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Abstract

The fermentation of microorganisms is an important practice in the biotechnology
industry. To enhance the volumetric productivity, high cell concentration and high cell
productivity are required. Owing to the inherent feature of cell growth, an exponential feeding
profile is practiced. However, exponential feeding needs sophisticated control techniques.
Moreover, for aerobic high cell-density culture (HCDC) processes, when the amounts of
biomass and of bio-products increase in the fermenter, the rate of oxygen mass transfer and
the dissolve oxygen will decrease. Therefore, the specific growth rate of microorganism will
descend slowly. Due to the substrates (carbon and oxygen) simultaneously influence the
growth rate of microorganisms, a good operating methodology in HCDC processes must
maintain the concentrations of those substrates. The object in this work is to construct a
simple but robust control strategy for this specific process. Through the system analysis, the
new control methodology is proposed. The overall control structure includes an optimal
feedforword controller and a multiloop SISO feedback controller. Moreover, in the feedback
loops, multiple-models are used such that the proposed control structure is very simple to
build. The scheduled controllers for each loop tuned by Internal Model Control (IMC)
principle were proposed. The novel control structure was shown by simulation that not only
performs better than Generic Model Control (GMC) but also has robust properties to the
mismatch in the model’s form. The productivity of the proposed strategy is 37.5% more than
the GMC's in the simulation.

1. Introduction high cell concentration and high cell productivity are

required, where this operation is usually achieved

The fermentation of microorganisms for producing
biomass, primary and secondary metabolites, proteins,
and other biopolymers are an important practice in the
biotechnology industry. Hence, the primary goal of
fermentation research is the cost-effective production of
bio-products. To enhance the volumetric productivity,

through fed-batch cultivation [1,2]. Owing to the
inherent feature of cell growth, an exponential feeding
profile has been proven to be the most usable technique
to maintain growth rates in biomass in industry [3.,4,5].
However, exponential feeding needs sophisticated
control techniques. The common difficulty in these
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open-loop strategies is that no compensation is made for
modeling errors or random disturbances arising in the
process operation [6,7]. Since both overfeeding and
underfeeding of nutrient is detrimental to cell growth
and product formation, development of a suitable
control strategy is critical in fed-batch cultivation.
interest has
subsequently moved to the design of controller

Therefore, from another viewpoint,
configurations that will make the system follow an
optimum trajectory calculated off-line [6].

In recent years, several robust adaptive controllers
were designed to track the product trajectory in a
fed-batch fermenter in which the kinetics are complex
and most of the state variables are difficult to measure
[8,9]. However, these methods need knowledge of the
full states of the studied systems. For most bioprocesses
in which there is a deficiency of reliable on-line sensors,
an extended Kalman filter is used to estimate states and
parameters. Briefly, these methods have complex
control structure and hence are not usually convenient
to be used in a real plant. For this reason, the simple
indirect feedback control schemes that couple nutrient
feeding with measurement of pH (pH-stat) or DO
(DO-stat) have been developed [2,10]. On the other
hand, the expert system based on fuzzy control or
neural networks has developed and holds promise for
optimizing  fed-batch techniques for complex
fermentation systems [11,12]. Although these simple or
advanced methods have several advantages, the
suboptimal productivity or unstable system has arisen
frequently.

Moreover, in the fermentation processes of high
cell-density culture (HCDC), another critical problem is
the lack of oxygen uptake. When the amounts of
biomass and/or of bio-products increase in the fermenter,
the rate of oxygen mass transfer and dissolve oxygen
will decrease; therefore, the specific growth rate of
microorganism will descend slowly [1,2]. In this case,
the toxic components may produce, e.g., acetate when E.
coli is grown under anaerobic or oxygen-limiting
condition [2]. Therefore, the dynamic behavior of this
kind of process has a result of accumulation of the
substrates the same as the multiple-substrate processes
[7]. The accumulating action continually recurs. This
behavior, similar to the snowball effect in plant-wide
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control, will let the process run away [7,13].
Consequently, a good control methodology for HCDC
processes must be able to maintain the concentrations of
two substrates, i.¢., carbon and oxygen, simultancously.

In this work, the fed-batch HCDC process will be
described as a multivariable system. Through the
system analysis, a new control strategy is proposed.
This strategy is to combine an optimal feedforward
controller (FFC) and a multiple SISO feedback
controller (FBC). To schedule this time-varying process,
multiple-model approach is used to describe the process
such that the proposed control methodology is very
simple to build. Finally, the performance of the overall
control strategy will be shown via simulation.

