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Abstract

The application of the uniform design (UD) to nonlinear multivariate calibration by artificial neural
network (ANN) can build a model for an unknown process efficiently because it allows many levels for
each factor. If the cost of each experiment is high, low partitioned levels are usually proposed first to carry
out the experiments. However, if a reliable ANN model cannot be obtained based on the designed
experiments, a sequential pseudo-uniform design (SPUD) method is developed to locate additional
experiments in the experimental region. An information free energy index is used to validate the identified
ANN model. Once the identified model is reliable, the optimal operating conditions can be determined to
guide the process to achieve the desired objective. The simulation results demonstrate that an optimal
temperature trajectory for the batch penicillin synthesis reaction based on the proposed method requires

only a reasonable number of experiments.

1. Introduction

In the competitive market, manufacturing of
innovative products, such as specialty chemicals,
ceramic and composite materials, the finding of
recipes, and developing new processes in due
course of time are much more urgent nowadays. It
is also imperative to develop a new product at the
minimum cost without sacrificing quality.
Traditionally, the models adopted in analyzing the

experimental data designed by experimental

design methods [1, 2] are either linear or quadratic.

To cope with nonlinear characteristics in many

processes, the uniform design method can be

applied to a nonlinear multivariate system [3, 4, 5].

The main idea behind the UD is to find a set of

representative points scattered uniformly and
regularly in the domain to be investigated. The
so-called good lattice point (g/p) set which can be
generated with the help of the number-theoretic
method might be used to fulfill such a task [6].
The experimental design table based on the UD
principles can be constructed by means of the gip
set [6]. The multi-input/multi-output (MIMO)
experimental data collected through the UD
method can be molded by an ANN and the results
had proven to be successful in learning nonlinear
and complex relationships between process
variables without any prior knowledge of system
behavior [3]. No guidelines can be found in the
related works [3, 4, 6] on how to choose suitable

levels for each control factor in designing
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experiments for an unknown process in advance.
Because, it is usually time-consuming and costly
to get experimental data in practical application,
low partitioned levels are usually proposed first to
carry out the experiments. If a reliable mapping
model (ANN is adopted in this study) cannot be
established based on the previously designed
experiments, we will propose the SPUD method
in this study to locate additional experiments in
the experimental region. Partition of the coarse
levels into fine levels resembles multigrid
methods  [7]

high-dimensional nonlinear model equations. The

adopted in  solving the
success of multigrid methods stems from the fact
that the problem never has to be solved on the fine
grid but on only relatively coarse grids with
dramatically reduced computational efforts [8].
Furthermore, to determine the possible multiple
optima of an unknown process, a new
experimental design scheme that uses UD, SPUD,
ANN, random search, fuzzy classification, and
information theory is proposed in this study. The
main objective of the proposed experimental
design scheme is to build a reliable model and
locate the optima of an unknown process
simultaneously based on only a reasonable
number of experiments. It is expected that the
developed experimental design scheme can be
applied in the real world. An alternative approach
can be found in the work of Chen et al. [9]. In the
experimental design scheme proposed by Chen et
al.’, an initial batch of experimental data is first
collected to construct an ANN model followed by
the random search to generate a number of
candidates for the next batch experiments. A fuzzy
classification algorithm is then used to find the
cluster centers of these candidates. An
information free energy index is defined to
balance the need for better classification and the
relevance of each class in optimization. New

experiments are performed at these cluster centers
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to validate the model. The procedure is repeated
until an optimal solution is reached. The case
studies [9] reveal that this scheme focuses on
locating the experiments in the investigated space
toward the optima of an unknown process,

resulting in necessitating too many experiments.
2. Development of the  Sequential
Pseudo-Uniform Design

If one applies the UD method to organizing
an experimental design, the UD tables provided
by Fang and Ma can be adopted accordingly. It is
expressed as U,(¢q"), where U stands for the

uniform design, n for the number of
experimental trials, ¢ for the number of levels,

and s for the maximum number of factors. In
essence, for a system with n factors and each
factor divided into ¢ levels, the UD method
needs ¢ experiments. The number of experiments
based on the UD method is limited. If the
experimental design based on a first selection of
the number of levels g, from a UD table cannot
provide enough information to build an accurate
ANN model, then we may need to interpolate
sequentially another ¢, level of each factor

among the original levels g, to run another g,

experiment. In this study, the way to arrange
these ¢, experiment such that these g¢,+g¢,

experiments can scatter uniformly and regularly in

the investigated domain is proposed.

