop system with
the presence of the uncertainty. As shown in Figure 5,
the feedback system can be regrouped into two blocks -
A(s), the uncertainty, and 7(s), the subsystem “seen” by
the uncertainty (including G(s) and K(s)). Currently,
most robust control designs, such as H, control, are
based on the small-gain theorem (Zames 1966). These
approaches assume the uncertainty is bounded by its
norm and lead to control designs which guarantee the

closed-loop stability when ||A|| <y.

The Passivity Theorem provides a new avenue for robust
control. If the uncertainty is passive, then the controller
is only required to render system 7{(s) strictly passive to

achieve robust stability even if ||A|| is very large.

Although uncertainties are often non-passive, they can
be characterised based on their IFP and OFP. If the
uncertainty is estimated to have a maximum shortage of
IFP of v, i.e., being IFP(-v), then the controller K can

Figure 5. Robust Control
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guarantee the robust stability if 7 has excessive OFP of
at least v.

Motivated by the above observation, we have developed
a passivity based approach to robust control. First, we
have extended the IFP index such that it is a frequency
dependent index. Given a system transfer function
matrix G(s), its frequency dependent input feedforward
passivity is defined as:

A

v [G(s), w]:{ﬂmm G[G(jw) + G*(jw)]j} : ©)

which indicates how much excessive passivity the
process has at different frequencies. A system’s v

index is the real part of its frequency response and
comprises both the gain and phase information. For a
multivariable linear system G(s), we have:

v, [G(s),0] <&(G(jw) YoeR. (10)
If the uncertainty’s passivity index is bounded:
VF(A(S),[U)Z—VF(W(S),[()) VoeR, (11

where W(s) is a minimum phase transfer function, then a
controller that renders the closed-loop system 7(s) to
have excessive OFP of v, (W (s),w) at frequency @ can

achieve robust stability. That is, 7(s) should satisfy the
following condition:

Condition 2: 7(s)[/ — W (s)T(s)]”" is strictly passive.

The above condition assumes that the uncertainty can be
unbounded. (A passive system can be L,. e.g., system
G(s)=1/s is passive.) The conservativeness of the above
condition can be further reduced if the uncertainty does
not have unlimited gain. As any stable bounded system
will have excessive OFP, a revised IFP index can be
obtained with a given OFP index (as shown in Figure 6).
In this case, T'(s)[/ - W (s)T'(s)]”"" does not need to be

strictly passive.

A control synthesis method was developed by the
authors such that the closed-loop system satisfies
Condition 2. This work is based on the Positive Real
Lemma and Semi-Definite Programming. Details are
reported in Bao et al (2000, 2003a).

Most physical processes have smaller phase (and thus
“more passive”) at low frequencies than at high
frequencies. Therefore we also developed a robust

W(s)

O A(s) I— —p
e

Figure 6. Revised passivity index.
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control approach that combines both the Small Gain
Theorem and the Passivity Theorem. The uncertainty is
characterised by its passivity at low frequencies and by
its gain at high frequencies. A “blended” stability
condition was derived. A robust control design method
was developed based on the Cayley transformation
which converted the blended passivity/small gain
problem into an H, control problem. Details of this
approach are reported in Bao et al (1998).

As the passivity based robust control approach utilises
both the gain and phase bounds of the uncertainty, it is
often less conservative than the small gain based
methods. This was confirmed by the case studies we
have conducted.

4. DECENTRALIZED FAULT TOLERANT
CONTROL

In process control applications, failures of control
components such as actuators, sensors or controllers are
often encountered. These problems not only degrade the
performance of the control system, but also may induce
instability, which could cause serious safety problems.
With the increasing reliance on automatic control
systems, fault tolerant control becomes an important
issue in the process industries. At present, most fault-
tolerant control systems are built based on the technique
of having redundancy in key controllers. The backup
controller is employed once the failure of the main
controller is detected. However, the control loop failure
may not be detected swiftly and accurately. Sometimes
the fault detection system itself could be a possible
source of failure (Vidayasagar and Viswanadham 1985).
It also requires a significant number of redundant control
components, which may increase the system cost to an
unacceptable level.

Consider the decentralized control problem of an nxn
linear time-invariant process G(s) with control input u,
actuator input u,, process output y and sensor output y
(as shown in Figure 7). The model of actuator and sensor
failures can be represented as follows (Bao et al 2003b):

u, :Eau+fa. (12)
Ve =Ey+f
are actuator

a,i» gS,I <1

folfar-sfogesfonl - and

represent the

where E, =diagle,;} , E, =diagie,,;}

and sensor fault matrices with 0<g

(=1,...,n).
A VARV Ry |

components of actuators’ and sensors’ outputs when they
fail. This model addresses the following typical failure
scenarios (assuming the i-th channel of the control
system fails, 1<i<n):

Vectors

constant

* Sensoroutage: &, =0, f,,=0;
*  Controller/actuator outage: &,, =0, f,, =0}
*  Sensor partially functioning: 0 <&, <1;

= Actuator partially functioning: 0 <&, ; <1;

ai =

A T P

iy G,(s) . E, —>(:+ X G(s) 4 >

Actuator Process
Fault Matrix

Controller

< E, <

Sensor Fault
Matrix

Figure 7. Representation of sensor/actuator failures

=  Frozen sensor output: &,; =0, f, =constant output

from the i-th sensor;
=  Frozen controller output and/or actuator stickiness:
£,; =0, f,; = constant output from the i-th

controller/actuator.