2. Modeling, Optimal Operating, and
Characteristics of the Process

There are many important physical variables, e.g.,

temperature, pH, and concentration of the inhibitors, in
HCDC process. In this work, we assumed most
variables, ie., temperature, pH, etc, are under
controlled for simplicity. Therefore, the dynamics of the
process can be analyzed in detail.
Process Modeling The fermentation processes that
carried out by fed-batch-operating method was
considered. Except carbon source, the dissolved oxygen
is also a limited-substrate for an aerobic culture of
microorganism in HCDC. In a well-mixed bioreactor,
these can be modeled by the following set of governing
equations [13,14] as:

(XV )= uxv )
(SV)=-oXV +S,u ()
(€)= [OTR - OUR ?3)
V=u @

where X, S, and Cpg are the concentration of cell,
carbon and oxygen source in broth, respectively. V'is the
working volume, u stands for the inlet volumetric flow
rate, and Sp is the feed substrate concentration.
Considering both carbon and oxygen source as essential
substrates and the deterministic and non-structured
mathematical model of the specific growth rate () in
HCDC fermentation process is used. If the carbon
source is with inhibition at high concentration of
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substrate, the (£ can be described as

— S CDO
ﬂ_N"“(KS+S+SZ/K]][KO+CD0] ®

where (£ . 1S the maximum specific growth rate and

Ks and K; are parameters in the inhibition growth
kinetic model for carbon source, and K, is the
parameter in the Monod model of oxygen source. The
specific growth rate like Eq. (5) was called
Haldane-Monod model in this work.

The specific carbon source consumption rate (o) is:

o - ©

where Yy is the yield coefficient from carbon source to
cell. For oxygen source, the oxygen transfer rate (OTR)
and oxygen uptake rate (OUR) are given as:

OTR =k, a(HC 4, - Cpy) (7

where k;a and Yy are the overall mass transfer of the
oxygen and the yield coefficient from oxygen source to
cell, respectively. Cp, is the mole fraction of the
gaseous oxygen in the fermenter. A is a parameter
related to Henry’s law constant for oxygen in water.
The relationship between k;a and the agitation speed
(T") is assumed to be:

K,a=a()’ ©
where o, B are constants. Due to that oxygen was
supplied from gas phase, we must have another
equation to describe oxygen balance. From the mass
balance of the oxygen in gaseous phase, the rate of
accumulation of the gaseous oxygen is:

(Conl ) =B [-OTRV+ 22 (3, ~Ca)]  (10)

where y;,1s the oxygen mole fraction of the inlet air, R is
universal gas constant. 7 and P are the temperature and
pressure in the bioreactor, respectively. In addition, M
and Q stand the molecular weight of oxygen and the
flow rate of inlet air, respectively, and & denotes the
fraction of the reactor that is occupied by the gas phase.
Optimal (Feedforward) operation The operating
criterion of a fermentation process is to obtain the
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maximum bio-products. In fed-batch culture, the
objective here is to determine the feed rate profile u(f)
that maximizes the cell production rate:

Max J= X (1, V(1) - X1,V (1)
u t

(I

,

where ¢ is the fermentation time and subscripts 0 and f
denote the initial and final conditions, respectively. The
feed profile crosses the singular arc segment, i.e., the
more interesting exponential feeding, depends on

G*
SF_S*J (12)

u*=X*V*(

where superscript * describes the optimal value of the
state. In inhibition growth kinetic model, the optimal
concentration of the carbon source is S*= \/R [5].
Substituting Eq. (12) into Eq. (2), the time derivative of
the optimal S* becomes zero. This means that the
exponential feeding policy will maintain the
concentration of carbon source in the fermenter. Owing
to the fact that the dissolve oxygen for the cell growth
rate is Monod kinetic model, the cell growth rate of the
process approximately reaches to the maximum value
only if the concentration of the dissolve oxygen is
greater than several folds of K. Consequently, the
optimal dissolved oxygen, ., , is conservatively set at
ten folds of K, in this work.

