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Abstract

The PLS (partial least squares) based dEWMA (double exponentially weighted moving average)
control algorithm is proposed to adjust a MIMO non-squared process which has an unequal number of
inputs and outputs from run to run in semiconductor manufacturing. Recently, the multivariable
dEWMA controller was developed, but it could not avoid the ill-conditioned problem when the control
rule was solved. Thus, an arbitrary nonnegative value is often included. In this paper, the enhancement
of the multivariable dJEWMA controller is done by incorporating a popular linear technique, PLS. The
PLS based enhancement is an improvement over the above method that has the occurrence of the
collinearity of the input and the output variables. It is particularly useful for inherent noise suppression.
The major advantage of the proposed method is that the non-squared MIMO process is decomposed
into several independent SISO systems. The dEWMA controller can be separately applied to each SISO
system. The performance of the proposed method is illustrated through a Chemical-Mechanical

Polishing (CMP) process, which is a critical semiconductor manufacturing processing step.

1. Introduction

In the semiconductor manufacturing industries,
they are challenged by reduced circuit critical
dimension and increased wafer size in order to
improve and achieve maximum performance,
like processor speed and analogy frequency
response, out of the existing equipments.
Nowadays, the industries are getting closer to
the sub-0.1 pm technology. In order to
continuously achieve high yield and reduce the
process variability, the tight process control
solution plays a significant role in increasing
throughput (Smith and Boning, 1999).

Run-to-Run (RtR) control has been widely
applied in the semiconductor manufacturing
industry (Ingolfsson and Sachs, 1993; Hu et al.,
1992; Sachs et al., 1991). The control algorithms
were pioneered by researcher at MIT and at the
University of Michigan as well as by workers at
various semiconductor manufactures. The RtR
process control consists of two major steps. First,
a linear regression model is updated based on the
available in-situ and ex-situ measurements of the
past runs. The model relates the input variable to
the output variable. The static model was often
used in the literature (Boning et al., 1996; Sachs
et al., 1995). The second step in RtR control is to

determine a control action which is known as the
recipe in the microelectronics literature. It is
used to reach the desired values or improve the
performance for the next run. The exponentially
weighted moving average (EWMA) gives
different weights to measurement data from past
runs used to computer the RtR controller. It has
been applied to chemical mechanical polishing
(Boning et al., 1996) and plasma etching
(Moyne et al., 1995). However, due to aging of
the process, like depletion of etch solution or
degradation of thermocouples in high
temperature furnace in etch reactors, the existing
EWMA RtR controllers cannot compensate for
such process drifts or ramp disturbances and, as
a result, offset in the process outputs occurs
[Smith and Boning, 1997]. This will lead to poor
performance, such as deposition nonuniformities.
Butlter and Stefani (1994) proposed the double
EWMA (dEWMA) controller which eliminated
this offset for a polysilicon gate etch process.
Further extensive studies were done to improve
or tune the RtR controller, but the development
was limited to single-input single-output
processes. Controlled processes in nearly
all-semiconductor ~manufacturing frequently
encounters with inherently more than one
variable to be controlled (Sachs et al., 1995; Roy
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et al., 1994). The system may either have more
inputs than outputs or more outputs than inputs.
For example, two important output variables of
the CMP process are the remaining thickness
and its uniformity within a wafer. The input
recipes are consisted of polishing time, table
speed, downforce etc. They are known as
multivariable or multi-input  multi-output
(MIMO) processes. The control of multivariable
systems is not always an easy task due to its
complex and interactive nature. Few of them are
intended for MIMO processes. Tseng et al.
(2002) proposed a multivariate extension to a
single EWMA controller. Del Castillo and
Rajagopal (2002, 2003) presented a
multivariable extension of dEWMA controller
and analyzed the robustness and stability
conditions. However, an appropriate value of the
Lagrange multiplier constant should be selected
in MIMO controller in order to have an
invertible matrix and reduce the larger variation
of inputs.