The design principles of the UD method [10, 11]

are:

(a) The occurrence of each level of each factor in
the experiments is once only.

(b) The number of experiments equals the level
number of factors.

(c) The selected experimental points are
distributed uniformly in the experimental
domain.

These three principles are also considered in the
developed SPUD  method. There are

q\
k=T](q" " =(I-1)) possible combinations that
=1

satisfy the above constraints (a) and (c) in locating
these ¢, interpolated experiments. To fit the

requirement (d), the proposed SPUD method
suggests that these sequential ¢, experiments be

arranged by the following maximini problem.
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If g, = q, + ¢, experiments cannot provide enough
information for building a reliable model (ANN
used in this study), then the procedure discussed

above can be repeated.

3.  Optimization of Products and Process via
SPUD Method

The proposed algorithm to determine the optimum

operating conditions for producing a product or a

process via the SPUD method is summarized as

follows:

(1) Choose a suitable level g, for each control
factor based on the available UD table.

(2) Build an FNN model based on the
experimental data from (1).

(3) Check the adequacy of the identified FNN
model by the interpolated experiments
chosen based on the SPUD method (recycle
from (4)) or the UD method (recycle from
(6)).

(4) Find the optimal conditions by the random
search method if the identified model is
adequate; go to (5). Otherwise, do the chosen
experiments provided by the SPUD method
and identify a new FNN model based on the
available experiment data; go to (3).

(5) Check the adequacy of the optimal conditions
experimentally; if the optimal conditions
determined are reliable, stop the procedure.

(6) If the condition given in (5) cannot be met,
carry out more experiments around the
assumed optimal conditions based on the UD
table again and identify a new FNN model; go
to (3).

The objective function is defined based on
the identified FNN model:
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Milnimize f(y(x)) 2)
where f(y(x)) is the objective function based on
the identified FNN model y(x) . To carry the
algorithm, each element of x is rescaled to be ina
span of [-1 1]. There are 2™ combinations of
the elements of x with either a positive or a
negative sign. In the same figure, it is termed “one
Run” each time the chosen ry, test experiments

based on the SPUD are carried out. The model
error based on the test experiments is defined as:

&Y (x,)v(x,)
Z[ ) J
ng/n = (3)

y Run
By way of illustration, an example with two
factors is adopted. Consider a first arrangement of

UD experiments by U,(4%): C,=(1, 3) ~ C,=(3,
7) ~C5=(5, 1) ~C4=(7, 5), 4 experiments (g, = 4)

are required (Figure 1). As shown in Figure 1, the

coordinates X; and X, of these experiments are
set to be integers. Transforming the integral
coordinates into a real dimension is required in a
real application. If the experiments withgq, = 4
levels cannot provide enough information to build
a reliable model, then we suggest new
experiments at the points where the X, and X,
coordinates are located at 2, 4, and 6 as shown in
Figure 1. Now, q,(=¢q,+¢q, =7) levels are
established. In this example, we want to determine

these sequential ¢, (=3) experiments among the

six (k=6) possible interpolated experiment

combinations, which are located at [(2, 2), (4, 4),
(7, D), [(2,2), (4, 6), (6, 4], [(2, 4), (4, 2), (6, 6)],
[(2,4), (4,6),(6,2)], [(2,6), (4,2),(6,4)], and [(2,
6), (4, 4), (6, 2)], respectively. Because k =6 isa
small number, the maximization-minimization
problem (eq 1) can be carried out over these six
possible interpolated experiment combinations
exhaustively to find out which combination could
achieve the maximum value of the objective
function as defined in eq 1. The resulting SPUD
experiments will be the same as those designed
using the UD method. However, the possible
interpolated experiment combinations will be
increased rapidly as shown in the equation

