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Abstract

An analysis of output variances for parallel cascade systems is derived which allows the output
variance contributions due to both disturbances and controllers to be established. Following the
methodology of the univariate control loop performance, a performance bound is derived based on the
minimum variance and the Diophantine decomposition for the parallel cascade control system. It can
assess the performance of the overall control scheme. Besides, the achievable performance bound and
the corresponding optimal parameters of the PID controller structure computed from the closed loop
operating data are also proposed. It can assess the performance of existing control systems. The
performance of the proposed method is illustrated through a pilot scaled experiment.

1. Introduction

Cascade control is a multiloop control scheme
widely used in chemical process control to
improve single-loop control performance for
eliminating the disturbances effect in the
manipulated variables or the nonlinearity in the
final control element (Lee et al., 2002; Shinsky,
1967). One of the typical types is a series
cascade control (SCC) structure with two control
loops whose inner (or secondary) loop is
embedded within an outer (or primary) loop. The
secondary controller of the inner loop allows
rapid rejection or reduction of the disturbances
before the disturbances effects spill over to the
primary loop, resulting in little effect on the
primary output. On the other hand, due to the
physical nature of the processes, the primary and
secondary loops are sometimes connected in
parallel cascade control (PCC) design instead of
series one (Luyben, 1973). This design is related
to the characteristics of the process when the
manipulated variable and the disturbance affect
the primary and the secondary outputs in parallel
actions (Semino and Brambilla, 1996). Examples
of SCC and PCC processes are described by
Luyben (1973). However, the above control
research mainly focuses on designing new
strategies or giving tuning methods, but it gives
little attention to the assessment and
maintenance of the installed system. To our best
knowledge, there is only one method

documented in the literature which makes the
assessment of the SCC system based on the
minimum variance control (MVC) law (Ko and
Edgar, 2000).

Nowadays, increasing complexity of
industrial processes results in strong demands
for monitoring and measuring the performance
of the controllers. If the deterioration of
controller performance cannot be identified in
time, unwanted variances would prevent the
operating processes from achieving their true
process capability. If the worse comes to the
worst, the malfunction would cause monetary
loss or even significant impact on personnel,
environment and equipment safety. Furthermore,
the regular estimation of the control performance
can be used to monitor and evaluate how much
potential there is to improve control performance
(Hunag and Shah, 1999). In the last decade,
many investigations based on the minimum
variance as a performance benchmark have been
done for the control-loop performance
assessment. The stochastic assessment defined
by Harris (1989) is basically a procedure used to
fit the closed loop data into a time series model
with the given process dead time. The
performance of the controlled system is
evaluated by comparing the difference between
the minimum variance of the controlled output
and the current variance of the controlled output.
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Several authors extended this theory to defining
the various performance indices in assessing
current control vs. minimum variance control
(Desborough and Harris, 1993; Kozub and
Garcia, 1993; Thornhill et al., 1999). In this
paper, two issues are addressed by PCC
structures. The first one is concerned with the
development of the minimum variance
performance bound for PCC systems. The
performance bound can subsequently be used for
the performance assessment of the PCC system
as a benchmark of performance. The second
issue is concerned with the estimation of an
achievable minimum variance performance
bound of PCC.

The remainder of this paper is structured as
follows: The problem of the performance
assessment in PCC is first defined in Section 2.
The procedures for computing of the achievable
PID control performance with the unknown
process and disturbance models are discussed in
Section 3. The effectiveness of the proposed
method and its potential applications are
demonstrated through a computer simulation
problem and an actual pilot-scaled experimental
study in Section 4, followed by concluding
remarks in Section 5.