The  development of chemometric
techniques has spurred a torrent of research in
multivariable processes. Those techniques can be
used to extract the state of the system via
applications of mathematical and statistical
methods from the stored data. Several
chemometric techniques were proposed, like
principal component analysis and partial least
squares (PLS). They have received considerable
attention in the field of chemical process
problem and have been applied to system
monitoring and  diagnosis  (Kourti and
MacGregor, 1996). Still, it was rarely on the
control problem. Recently, a PLS
projection-based ~ model was  proposed
(Lakshminaraynan et al., 1997). A PLS outer
model was first constructed. The relationship
between the input and the output scores were
built on the inner model. However, the control
objective was still lumped when model
predictive control was used. Another PLS
decomposition strategy for PID control system
design was addressed (Chen and Chang, 2004).
PLS first decompose a MIMO process into a
multi-loop control system in a reduced subspace.
Then the optimal tuning multiloop PID
controller can be directly and separately applied
to each control loop. The control performances
of the above methods were satisfactory. They
could successfully tackle operational data
analysis. It showed that only a few principal
components could capture most of the
characteristics of the system pattern in a
multivariable process behavior. Based on the
PLS modeling method, it is worth extending it to
RtR controller design for improving the
currently met problems in MIMO RtR controller.
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The remainder of this paper is structured
as follows: The second section defines the type
of MIMO RtR control problem. PLS technique
for the decomposition of MIMO is discussed in
Section 3. In Section 4, the PLS based MIMO
model is first derived. Then the proposed
decomposition control design for directly
applying the dEWMA RtR control algorithm
onto each loop is developed. The effectiveness
of the proposed method is demonstrated through
a simulation benchmark of the CMP process in
Section 5. The example investigates the
performance of the proposed method and makes
a comparison with the conventional algorithms.
Finally, concluding remarks are made.

2. MIMO RtR Control Problem

The model of the MIMO process is similar to
that of the SISO process, but there are M inputs
or controllable factors and N outputs or
responses. The number of inputs and outputs
may be unequal. It is given in Fig. 1. The model
can be described as

yk=(l+BXk7|+llk (1)
where

where  x, :[xl’k xM’k][' denotes the

vector of input recipes, y, = [y,’k YNk ]['
denotes the vector of output variables,
g, = [31,k Enk ]’v denotes the process

disturbance with the white noise sequence, £ is
a run number, & is a vector equal to average
drift rate per run, a is a vector of the offset
parameters, and B is a process gain matrix. 9,
o and B are unknown vectors and a matrix to
be estimated.

At the end of each run £, the goal of the
control design for the MIMO system is to seek a
new recipe x, for use in the next run in order
to correct the deviation from the desired target
vector (T ). That is, the objective function of the
MIMO system is expressed as

(€))

R 2
min|[§,,, -1

SubjeCttO 5,/(+l :a+Bxk +ﬁk+]'

In the above objective equation, a
one-step-ahead output is predicted for the
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estimated deviation from the target in the future
of the next run. A MIMO dEWMA controller can
be derived (Del Castillo and Rajagopal, 2002),

x, =B8] '8 (c-a-h.) @Y

A

Note that the matrix (B' 'ﬁ) is often not a

positive definite. This comes from the high
degree of coupling and correlation in this MIMO
process. In such case, the ordinary least-squares
technique will result in the estimated recipe with
large variances owing to the ill-conditioned
nature of the problem. This may cause
oscillation and even instability. One way to
circumvent this problem is to add a positive

A

definite matrix AI to (B"]AS), where 1 is the

identity matrix and A is some nonnegative
value. This way is just to suppress all inputs, not
just some inputs which have the weak
relationships with the outputs. This may degrade
the performance.

Past research shows  multivariable
statistical techniques such as PCA and PLS can
offer the data-compression facility to condense
the variance of the process into a very
low-dimensional ~ latent  subspace.  This
data-compression feature provides a technique
that break up a multivariate problem into a series
of univariate problems. The model is constructed
based on the signals with sufficient
low-frequency content, which is the essential
behavior of the system. Before going through the
proposed PLS based RtR controller, we have to
digress a little to get some background
information about the properties of PLS.

3. Partial Least Squares: Overview

PLS regression derived from the classical linear
regression is often used to predict properties of
processes based on variables only indirectly
related to the properties. The given process data
are subdivided into two blocks, a dependent
block (Y ) and an independent block (X). Y
block with a two-way array ( / x M ) summarizes
the / runs and the M final properties (or
responses). X block with a two-way array
(IxN) organizes the controllable N factors.
PLS is used to extract latent variables. The latent
variables explain the best correlation between
the product response block (Y ) and the
controllable factor block ( X).