For the linear feedback system under consideration (as
shown in Figure 7), constant vectors f, and f, do not

affect the closed-loop stability. Consequently, for
stability analysis under the control failure scenarios
listed above, only the effects of actuator and sensor
faulty matrices £, and E; need to be considered. In
addition, as controller G.(s) is decentralized, matrices E,
and E, are permutable. Therefore, control system
stability under the above circumstances can be achieved
if the controller maintains closed-loop stability when one
or more of its output channels are arbitrarily detuned or
switched off. Closed-loop stability under this condition
is called controller is called decentralized unconditional
stability (DUS).

Based on the passivity based stability conditions, we
have developed a decentralized fault tolerant approach
which requires zero or very low level redundancy. The
idea is simple: a strictly passive multivariable plant can
be stabilized by any decentralized passive controller. The
decentralized passive controller remains passive when
one or more of its sub-loops are arbitrarily detuned or
taken out of service. If the process is not passive (i.e.,
IFP(-v)) then the decentralized controller should have
excessive OFP (being OFP(v)) to maintain closed-loop
stability. The decentralized controller will still be OFP(v)
when one or more of its sub-loops are arbitrarily detuned
or switched off. Therefore decentralized unconditional
stability can be achieved by passivity based
decentralized control. A DUS condition was derived by
the authors:

Theorem 3 (Zhang et al 2002) For an interconnected
system (as shown in Figure 7) comprising a stable
subsystem G(s) and a decentralized controller
K(s)=diag{k{(s)}, i=1, ..., n, if a stable and minimum
phase transfer function w(s) is chosen such that v{(G ' (s),
) > -v{w(s), @) then the closed-loop system will be
decentralized unconditionally stable (DUS) if for any
v 1, K () =k (O =w(ET()] is
passive. Matrix U is diagonal with elements of either 1

loop i=l1,

I 1] # R
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or —1. The signs of U elements are determined such that
the diagonal elements of G'(s)=G(s)U are positive at

steady state, i.e. G;;(0)>0, i=1, ..., n. k'] (s) is the i-
th element of transfer function K'(s)=U"K(s)=UK(s).

Similar to the diagonal scaling treatment for calculating
maximum stability gain margins, the conservativeness of
the sufficient stability condition given in Theorem 3
could be reduced by using a constant, real and positive-
definite diagonal rescaling matrix. A rescaled IFP index
was proposed for determining DUS:

v (G(s),0) = m[z)lva(D_lGJr(s)D,a)). (13)

Such an index can be obtained by solving a complex
Linear Matrix Inequality problem for each frequency w.
Details can be found in Zhang et al (2002).

Based on Theorem 3 and the rescaled IFP index, we
have developed a decentralized fault tolerant control that
maintains closed-loop stability when any number of
loops fails. For stable processes, this control approach
does not require any redundant control element. Control
design algorithms have been derived for controllers that
achieve H, performance and also meet the DUS
condition in Theorem 4 (Bao et al 2002b). The
successive Semi-Definite Programming and controller
parameterization techniques were implemented in
developing these methods.

This control approach was further developed to cope
with unstable processes (Bao et al 2003b). An unstable
process is first stabilized via a multi-loop proportional-
only feedback controller. A DUS controller is then
designed for the stabilized process based on the passivity
condition. Redundancy is only required for the
stabilizing proportional-only controllers as the passive
DUS controller itself is inherently fault tolerant. A
numerical method was developed to find the stabilizing
controller with the minimum number of loops. This leads
to a control system design with the least redundancy and
more reliability.

5. CONTROLLABILITY ANALYSIS

As process control is playing an increasingly important
role in the process industries, processes should be
designed such that they can be easily controlled by
feedback control systems to achieve effective
disturbance rejection (for reduced product variability)
and reference tracking (for fast and smoothly transition
from one operating condition to another). Process
controllability can be quantitatively measured by the best
achievable dynamic control performance. As a process
design  fundamentally  determines the process’
controllability, a controllability measure which can be

used in early stages of process design will be very useful.