2. Minimum Variance of PCC

The block diagram of a PCC system, consisted
of two feedback loops, is shown in Fig. 1. The
process, represented by the dashed box, consists
of two components G, (k) and sz(k) .
The goal of PCC is to make y,(k) reach the set
point as long as the constraints on y,(k) are
respected. The inner-loop controller, G.,(k), is
used to regulate the constrained output yz(k).
G, (k) is tuned to avoid overshooting of the
constrained variable y,(k) . The outer-loop

controller, G (k), is tuned to regulate the

output yl(k) to its set point. (k) and
u, (k) are the controller outputs of G.,(k) and
Gcz(k) . Gwl(k) and Gwz(k) are

unmeasured disturbances to the primary output
and the secondary output respectively. wl(k)
and w, (k) are the noise sequences. When the

primary setpoint is constant, the disturbances,
w,(k) and wz(k), affect the output variables,

yi(k) and y,(k), are given by
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To assess the performance of the PCC system,
two different control laws that achieve minimum
variance in the primary output only and in both
the primary and the secondary outputs are
derived when stochastic disturbances occur in
both the primary and the secondary loops.

Case 1: Minimum variance of the primary
output
Assume G, and G,, can be represented by

£ _ % _
G,=G,z ‘" and G =G,z “ | where

pl
pisi =12
are the process models without any time delay.
Now introduce the identities,

d;,i=12 are the time delays and G

Gy =0 +Rq™ =05+ Ryg™®
(2)

and
Gy =0, "‘qu_d1 =0, "‘R4C]_d2

Eq. (2) is called Diophantine equations whose
solution can be computed manually using long
division or a computer by using a recursive
algorithm. In Eq. (2), O, and O, are
polynomials of degree d,—-1; (O; and Q,
are polynomials of degree d, -1; R;,i=1...,4
are proper transfer functions. Substituting the
identities in Eq. (2) into Eq. (1), the closed-loop
primary output can be classified into

cascade-invariant (CI) and cascade dependent
(CD) terms.
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If minimum  variance  controllers are

implemented in order to minimize the variance
of the primary output, only the CD term of the
primary output should be minimized, i.e. solving
the simultaneous equations of H, and H,,
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Thus, even if the minimum variances controllers
are implemented, it is impossible for the
controllers to cause zero change after d; time

delays of y,. Therefore, the minimum variance

or the sum of the invariant portion (CI) and the
minimum variant portion (CD) of the primary
output variances is

2

o—yl ,mv =

var{(Q, + ¢, w, (k) + e;w, (k)}

atg & T
=trace|| Y. NL,NL, + X Nz,zNz,/ >
i=0 i=d]
where e, and e, , which are the minimum

variant portion (CD) of output variances from
w, and w,, can computed by

€

-

Ny, (i =0,---,d, —1) are the coefficient matrices

}:bl(l—Al(AlTAl)_lAlT) ©)

of the matrix polynomial O, ; Nza,(izd,,---)

are the coefficient matrix of the polynomial
matrix [e, ez] ; 2w is  the

. . . VA
variance-covariance matrix of [w, wz] . The

result of Eq. (5) can be used as a benchmark to
assess a PCC system when the primary output
variance is considered only.

Case 2: Minimum variance of both primary
and secondary outputs

The primary output performance assessment
concepts are extended to both the primary and
the secondary outputs in this subsection. Like
the primary output ( y; ), according to the
Diophantine identities of Eq. (2), the secondary
output (¥, ) of PCC can be also expressed as the
(€D

summation of cascade-invariant and

cascade-dependent (CD) terms.
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The minimum variance of PCC in this case is
obtained by solving the simultaneous equations
of H, Hy, Hy and H,.
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Therefore, the minimum variance or the sum of
the invariant portions (ClIs) and the minimum
variant portions (CDs) of the primary and the
secondary output variances is

2
y1.y2,mv

= min{var((Q, +e )w1 +e,w, )

+var((Q, +e)w, +eqw, )}

di-1 T
=trace|| ¥ Ni;N,;+

i=0

(o2
dr—1 -

S mim,+ 9
i=0

z NQIINZI + z M2llM21 ]Zw :|

i=d) i=dy

where ¢, e,, e; and e, , which are the
minimum variant portion (CD) of output
variances from w; and w,, can computed by

é
e bZ(l - A2(a27 A2 A2T) (10)
3
€4
where Ny (i=0,-,dy —1) and
M, (i =0,--,d, - 1) are the coefficient

matrices of the matrix polynomials Q, and Q,

respectively; Ny, (i=d,) and
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My, (i = dz,---) are the coefficient matrix of the
polynomial matrix [e1 e2] and [e4 e3]. The
result of Eq. (9) can be used as a benchmark to

assess a PCC system when both the primary and
the secondary output variances are considered.