For holding the concentration of the dissolved
oxygen, similar to carbon source, we can analyze from
the steady-state of the system. Therefore, after

rearranging Egs. (3) and (10), we obtain:

027

C;0=-CDOIE/+[0TR—OU1§ (13)
and
: RT[ &Mu

U rMQ (14
C,,—OTR+ Rrﬁym COZ)]

@M. RTV ™
Since we want to hold Cy, and G, at constant
values, the left-hand side of Egs. (13) and (14) will
become zero. Furthermore, after applying the optimal
feed as in Eq. (12) and the OTR and OUR as in Egs. (7)
and (8), we obtain the following relationships as:

C&)G* u*
kja=—r— Ty (15)
HCoz _CDO
e #H
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and

(yin - C:)Z)Q: {%( C;)OG ’ + 'u—*j +

SF_S* Y()x

&Cp,0 *
S, —s*

}X*V*

(16)
Egs. (15) and (16) show that k;a is proportional to X*
and (y,.n —CSZ)Qis proportional to X*}*. In a general
case, the speed of the agitator is used for regulating Cpy,.
Therefore, from the Eq. (16) and Eq. (9), the speed of
regulator is

« \~B #\ B
r*:[M] FO:(X—j r, 17)

(K a), X,
Hereafter, the subscript 0 describes the initial value of
the variable. Furthermore, choosing ©° =(V/VJQ“, from
Eq. (16), we can use y;, to maintain Cg, as
. X

ym :Z(yin‘o_c(’;lo)-’-czﬂ (]8)

In this section, a optimal feedforward operating
strategy is built for the HCDC process. This
feedforward operating strategy, which notated as FFC,
will obtain the maximum productivity of cell in a
nominal plant. For implementation, S, Cpg and C, are
maintained at optimum values by u*, T"*, and y; in
above Egs. (12), (17), and (18). A schematic of FFC is
shown in Figure 1.

$%, Cpo*, Co*

S, Coo, Con
Gp |——>

Figure 1. Schematic diagram of the proposed

control strategy.

Characteristics of the Process Dynamic  Base on
the above discussion, a optimal FFC controller is
constructed for fed-batch HCDC process. However, in
the real world, a plant generally has various types of
uncertainties. For this, the snowball effect can be arisen
[7] which may cause the process to run away. In this
section, we will show this phenomenon by simulations.

Table 1 lists the parameters and initial values of a
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typical fed-batch HCDC process. Figure 2 displays the
simulation results when there exist 20% mismatch in
the model parameters. The figure with the dynamic
responses for the positive and negtive mismatches are
not symmetric because the system has snowball effect.
The snowball effect occurs when the corbon source is
accumulated due to mismatch in the model parameter
[7]. Table 2 summaries the directions which existing the
snowball effect for each model parameter. Based on
above discussion, a worst uncertain case that
combinded all cases to have the snowball effect with
etror in model’s paremeters can be built.
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Figure 2. Responses of the plant with FFC for
mismatch in model parameter (a) ( 0 (D) Yxs
(c) Yos, and (d) a & 5.

Table 1  Parameters and initial conditions of an
aerobic fed-batch fermentation process.

Parameters

JNG) 1.132 | Kg(g/L) 0.4606
Ko (g/L) 0.0001 | K;(g/L) 1.8537
Yox (--) 2.0 | Ysx(-) 0.7
P (atm) 1.9 | T(K) 310
M (g/mol) 32 | H(gL) 0.0663
a (1/h)(rpm) # 10 | B(-) 0.5
&(-) 0.15

Initial Conditions
Sr(g/L) 90.0 | X,(g/L) 1.0
So(g/L) 1.0 | Vo(md) 0.2
(Cpo)o (ppm ) LO | (Coa)o(--) 0.19
0, (L/h) 1142.6 | Ty (rpm) 14.8
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Table 2 Summary of the snowball effect with
the mismatch in various model parameters.
Positive Negative
deviation deviation
Himax +
Ysx +
Yox +
a, B +
u +

+: with snowball effect

Figure 3 (a) shows the dynamic response of the process
in this worst case. Oppositely, if combined all errors in
the model’s paremeters that don’t cause the snowball
effect, the dynamic response of process will not exhibit
run away behavior. In addition, for common
uncertainties in fermentation processes, the mismatch in
feed rate measurement and oxygen-limited cases are
also shown in Figure 3 (b) and (c), respectively. The
snowball effects again occurred only in one direction.
Therefore, we will use three worst cases to test the
performance of the proposed control structure in the

following section.
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Figure 3. Responses by simulation for (a) the
worst case with combination of several model
parameter mismatches, (b) the feed-rate error,
and (b) the oxygen-limited case.
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3. Feedback Controller Design

In the above section, the characteristics of the
dynamic in the fed-batch HCDC process were
discussed. The key point in HCDC process is that the
snowball effect is arisen only if there are oxygen-limited
or carbon-overloaded situation. Therefore, the HCDC
process is displayed as a multivariable system to
simultaneously considering the carbon and oxygen
sources. In this section, we will discuss a novel
feedback control strategy to avoid the above snowball
problem. This proposed strategy (i.e., FBC) is based on
the process that included with the optimal feedforward
operating policy (FFC) (see Figure 1).