Certain open-loop factors, such as minimum singular
values, right-half-plane zeros, time delays and condition
numbers were found to be related to controllability (e.g.,
Morari 1983). However, the above analysis methods
suffer from the following weaknesses: (1) they are based
on linear models and thus are only suitable to linear or

mildly nonlinear processes; (2) they only suggest the
likely effect of each attribute on the closed-loop

performance but fail to indicate the overall effect of the
characteristics on controllability.

As mentioned in Section 1, passive systems (both linear
and nonlinear) represent a class of minimum phase
systems, which are very easy to control, even if they are
highly nonlinear and/or highly coupled. Intuitively, the
IFP index of an open loop process can be used to infer
the best achievable performance under feedback control.
Based on this idea, we have been developing a passivity
based framework for analysing process controllability.

Decentralized Integral Controllability

Decentralized control is a widely used strategy in
industrial process control. For decentralized designs, an
important issue is Decentralized Integral Controllability
(DIC). DIC analysis determines whether a multivariable
plant can be stabilized by multi-loop controllers, whether
the controller can have integral action to ensure zero
steady-state error, and whether the closed-loop system
will remain stable when any subset of loops is detuned or
taken out of service.

Large loop interactions often lead to control performance
degradation and even instability in decentralized control
of closed-loop systems. Therefore, most existing DIC
conditions imply “generalized diagonal dominance”
(GDD) (Skogestad and Morari, 1988). As shown by
recent studies, GDD is not necessary for closed-loop
stability under decentralized control and thus those
conditions can be very conservative. Based on the
concept of passivity, we have found a new sufficient
condition for DIC (Bao et al 2002):

Theorem 4. A stable linear MIMO plant G(s) with a
non-singular steady-state gain matrix G(0)e R™" is

DIC if a real diagonal matrix D=diag{d.:.,...,d,...,d,}
(d#0, i=1...n) can be found such that:

G(0)D + DG' (0)=0 (14)

The above condition is equivalent to the process having
a scaled IFP of 0 at the frequency of ®=0. Highly
coupled systems may be passive and thus the large
interactions they possess do not necessarily destabilize
the closed-loop systems under decentralized control. The
passivity index is not an explicit measure of interactions
but an indicator of the destabilizing effect of the
interactions.

Decentralized Integral Controllability analysis for
nonlinear processes

As the concept of passivity applies to both linear and
nonlinear systems, we have extended the above results to
nonlinear processes and developed a DIC analysis
method for nonlinear processes. It was found that a

multivariable nonlinear process P:u —y (ueU c R",

yeYcR") is DIC for an equilibrium steady state

operating point (u.,y.) if the following steady-state
passive condition is satisfied (together with other
conditions for rigorousness) :

I 1] # R
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(v-».) (w-u,)>0 YueUand yeY . (15)

The details of this condition and the numerical method
for testing the condition are reported in Su et al (2004).

Block decentralized integral controllability

Modern chemical plants generally consist of multiple
processing units. Intuitively, a single multivariable
controller can be designed for each process unit and a
block diagonal controller is thus obtained for the overall
plant (decentralized multi-unit control). However, it was
often found that such a block diagonal control structure,
based on the plant physical decomposition, might not
lead to the control system with the best achievable
performance, due to the high coupling between different
units. Compared with multi-loop control, the number of
possible pairing schemes involved in block decentralized
control is much higher. Therefore, pairing studies of
block decentralized control systems are of great practical
importance.

We have extended the concept of DIC and defined the
process property of Block Decentralized Integral
Controllability (BDIC): For a given multivariable
process and certain block diagonal control structure, if
there exists a stabilizing controller that has integral
action to achieve offset free control and maintains
closed-loop stability when any one or more controller
blocks are arbitrarily detuned, then this process is said to
be BDIC with the particular block diagonal structure.

Based on the same passivity framework, we have
derived a sufficient BDIC condition which can be used
to test alternative control configurations (Zhang et al
2003a). This analysis was applied in control structure
selection of a Supercritical Fluid Extraction (SFE)
process. Its was found that due to the high coupling and
complicated dynamics, a cross-unit pairing scheme for
manipulated variables and controlled variables will lead
to a much better achievable control performance than a
pairing scheme based on the physical decomposition
(Zhang et al 2003b).

Dynamic Controllability Analysis

The frequency dependent input passivity index also
reflects the limitations caused by process dynamics.
Large time delays in the process or/and RHP zeros will
lead to a larger passivity index (at corresponding
frequencies) and thus requires controllers to have smaller
gains. Passivity based dynamic controllability analysis is
being studied by the authors using an Internal Model
Control framework (Suryodipuro et al 2004).

6. CONCLUSION

Passivity based techniques have shown to be promising
in serval process control areas, including robust control,
fault tolerant control and controllability analysis. Our
current research focuses on passivity based nonlinear
control and controllability analysis for nonlinear
dynamic processes.