3. Achievable Minimum Variance of PCC
In reality, the process and the disturbance
models are rarely available. In this case, it is
important to identify the models using the
process operating data. A two-stage method is
the subset which applies an identification to
closed-loop feedback data (Van Den Hof and
Schrama, 1993). It is extended for identification
of the PCC process and the disturbance models,
separately. To obtain this, the external input is
intermittently introduced into the controlled
system. The sensitivity function and the process
models for the primary and the secondary loops
are separately identified by a two-stage
identification method. Based on the identified
closed loop transfer functions, the proper
disturbance models for the primary and the
secondary loop can be estimated. After the
models are obtained, the achievable minimal
variance performance bound of PCC can be
computed to assess the current status of the
current controller performance. Even though the
models are estimated, the performance bound
benchmark based on the minimum variance
control may not be realistic for general
applications, because it considers only the
absolute lower performance bound. According to
the required minimum variance of the primary
output only or of both the primary and the
secondary outputs objective functions, the
achievable performance bound of PCC based on
the specific controllers can be obtained by
solving the following optimization problem for a
given process and disturbance models:

min 0')2,l
Ge1,Ge2 (1 1 )

and

. 2 2
min (}t ol + A0 )
Ge1.Ger 1= n 2% »

(12)

It is apparent that the variance of the output y,
(or y, ) is the function of the controller
parameters G, and G,,. Note that in Eq (12),

it is a standard technique for multi-objective
optimization to minimize a positively weighted
sum of the objectives. For easy explanations,
A =1 and A, =1 are used here. Due to the

space  limitation, the entire  modeling
methodology is described in our previous work.
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For a detailed coverage, see (Huang, 2004)

With  the identified process and
disturbance models, the closed-loop outputs of
Eq. (1) under the current control action can be
computed as a moving average of a series of an
identically distributed random disturbance,
w (k) and w,(k),

y(k)= [“"Pl,l:l +et Qg =
cl

+(/)I,d|+lz(dl+l)+"']wl (k)
oass
cb

+ [(Pz,dl +1 zi(dl e 'JWZ (k)
=

)Q(k):

+ 1+¢2’|Z_| +“'+¢2’d22_d2

CI

+ ¢2,d2+12_(d2+1) R %) (k)
| —

CD

Here the outputs of Eq. (13) contain two parts.
Each part can be grouped into two terms:
cascade invariant and cascade dependent. The
closed-loop output variance is calculated by the
sum of squares of the impulse response
coefficients. Thus, the achievable minimum
variance of the cascade control can be estimated
by minimizing the following equation,

min E[&il ]
Gel,Gen

-1 ) .
=tmce{[ NoiNa,+ % Néz,,Naz’,]Zw} (14)
=0

i i=d)

and

i Ele? +82
(“I“}“Z l"n +"y1]
(15)

di-1 T dpy-1 T
=trace|| Na],/NaI,/ + 2 Mal,/Ma],/
i=0 i=0

+2 Nzé,iNUZ,I T+ 2 MZQ,,Maz,,]Z..» }
i=d) i=dp

where
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The PID-achievable performance bound is given
by minimizing the variance calculated from Eq.
(14) or Eq. (15) with those optimal tuning PID
parameters.

(-)-- by +hyz k2

G,
Cl1 1_Zl_| 2 (17)
ky+ksz™ +kozo
“1)_ Kq T Hs 6
G(,'Z(Z )—_ 1

Astrom (1970) has presented a procedure for the

evaluation of the output variance with complex
integral in the complex plane, but the evaluation
is not easy. Here the gradient method is adopted
to find out the optimal parameters resulting
achievable performance.