System Analysis To design the feedback control
system, the process with the optimal feedforward
control was considered. Therefore, the system can be
linearized around its optimal value [7]. The linearlized
process can be displayed as a state-spaced linear system

as
v[u"‘ 7“»] 0 “*[ ?, ][ K",. ] 0 ,\/1:
/\} V ( DO Ku +( DO V h X
X . 7:4' . be K, B w )
S ’ v [c.:.. [m(] el o
Coo R L wCl oo
(;?2 - Yo 0 -a, H(K,a) —x Cor
vV 0 RIK ,a" Ca 14'(:5,3 v
&PM ° v
0 0 0 0
- X: 0 0
V .
Sy -8
|z ' NE (19)
S aplucici ) o
V”
LG aBlHCHCh) e 0,
V" ePM &v,
1 0 0
where
o X' K
a,=|K,a" +— +[ g2 ][7" 0 ] (20)
V Y()XCI)() K() + C])()
and
HRT(K,a) u" O,
Ay =|———F"—+—~+—- 21)
ePM -1

Eq. (19) explains that the plant is a high-order system
and its denominator should be Sth-order. Because the
role of the feedback control is to compensate
uncertainty within the fed-batch process, the feedback
controller is to reject the disturbance mainly at high
frequency. Therefore, the DRGA analysis [15] was used
to analyze the pairing of control loops as
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O 0010 030 050

Ao = (GP s=jw)® (GP s=jo )] 22) _o00s ots 025
E)

where G(s) = C(sI—A)"B; A, B are obtained from Eq. 3:22: :?: : :: )
(19)andC=[01000;00100;000 1 0] assuming S, . o0 T s S
Cpo, and C, are measurable. Moreover, the parameters T em e
of system are time-varying. They are function of the e o
optimal values and the several constants of system. The o “
state X* has a point of inflection (see Figure 2). From :?0 :: S
analyzing X*(f), we know that this event takes place at oo L - o

N 2
ln{sz[X;*_XX“J } ) Zzz 0030 L o —
tIF _ [ aial] :8 001 0.015 |/ 0.02 h
\ 002 N\ ]
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where X is concentration of biomass at infinite time for

its dynamic characteristics at this point (discussed in  Figure 5. Open-loop responses at three critical
detail at later). The diagonal DRGAs are displayed in  times: (a) initial, (b) inflecting point, and (c)
Figure 4. The figure shows that the recommended  final.

pairing of the system decoupled at high frequency for

the initial, inflecting point, and final time of the process. ~ an off-line identification method is used next. Step
The recommended pairing is to control S by  change response data is obtained by simulating the
manipulating u, Cpo by manipulatingl”, and Cy, by  process model with the inclusion of the FFC operation.

manipulating y;,. These open-loop responses at three critical times are
shown in Figure 5. The dynamical characteristics are
bt ~ bt changed at inflection point in the DO loop. However,
’ e from the responses in this figure, two model types,
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Figure 4. Diagonal of DRGA for HCDC process do =
at (a) initial time, (b) inflecting point, and (c) 0s tme )
final time. 2 o
.g‘ 02 ¢
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Building Multiple-Model =~ From above analysis, ool

time (h) time (h)

the control structure is determined, i.e., a multiloop
SISO control system is used. Moreover, the transfer

Ke.

functions for each loop are shown to be higher order

and time-varying. It is impractical to design three high

4 8 12 16
time (h) time (h)

order controllers and then use them in industry.