7. REFERENCES

Bao, I, Lee, P.L., Wang F.Y. and Zhou, W.B. (2003a) Robust
Process Control Based on the Passivity Theorem. Dev. Chem.
Eng. Mineral Process 11 (3/4), pp. 287-308.

Bao, J., Lee, P.L., Wang, F.Y. and Zhou, W.B. (1998) New
Robust Stability Criterion and Robust Controller Synthesis. /nt.
J. Robust Nonlinear Control. 8 (1) pp.49-59.

Bao, J., Lee, P.L., Wang, F.Y., Zhou, W.B. and Samyudia Y.
(2000) A New Approach to Decentralized Control Using
Passivity and Sector Stability Conditions. Chem. Eng. Commun.
182, pp.213-237.

Bao, J., McLellan P.J. and Forbes, J.F. (2002a) A Passivity-
based Analysis for Decentralized Integral Controllability.
Automatica Vol. 38 (2) pp. 243-247.

Bao, J., Wang, F.Y., Lee, P.L., and Zhou, W.B. (1996) New
Frequency-Domain Phase-Related Properties of MIMO LTI
Passive Systems and Robust Controller Synthesis. Proceedings
of IFAC 13th Triennial World Congress, pp405-410, San
Francisco.

Bao, J., Zhang, W.Z. and Lee, P.L. (2003b) Decentralized
Fault-tolerant Control System Design for Unstable Processes.
Chemical Engineering Science 58 (22) pp.5045-5054.

Bao, J., Zhang, W.Z., and Lee, P.L. (2002b) Passivity-based
Decentralized Failure-tolerant Control. Ind. & Eng. Chem. Res.
41 (6), pp.1569-1578.

Byrnes, C.I., Isidor, A. and Willems J.C. (1991) Passivity,
Feedback Equivalence and the Global Stabilization of
Minimum Phase Nonlinear Systems. [EEE Trans. Automatic
Control 36 (11), pp1228-1240.

Hill, D. and Moylan, P. (1980) Dissipative Dynamical Systems:
Basic Input-Output and State Properties. Journal of Franklin
Institute 309, pp327-357.

Hill, D. and P. Moylan (1976) "The Stability of Nonlinear
Dissipative Systems", /EEE Trans. on Automatic Control AC-
21 708-711

Morari, M. (1983) Design of Resilient Processing Plants - III.
A General Framework for the Assessment of Dynamic
Resilience. Chem. Engng. Sci., 38, 1881-1891.

Safonov, M.G., Jonckheere, E.A., Verma, M., and Limebeers,
D.J.N. (1987) Synthesis of positive real multivariable feedback
systems, Int. J. Control, 45: pp.817-842.

Sepulchre, R., Jankovic, M., and Kokotovic, P. Constructive
Nonlinear Control. New York: Springer Verlag, 1996.
Skogestad, S. & Postlethwaite, 1. (1996). Multivariable
Feedback Control - Analysis and Design. John Wiley & Sons.
Su, S.W., Bao, J. and Lee, P.L. (2004) Analysis of
Decentralized Integral Controllability for Nonlinear Systems.
Computers and Chemical Engineering 28 (9) pp.1781-1787.
Sun, W., P. P. Khargonekar and D. Shim (1994) Solution to the
Positive Real Control Problem for Linear Time-Invariant
Systems. [EEE Transactions on Automatic Control 39, pp.
2034-2046.

Suryodipuro, A.D., Bao, J. and Lee, P.L. (2004) Process
Controllability Analysis based on Passivity Condition.
Chemeca 2004 (Accepted) Sydney.

van der Schaft, A. J. (1997) L,-Gain and Passivity Techniques
in Nonlinear Control. Springer-Verlag, London

Vidayasagar, M. and N. Viswanadham, (1985) Reliable
Stabilization Using a  Multi-controller ~ Configuration.
Automatica 21 (5) pp. 599-602.

Zhang, W.Z., Bao, J. and Lee, P.L. (2002) Decentralized
Unconditional Stability Conditions Based on the Passivity
Theorem for Multi-loop Control Systems. Ind. & Eng. Chem.
Res. 41 (6), pp.1569-1578.

Zhang, W.Z., Bao, J. and Lee, P.L. (2003a) Pairing Studies of
Multivariable  Processes under Block  Decentralized

I 1] # R

f'lj%!r %F'IJ\%%LF;I l\)fg



AT 567 P £
Control. Proceedings of Chemeca 2003 (Paper 241, CDROM)
Adelaide.

Zhang, W.Z., Bao, J. and Lee, P.L. (2003b) Control Structure
Selection Based on Block Decentralized Integral
Controllability. Ind. & Eng. Chem. Res. 42 (21), pp.5152-5156.

7 Sl FoOGLP M ERINE S



	
	PSE93000.pdf
	
	
	
	
	
	
	