9
k= ]_[(qu —(I-1)). For example, if a problem
1=

has two factors (s =2) and g, =10, then there
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will be 362,880 possible interpolated experiment
combinations (¢, =9) . Therefore, in this study, if

k <1x10°, the maximini problem (eq 1) was
done over all the possible interpolated
experiments exhaustively; otherwise, a maximum

of 1x10° experiment combinations were chosen
randomly from the interpolated coordinates of the
factors that satisfy the design principles of the UD
method. A maximum value of the objective
function (eq 1) can almost be determined over
these 1x10° randomly chosen experiment
combinations. In this way, a sequential
pseudo-uniform design of new experiments can be
worked out properly.

Liang et al. [4] proposed the term
“discrepancy” for use in measuring the uniformity
of the distributed experiment points. Let

‘.Rz{xk,kzl,...,n} be a set of points on C*,
where X, (= (X4 X o X 1) is  an

s-dimensional column vector. Forany y € C*, let
N(y,R) be the number of points that satisfy

X, <7 .Then
D(n,R) = sup|(N(y, %)/ n=v([0,y]  (3)
is called the discrepancy of R , where

v([O,y]) =y, x+--xy, denotes the volume of the
super rectangle [O,y].

To show the applicability of the SPUD
method, we give an example with two factors,
each factor being partitioned into 29 levels. The
value of D(n,R) designed by the UD method is

0.01517 as shown in Figure 2(a). For the same
problem, if we first choose 15 levels based on the
UD method and then proceed to use the SPUD
method to locate the additional 14 levels, the same
discrepancy of R ( D(n,R)=0.01517) can also be

obtained as shown in Figure 2(b).

4. Artificial Neural Network

Artificial neural networks are known to be a

powerful tool to approximate complex
multivariable functions [12, 13]. In this study, we
adopt the most traditional feedforward neural
network (FNN) to build the relationships between
any nonlinear inputs and outputs of an unknown
process. An FNN is usually composed of three

layers of the network structure: input layer, hidden
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layer, and output layer. The routines provided in
the Neural Network Toolbox (MathWorks) were

used to build such a neural network.

5. Random Search

Two optimization methods are usually
available to find the optimum of an objective
function constrained by a nonlinear functional
model such as FNN. The first method is the
gradient-based optimization technique such as the
Newton method. The other method is the
non-gradient based optimization technique such
as the random search method [14]. The random
search method [15] explores sequentially the
parameter space of an objective function in a
seemingly random fashion to find the optimal
condition for minimizing (or maximizing) the
objective function. Although the random search is
a direct application method without the need of
differential information, the optimal point
obtained is quite dependent on the initial guess.
Therefore, a large amount of initial guess will be
initiated to locate the most representative
candidate points for the best performance. The
calculation strategy of the random search method
proposed by Solis and Wets [15] was adopted.

6. Information Index

In this study, the information index
developed by Chen et al. [9] was not used to locate
the additional experiments to be explored but was
adopted as a quality evaluation of the identified
model. The required techniques for retrieving the
information index based on the experimental data
can be found in the article of Chen et al. [9] except
that the term 7},,,x in equation 16 of Chen et al. [9]

shall be corrected as fax.

7.  Application to a Batch Penicillin

Synthesis Reaction

In order to prove the ability of the proposed
SPUD method in determining an optimal
temperature trajectory of a batch reactor where
penicillin synthesis reaction is carried out. For the
case under studied, the SPUD method is applied to
build a reliable model and to locate the optima of
an unknown process simultaneously based on
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only a reasonable number of experiments.