4. Illustration Examples

In this section, two examples, including a
simulation process with the given system models
and a pilot scaled level-to-flow cascade
experimental process without any prior
knowledge of process models, are discussed to
demonstrate the wide applicability of the
proposed estimation and the assessment of
PID-achievable performance bound with the
closed loop operating data.

Example 1: Simulation Process with the
Given Models

A process output transfer functions in a PCC
system related to the controller outputs ( (k)

and u2(k)) and the unmeasurable disturbances
(w(k) and w,(k)) are,

I I
k)=———u,k—5)+ ————wlk
R L

I 1
yz(k)=m%(k—3)+mwz(k)

where the disturbances w;(k) and w,(k) have

the variance
~ [0.6863 0.3231

covariance matrix

w

0.3231 0.6785

variance performance bound, the Diophantine
decompositions of G,, and G,,, are

}. To obtain the minimum
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1 _ _
i =W=Q1+R1q Y=0i+ Ry
Y (19)
- 0, +Rq =0, + R
w2 ]—O.Sq_l O, 24 on 49
where

0 =1+0.7¢7" +0.49¢7% +0.343¢> +0.2401¢g™*
0, =14+0.5¢7" +0.25¢7> +0.125¢ 7> +0.0625¢™*
0y =1+0.7¢7" +0.49¢ 7>
0, =1+0.5¢7" +0.25¢>
_0.168
' 1077
R, = 0.03 12_ |
1-0.59
0343
12074
R = 0.125_|
1-0.59
(20)

Thus, from Eq. (5), the minimum variance of the
PCC system for minimizing only the variance of
the primary output without considering the
variance of the secondary output is

U;,mv = Val'{(Q] )WI +tew, +ew, }

d-1 o
=trace{( > NI N,,sz ]Hmce{[ Y NIN,, Jz }
i=0 i=dy

=1.3735
@n

According to the optimization of Eq. (14), the
corresponding PID  controller  parameters
resulting in achievable minimum variance can be

evaluated ( minc?'iI =1.4827 ) and the

corresponding controllers are

G = 0.5769-0.5735z""
C1 l_:,| (22)

-2
~0.0656-0.1038z"" +0.0383*
1-z71

G('Z

If the minimum variance of the PCC
system for minimizing both the variances of the
primary output and the secondary output is
considered, from Eq. (9), it can be computed
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G)z,l’yz’mv = Var((Ql)wl +ew + e2w2)

+var((Qy w; +eswy +eyw)

d-1 T
=trace|| Y, NNy X, |+
i=0

traceH §:N§;N2, ]Zw } (23)

i=dy

dr-1 T
+tracel| > MM, X, |+
i=0

traceH >M ZTiMz, JZW }
i=dy

=2.5045

From Eq. (15), the corresponding PID controller
parameters resulting in achievable minimum
variance can be evaluated

( min6? +62)=26958 ) and  the

corresponding controllers are

G _22975-27632:" 046577
o -2 (24)

=)
. 0.0438-0.0693z"" +0.0255%
(l(vz = 1_ =

Example 2: Level Tank Controlled
Process

A pilot level in three gravity-drained tanks
shown in Fig. 2 is studied. The primary loop is
to maintain the level in Tank 1 and the secondary

loop is to reject the effect of disturbance (w, ) in
manipulated variable ( f;). f; regulates the

level of Tank 1 and Tank 2 in a parallel way.
Also, there is another unmeasured disturbance
(w,;) in the primary process. The objective is to

maintain the two levels at the desired set points
and to assess the current control performance in
the presence of feed flow rate disturbances. The
tanks are equipped with differential-pressure to
current (DP/I) transducers to provide continuous
measurements of the levels. The computer is
connected to a PCI-1710 analog/digital 1/O
expansion card from Advantech. The expansion
board uses a 12-bit converter; therefore, the
digital signals are 12-bit. The analog signals
from the measured levels are amplified and

conditioned EDM35 (4-20mA/0-5volts) modules.

The data acquisition software and the PID
controller  algorithm are MATLAB of
MathWorks, Inc.