Therefore, the goal is to design the controllers as ~ Figure 6. Variation of the transfer functions

simple as possible. In order to obtain a simpler model, parameters vs. time.
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s)= -
M rns+1

i=23 25)

can be used to described the dynamic responses of the
carbon source (i.e., loop 1) and oxygen source (i.e.,
loops 2 and 3), respectively. Moreover, the parameters
in the transfer functions are varied with time. Dotted
lines in Fig. 6 display the changes of the parameters
with time in the transfer functions in Egs. (24) and (25).
Furthermore, owing to the fact that X* is proportional
tou*/V* from Eq. (12), and then from the model
parameter in Eq. (19), we can found out that most of the
parameters in the transfer functions are changed with
the optimal state X*. Therefore, we will use X* to build
the multiple-model. Similar to gain scheduling, the
model-parameter scheduling is defined by using
different process models as the operating condition
changes. Takagi-Sugeno method [16,17] offers a
general framework to establish a nonlinear (global)
model between the scheduling variable ¢ (e.g., the
optimal biomass X* or its high order form) and the
scheduled variable z (e.g., steady-state gain or time
constants), that is

2= /(¢) (26)
Moreover, a linear combination between two linear
functions [17] is used to simplify the above expression
to:

z=z(1-y)+zy 27
where z and z are defined as the value of
scheduled variable at the upper and lower bounds of the
regime, and defined ¥ as:
40

99

where ¥ as a lincar membership function for ¢ with

14 (28)

¢ and das the value of scheduling variable at the
upper and lower bounds of the regime.

Table 3 The identified models for the Haldane-
Monod process to combine into multiple-model.

Initial (t=0h) Final (t=16 h)
Loop 1 GM, _ 0.445 GM‘ _ 0.00452
N A
—4 _8
Loop2 G, = 4.55x10 - 8.278x10
7 0.01728s+1 2 0.00168s +1
0.9858 0.442
L 3 G, =——"—
0P T ) 004975 11

M 0.00239s + 1
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The scheduling variable ¢ must be decided in
order to complete this modeling approach. Egs. (27) and
(28) display a linear relationship between z and ¢ is
described such that a suitable scheduling variable, ¢,
must be found. Figure 7 shows the pairs of the
scheduling and the scheduled variables that conform to
Eq. (27) (i.e., the dash lines in Figure 7). Therefore, X *
(denote as ¢,) is chosen to model the carbon source
loop (loop 1) and gas phase loop (loop 3). However, the
gain and the time constant for the transfer function of
loop 2 must be (X*)? and (X*)"! (denote as ¢, and ¢, ),
respectively.  Although Figure 7 displays the
nonlinearity in several parameters of the transfer
functions, all multiple models are set up in one fuzzy
implication for simplicity. The multiple-model is built
by linear models at the initial and final time as seen in
Table 3. The solid lines in Figure 6 display the built
multiple-model. In all the three approximated models,
the deviations of parameters in the transfer functions are
all within tolerant limit (Figure 6).
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Figure 7. Analysis for choosing the scheduling
variables for multiple-model.

Tuning of the Feedback Controllers An important
item in designing the control strategy is controller
tuning. The primary objective of feedback control in
HCDC process is to regulate the mistakes in model
parameters. Therefore, the tuning criterion is to reject
this specific kind of disturbance. When the feedforward
controller is applied with some model mismatches, it is
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similar as a ramped load disturbance going into the
system from system inputs. Since the system itself is
modeled as a integrating or first-order system, the
combined effect at the system output is a Type III
system for loop 1 and a Type II’ system for loop 2 and 3.
In other word, the load for loop 1 (an integrating system)
at system output is with the form:

1

d=— (29)
s

and for loops 2, 3 (first-order systems), the load at
system output is with the form:
1

d= , =23
sziz'p’s+15

The controller to reject these types of load

(30)

disturbances will be constructed. First, based on final
value theorem, the PI’D type is necessary to rejection
these kinds of load disturbances. There are three
parameters need to be tuned. Moreover, owing to the
fact that all model parameters of the process are
changed with time, the tuning rules must be based on
these parameters such that the scheduled control
strategy can be carried out. For these reasons, the
methodology of internal model control (IMC) was used
to tune the feedback controllers [18]. The tuning rules of
the feedback controller are listed in Table 4. The
transfer functions of the closed-loops for loops 1~3 are:

2
3t s 375+ 1

G, =
h Ter S+ 1 31
and
G 2, 8+1 23 5
g = ! , 1=2,
“h if(v,_ISHF (32)

Before doing some closed-loop simulation, let’s
summarize the procedure for the proposed control
strategy as follows:

S1. obtain the coefficients to construct the process
model (Egs. (1)-(10)).

S2. set up the optimal feedforward controller (Egs. (12),
(17), and (18)).

S3. obtain the simplified linear transfer functions at the
initial and final time via model identification based
on model forms in Egs. (24) and (25), and then,
combined into multiple-model according to Egs. (27)
and (28).