The standard PLS regression
(Hoskuldsson, 1988) relies on decomposing the
dependent block (Y ) and the independent block
(X)) into a sum of rank one component matrices.
Before applying PLS, each measurement
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variable that centers and scales the variance to
unit one is typically applied; This will put all
variables on an equal basis. Initially, let
Xo=X, Y=Y and r=0.Find out a vector

(or component) (w, ) which is correlated with
Y, while describing a large amount of the
variation in X, . It can be formulated as

wl=)  ©

_ T
W, = argrrwlvax(xr Y,
r

Then the component is subtracted from X, and
Y

r

Xr = Xr—l —ter (6)
Y, =Y, -btecl Q)
And
t,=X,w, (8)
Y/t . ©)
c,=—, u, =Ye,
t.t,

where w, and ¢, are the loadings of X,
and Y, , respectively. The score (t,) is the
projection of X, into the direction w,. The
score (u,) is the projection of Y! into the

direction ¢, . b

. is the regression coefficient

related to t, and u,,

alis

u,t

b =

3

: (10)

r

-
S~
-

Egs. (6) and (7) are used to remove the variance
associated with the already calculated r-th
directions of w, and ¢, in the variance of

process variables and quality variables
respectively. Then set r =r+1 and repeat the
above procedures (Egs.(5)-(10)) until the
description of Y convergence is properly
gotten. Finally, the matrices Y and X are
separately decomposed into the summation of
the product of score vectors t and loading
vectors w and ¢ plus some residual matrix
E and F, respectively:
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_ R T _ T
X=3Ytw +E=TW' +E
r=1

R B )
Y=>3tec +F=TC' +F
r=1

where R is the number of principal components
retained in PLS. Due to its simplicity and easy
interpretation, the applications of this approach
can be found in an abundant literature. In this
paper, the PLS technique is used to eliminate the
interaction of the MIMO control problems. The
controllable  factors and responses are
transformed into a smaller informative set via a
set of linear functions which model the
combinational relationship between the response
variables and latent controlled variables, and
between the controllable factors and latent
manipulated variables, respectively. Then, the
dEWMA controller can be directly applied to
each independent SISO system.

4. Multiloop SISO Run-to-Run Controller
design

The block diagram of the multi-SISO control
system to be considered is shown in Fig. 2. The
MIMO system model is decomposed into several
pairs of the input-output score. The multi-control
loop is then applied onto each pair to form a
SISO RtR control design problem.

4.1 Conventional dEWMA RtR Controller
Generally, the SISO process model is taken to be
linear regression of the form

)A/k =day +bxk_1+nk (12)

where P, is the predicted output at run &, b
is the process gain, x,_; is the process input
calculated based on previous observation
through run k-1, a, is the estimation for
is the deterministic trend
Sk+g, .

Typically, the system gain and the initial value of
the intercept are modeled a priori from design
experiments.

intercept and #,

disturbance, given by the terms

The control law for the dEWMA-based
RtR controller is a process inversion of the form

T—a, —n
X=——p—" (13)

where 7 is the desired target. The intercept and
the deterministic trend disturbance are updated
recursively by the observer of the form

A T P

ay =4 —bx)+(=)a_y,
o< <1 (4

and

e = 2o (Vg =0y = @)+ (=2
0<a, <113
where 4, and A, are the

weighting factor of the observer. The observer
equations are geometric averages that weight
the past observations in an exponentially
decreasing manner. Small value of 4, and A,

exponential

are appropriate for systems with small
deterministic drifts and relatively large natural
variance. Conversely, highly correlated output
error is best compensated through use of higher
values of the weighting factors.