Fig. 3 shows 800 measurements of the
primary and the secondary outputs as deviation
variables from its set point and steady-state
value when the primary and secondary
controllers are
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7.4198-7.1368z""
Gey =

I—Z_l (25)

6.2958—6.2958z""
Gey = ]

1-z

Under the current operation, the primary output
variance (cr,f1 ) is 4.6797 and the overall outputs

variance ( o-,fl + 0',32 ) is 8.9695.

To assess and evaluate the current control
performance with PID feedback control loops,
using the two-stage method, the system is
excited by the extra flow rate fed into Tank 1.
Both the extra flow rate and the corresponding
change of two levels are measured, a total of
1100 sets of the data are generated. From the
data, the dead times of the primary and the
secondary processes calculated by
cross-correlation analysis are 25 and 20
respectively.  According to the identification
procedure, the sensitivity function with the finite
impulse response model is evaluated by the
process input and the external input. Using the
estimated sensitivity function, the filtered outputs
can be calculated. Then the FOPDT process
transfer functions of the primary and secondary
loops are

~0.00498z"" Rt
M 12093222 26)
0.0048z7"
PET %
1-0.9369z

With the identified process models and known
controllers, the disturbance models can be
evaluated as

0.7259

1-0.9841z7
0.8706

1-0.9897z"

wl
27

w2

The estimated variance-covariance matrix is
_10.1676  0.1642
¥ 10,1642 0.7187

minimum variances of the primary and the
secondary outputs can be calculated from Eq.

.

] Thus, the estimated

O-lzr],hz,mv = Var((Ql )Wl teyw + ezwz)

+ var((Q4 )w2 +esw, +ey wl) (28)
=4.0851
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For practical applications, the next achievable
minimum variance computed by optimizing Eq.
(15) is 5.1455, which is significantly reduced
when comparing the initial operating condition,
but a little larger than the minimum variance.
The transfer functions for these two controllers
are

0.5825-0.555z7"
Gy = 1 (29)

1-z~

0.6530-0.6530z""
Gey = ]

1-z

The aforementioned performance assessment of
the cascade system is based on the design of the
PCC structure; however, once the control system
under the design of a series cascade structure is
mistreated, the resulting performance benchmark
is also considered here. The calculation
procedures are similar to Ko and Edgar’s work
(2000), but the estimated minimum variances of
both the primary and the secondary outputs are
considered. The minimum variance can be
obtained as 22.7737. If the achievable PID-based

minimum  variance is  considered, the

corresponding two controllers are
-1 -2

Gy = 36.76-63.34z"" +27.38z 4

1-z71
16.03-32.06z"" +16.03z

]-z
the controllers onto the level tank system, the
sum of the both output variances is 26.0272,
which is larger than the one under PCC design
(5.1455). It is interesting to note that the
improper control design in the cascade system
will lead to unsatisfactory output performance.
Furthermore, the output variance of the
redesigned condition is worse than that of the
initial condition. Fig. 4 plots the controlled
results of the level tank system for different
controller tunings. It indicates the output
variance is satisfactory only if the system, under
the correct control design (PCC), can achieve the
minimum variance.

G(,'z =

Applying

5. Conclusions

In this work, the evaluation of the PCC loop
performance assessment is developed. The
proposed method provides a way to monitor the
control-loop performance of the PCC processes
by taking the controlled outputs into account in
calculating both minimum variance and the
process variance terms. In a SCC system, the
process variance terms can be equal to zero
when the minimum variance cascade controllers
are implemented. Unlike the SCC system, the
minimum variance controllers for the PCC

A T P

system can only minimize the process variance
terms but it is impossible to have the zero values.
To evaluate the minimum bound, a least squares
estimator is developed based on the Diophantine
decompositions of the disturbance models. The
minimum variance performance can also be
estimated from the optimization of the minimum
PID variance controllers based on the
pre-identified process and disturbance models.
The proposed performance method has been
illustrated through a simulation example and
demonstrated by a pilot scaled experimental
application.
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