The differential equations describing the
state of the batch penicillin synthesis system are as
follows:

The cell-mass production rate:

dy, b
Ay — 2L 4
dr 11 b, Y 4)
The penicillin synthesis rate:
dy
dtz =byy, (%)
with
_ _ 2
b =w 1.0-w,(0 w3)2 ©)
1.0-w,(25-wy)

bzzw{ 10— w,(0—w,)’ } )

1.0—w, (25— wy)?
b3=w{]'0_wzw_w")2z} ®
1.0—w, (25— wy)
where w, =13.1 , w,=0.005 , w;=30°C ,
w, =094, w, =171, and w, =20°C. y, and
vy, represent respectively the dimensionless

concentrations of cell mass and penicillin; ¢ is the

dimensionless time, 0<¢t<1; and O is the
temperature in degrees Celsius. The parameters

b

s
The initial concentrations are specified as
»,(0)=0.3 and y,(0)=0.

The way of designing the temperature
function of this case is to use the orthogonal
collocation method. There are three orthogonal
collocation points along the dimensionless time
axis, which are located at 0, 0.667, and 1
respectively. The locations of temperatures
(6,,0,,0,) are taken in the temperature range of

19°C <6 <30°C. The temperature curves formed
by these 3 orthogonal collocation points are
shown in Figure 3. Therefore, our objective is to
find a temperature trajectory such that the
concentration of penicillin at the end of the
fermentation (i.e., # =1) is maximum.

J= max y, (t=1) )

4 Runs are made totally in this case (Figure
4), 33 experiments are required and the
relationship between the numbers of network
nodes are the Run of each time is as shown on
Table 1. Temperature collocation points of the
minimum objective value found by the model,
which is built at the last time of Run, (8,,6,,6, ) is

located at (25.94°C, 24.73°C, 24.00°C) (as shown

i =1~ 3, are functions of temperature, b, 20 .

A T P

in Figure 5), the model value is 1.4736. When this
point is put into the original process, its value is

1.4733. The model error is
43.31-43.99|
—=1.55%.

43.31

8. Conclusions

In industrial production, a desired product
recipe or an optimal operation approach is usually
sought. Because the system under study is usually
unknown, it is hoped that the best product recipe
or the optimal operating path of a process can be
obtained with minimum experiments. In this
research, the experiment design is first based on
the UD method. Then the developed SPUD
method is applied to locate additional experiments
in the experimental region. An information free
energy index is used to validate the identified
ANN model. Once the identified model is reliable,
the optimal operating conditions can be
determined to guide the process to achieve the
desired objective.

The batch penicillin synthesis reaction
process of the case study could be regarded as the
operational optimization problem of an unknown
process. Application of the SPUD method
required 33 batches, we could obtain the optimal
temperature trajectory for this case study without
resorting to a physical model based approach.
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Table 1. Relationship between the Run
and the Node

Run Node
1 2
2 3
3 4
4 5
7 T © T T
' : :
| | |
5 T : T 4
| | :
T T T T T T
| | |
Xp } : :
| | |
| | |
i it Nl ity Rt Nk
| | |
1 | | N |
1 2 3 4 k5/ 6 7
x, (factor 1)

Figure 1. The sequential pseudo-uniform
design (SPUD) for the case of two factors
(O initial uniform design points; A\ :

sequential pseudo-uniform design points).
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Figure 2. . Comparison of the discrepancy
measure designed by (a) the UD method

(discrepancy

=[10/29-0.6x0.6|=0.01517 ) and (b) the

SPUD method (discrepancy

=[10/29-0.6x0.6/=0.01517 ; O : initial

uniform design points; /\ : sequential

pseudo-uniform design points).
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Figure 3. The temperature trajectories based

on the three collocation points of temperature.
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Figure 4. Optimal experimental design of the

(@

experimental arrangement points: training O

batch penicillin  synthesis reaction
and testing A (b) testing point error (¢) location
of the best model input value (d) objective value
of the best model input value (e) information

index).
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Figure 5. The optimal temperature
trajectory  of  three  temperature
collocation points of the batch penicillin

synthesis reaction.
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