4.2 PLS Based Decoupling MIMO

The goal of the RtR controller design for the
MIMO system is to seek control actions x,
that can minimize the difference between the
responses y,,; and the desired targets T at
the next run; it can is expressed as

1 1
it = 5‘21:1”%1”2 = 5‘2;“||T Y| (16)

Lett and y,,; can be decomposed into the

R Ol
lower dimensional space t=Yu'"c, and

r=1

R
Vi1 = LU, 41¢, - The above equation can be
r=1

represented as

2

R set
Z(ur - ur,,k+l }tr

r=1

J:lmm
X;

an

Since the objective function involves a term in

the future of the next run; namely u, ,,,, which

is not available at time . When an one-step
ahead output can be predicted; that is,

Up k1t EUp fs1>
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—min
Xk

<
|

§ (uief - ﬁr,k+1 (k)}:r

r=1

1 .| R N
bl 4 s

min|J; +Jy +-eeee +JR]
Xk

IA

(18)

minJ; +minJ, +----- +min J,
XLk X2k XRk

This is the consequence of the Schwarz

2, the

inequality. Let J, = %(u;" U gy )Z||c,,|

objective function is decomposed into R
subobjective functions in the lower dimensional

R
subspace, J=3.J, . Only R score variables
r=1

( t,,r=12,--R )
compared with M responses to be lumped
together without the decomposition. This
multi-SISO design method, like a decentralized
control strategy, have a simpler structure and,
accordingly, less tuning parameters are needed
than the fully cross-coupled one.

require separate design

4.3 dEWMA RtR Controller Design of Each
SISO System

After the objective function is decoupled into R
objective functions, the conventional SISO
dEWMA controller design technique can be
directly applied to each score variable
respectively in the decomposed space, because
the MIMO system is decomposed using PLS and
the interactions which exist between control
loops are also eliminated. The only difference is
that the process variables are converted into the
score variables in the subspace. Each
subobjective (J, ) is rearranged into

. 1 (s »
mins, =3 minke =i e o

Although  the  input-output model s
U, 411 = b, , it is not always accurate due to

unmodeled process dynamics and disturbances
that enter the process. Therefore, the bias term is
recursively estimated as each run according to
the traditional dEWMA filter

Ak = Ar,] (ur,k - brtr,k—] ) + (] - /’Lr,l )ar,k—l (20)

and the trend estimation filter is also estimated
as

nr,k = /lr,2(ur,k _brtr,k—l - ar,k—l) (21)

+ (l - lr,2 )nr,k—l

Thus, the input for the £+1 run is
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R (22)
X = Ztr,kwr
r=1
where
set 23
_ U;L e Nk ( )
tr,k - b—

i

5. Illustration Examples

To study the performance of the proposed
PLS-based MIMO RtR control, simulations of
the equipment model that characterize a real
CMP processes is utilized (Rajagopal and
Castillo, 2003). The mode was developed at
SEMATECH. In sequent polishes of CMP
operation, the polish pad undergoes plastic
deformation which cause the pad surface to
become smoother and its pores become filled
with pad material. This will causes the polish
rate to decay over the course of subsequent runs.
In this model, the controllable factors are: plate
speed ( x; ), back pressure ( x, ), polishing

downforce ( x; ), and the profile of the
conditioning system (x, ). Two responses are:

removing rate ( y»; ) and within-wafer

non-uniformaity ( y, ). The objective of the CMP

RtR controller is not only to reach the target
values at 2000 for y; and 100 for y, but also

to reduce the lot-to-lot variations of the response
variables. Two sets of simulation equations
described as follows are conducted. The
simulation condition and relevant parameters are
the same as that of Rajagopal and Castillo
(2002).

(1) The approximate linear models:

» =1563.5+159.3x, —38.2x, +178.9x; +
24.9x, 0.9k + ¢

Yy =254+432.6x; +113.2x, +32.6x5 +
37.1x, +0.05k + &,

where &, ~ N(0,60°) and &, ~ N(0,30%) .