S4. set up the PI’D feedback controllers with tuning
rules in Table 4.
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Table 4  Tuning rules for IMC-PFD controller.
ke 7 D
) T, + 27, 27,
Typel 2= g tor, —’;'-’P
CL™ P I
T
Type 111 L 3c,, To
rler

where 7, denotes the time constant of the closed-loop

S5. operate the fed-batch culture by FFC and FBC.
In the last section,
procedure for the proposed control strategy is described.

Closed-loop Simulation

In this section, we will demonstrate the performance of
the proposed control strategy with the same example
shown before. A GMC controller [19] is also set up for
comparison purpose. The closed-loop transfer functions
of GMC are designed to be:

y 278s + 1

= 33
yF it 4 2ws + 1 33)

The time constants of closed-loop in GMC are
chosen to be 0.15 hr, 0.01 hr and 0.01 hr for loops of the
carbon source, the dissolved oxygen and the oxygen in
gas phase, respectively. The values of damping
coefficient for each loop are set to be unity. The
closed-loop time constants (7, ) for the purposed
control strategy are set to have equal closed-loop speed
of response to the GMC’s. The three 7, are set to
be 0.1 hr, 0.01 hr and 0.01 hr, respectively, for these
three loops in the proposed IMC-PI’D controllers.
Notice that since closed-loop of loop 1 for the proposed
control structure is third-order while the GMC is
second-order, thus, 0.1 hr is selected for the loop 1 of the
proposed control structure and 0.15 hr is selected for the
GMC.

Several measurement lags and measurement noise
are added to each loop to simulate the dynamics with
real measurement devices. These include a double first
order lag with 0.005 hr time constant in the carbon loop,
two first order lags with 0.001 hr time constant in the
dissolved oxygen loop and also in the gas phase oxygen
loop. Besides the measurement lags, two Gauss
distributed noises are added in the measurement of DO
(full scale of 0~2 ppm with 5% noise standard deviation)
and measurement of exhaust gas (full scale of 0~100%
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with 2% noise standard deviation). The simulation
results with feed-rate error are shown in Figure 8. The
deviation of state S in the proposed control structure is
smaller than the GMC’s. The trajectories of the states of
the proposed control strategy are similar to the
performance of the GMC. However, from Figure 9, the
proposed control strategy gives better control
performance for the worst case condition (i.e.,
combining of several mismatches in the model
parameters all together). The amount of product loss is
up to 37.5% by GMC strategy in comparison with the
case when all the model parameters are correctly known.
However, the product loss of the proposed strategy is
only at 0.093%. Moreover, an upper limit in K;a is
assumed to compare the compensating effect of oxygen
transfer in the proposed and the GMC controllers.
Although the proposed control strategy reaches to
oxygen-limiting earlier, the performance of the overall
response is better than the GMC’s. This simulation
result is demonstrates in Figure 10. However, in the
oxygen-limiting case, the amount of product loss is also
up to 4.84% for our proposed strategy.
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Figure 8. State trajectories by different control
strategies for feed-rate error.
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Figure 9. State trajectories by different control
strategies for model parameter mismatches.
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Figure 10. State trajectories by different
control  strategies for ~model parameter
mismatches in combination with
oxygen-limiting.
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4. Conclusion

In this investigation, the control strategy for an
important bioprocess (HCDC process) is studied.
Although, our object is to build a simple but robust
methodology, the process considered as a multivariable
system is necessary due to two essential substrates
influencing the process simultaneously. An optimal
feedforward controller (FFC) is built first, and then
through the system analysis, the new control strategy for
the feedback control loops is proposed. The overall
control strategy is to combine an optimal feedforword
controller with a multiloop SISO feedback controller.
Since each feedback loop is nonlinear and time-varying,
multiple-model by fuzzy rule is used such that the
proposed control structure is very simple to build and
implement. The scheduled feedback controller for each
loop is tuned using IMC principle. In order to reject
load disturbance from model mismatches, a PI’D
feedback controller form is designed. Through
closed-loop simulation, this novel control structure is
shown to be not only performed better than GMC'’s but
also robust enough to the mismatches in the model
parameters as well as the model’s form. The production
rate of the proposed control strategy is over 37.5% than
the GMC’s. With the existence of the oxygen transfer
limitation, this structure is able to let the production
following the nominal profile by adding an override
control scheme in the proposed control strategy.
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