It is a typical MIMO process with interaction.
First the aim is to build up the PLS model based
on the collected data. The identification data set
contains 100 runs. Another 50 runs which does
not come from the training sets are produced in a
similar way for validation. The percentage of
variance captured by each PLS component is
listed in Table 1. It is observed that two principal
components capture over 80% of the variance in
the relationships of the MIMO process, which
suggests that the process variables are fairly well
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correlated between inputs and outputs. With the
proposed PLS based RtR control design strategy,
the setpoint targets are traced by the on-line
updated algorithm that is in control of the
process. Fig. 3 indicates that the proposed
multi-SISO updated algorithm is able to trace the
setpoint signal in the MIMO process. Meanwhile,
the MIMO control algorithm (Eq. (4)) is also
applied (Fig. 4). The means and standard
deviation of y; and y, of PLS based RtR are

[1999.9, 63.4] and [100.0, 31.0], respectively.
The means and standard deviation of y;, and

y, of MIMO RtR are [2000.0, 70.0] and [100.0,

35.2], respectively. The controlled variables
deviated from the set points are much reduced
based on the proposed control algorithm. Also
the variations of the control actions of the
proposed control are smaller. Furthermore, the
proposed  decomposition structure  can
significantly reduce the computation load and
more feasibly avoid the non-invertible problem.

(2) The true equipment models:

¥, =1563.5+159.3x, —38.2x, +178.9x; + 24.9x,
—67.2x,x, —46.2x7 —19.2x7 —28.9x7

—12x,k +116x,k —50.4k + 20.4(1«')Z +E1s
Yy = 254+32.6x, +113.2x, +32.6x; +37.1x,
~36.8x,x, +57.30,k —2.42k +¢5

where &' =(k—53)/52. In this case, the true

non-linear equipment equations are carried out.
The objective of this study is to test the
robustness of the proposed method for a realistic
non-linear process, because the RtR controllers
are based on the assumption of the linear process
and the linear model has a limited range of
validity for the nonlinear process. Based on the
previously built PLS model, two responses are
still around the desired targets in 2000 runs (Fig.
5). The means and standard deviation of y;

and y, are [2000.5, 176.9] and [99.9 74.4],

respectively. As for the MIMO control design
(Eq. (4)), the only results over the first 1000 runs
are plotted here (Fig. 6.). Because of the linear
model error and difficulty in control, the
controlled variables become unstable. The means
and standard deviation of y, and y, for the

1000 runs are [2000.4, 95.5] and [99.9, 38.9],
respectively. The variations of the proposed
control are much smaller. Based on these
comparisons, it indicates the proposed model can
retain the most essential process information and
filter out the large, high-frequency nonlinear
variation to keep the kernel behavior of the
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nonlinear system over a long period of runs even
if the nonlinear process with the inherent noise.

6. Conclusion

In this paper a SISO dEWMA RtR controller
design strategy is developed for the design of the
MIMO dEWMA RtR controller system. Rather
than using the traditional MIMO control design
with the lump structure, the proposed method
explores the benefits of using the decomposition
PLS framework in the reduced subspace and the
optimal control design of the MIMO system.
The PLS model structure can decompose the
MIMO control problem into the several
independent SISO control problems. Thus, the
conventional SISO RtR design strategy can be
directly used to determine each SISO system. Of
additionally important to multivariable process is
PLS applicability to non-square systems. To sum
up, the proposed algorithm has the following
advantages: (i) It is simple to design the
controllers based on the SISO control algorithms
individually since it is not necessary to design
the MIMO system based on the whole system
variables. (ii) The coupling effect in the MIMO
system can be overcome effectively. The PLS
structure can be decomposed into several pairs
of inputs and outputs, so the number of SISO
control loops can be selected based on the
variation captured by each pair. The potential of
the proposed technique for prediction and
process control are demonstrated by means of a
CMP simulation study. Modeling and control
performed on the large-scale problems and the
real lab-scale experiments will be included in
our next research.
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Table 1: Percentage of variance captured by each PLS component

Percent Variance Captured by Each PLS Component

Component Xblock Total Yblock Total

1 28.80 28.80 62.46 62.46

2 24.73 53.53 20.93 83.38

3 25.04 78.57 1.30 84.68

4 21.43 100.00 0.38 85.07
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Fig. 1. Structure of PLS-based MIMO model. S, and S, are the factors that scale the controllable

factors and responses respectively.
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Fig. 3. Control performance of a linear CMP process controlled by PLS-based MIMO controller: (a)
responses and (b) controllable factors.
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Fig. 5. Control performance of a non-linear CMP process controlled by PLS-based MIMO controller:
(a) responses and (b) controllable factors.
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Fig. 6. Control performance of a non-linear CMP process controlled by MIMO controller: (a) responses
and (b) controllable factors.
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