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Abstract

This paper presents iterative estimation algorithms to deal with parameter estimation of
continuous Hammerstein and Wiener models. These two simple classes of blocked-oriented
nonlinear systems consist of a nonlinear static block and a linear dynamic block in cascade.
The internal variable between the two blocks is inaccessible to measurement so that the model
parameters cannot be estimated by the conventional least-squares approach merely based on
input and output measurements. To overcome this difficulty, the proposed algorithms are
started by an initial guess of the internal variable and the resulting parameter estimates
converge rather fast to their accurate values in an iterative manner. The use of a
time-weighted integral transform can eliminate time derivatives of the variables in the model
equation and renders the algorithms robust with respect to noise and model structure
mismatch. Moreover, it ensures the convergence and accuracy of the algorithms to a great

extent.

1. Introduction

Most of chemical processes are continuous and
nonlinear. Identifying such processes as linear
ones is often limited to a narrow range of
operation. A remedy is to assume block-oriented
nonlinear models such as Hammerstein and
Wiener types [1]. Two such examples are a valve
characteristic with a linear dynamic process and a
chemical reaction followed by measurement of pH
[2].

A Hammerstein model consists of a nonlinear
static element followed by a linear dynamic
system, whereas a Wiener model is constructed by
a linear dynamic system followed by a nonlinear
static element. Huang et al. [3] and Lee and Huang
[4] proposed to identify a continuous
Hammerstein model and a continuous Wiener
model, respectively, wusing relay feedback
experiments.  Their methods employ an
optimization procedure to find the inverted
nonlinear function that restores symmetric cycling
of the output of the relay system. With the
nonlinear function given, the internal variable can
be calculated and the linear dynamic part can then

be identified using any available linear technique.
Some limitations of these methods are that the
nonlinear static element must be monotonic and
the computation burden is quite heavy.

Voros [5] developed an iterative scheme to
identify a discrete Hammerstein model. The same
idea was later extended to identification of a
Wiener model [6]. In his approach, the nonlinear
system is modeled as a linear difference equation
in conjunction with a nonlinear polynomial
function. The entire equation is arranged so that
the conventional prediction-error method is
applicable to parameter estimation provided that
the internal variable is given. The iteration
procedure is then started by an initial guess of the
internal variable. At each iteration step, the
internal variable is updated using a recursive
formula involving current estimates of the
parameters and the internal variable. The major
disadvantage of Voros’s approach is that the
convergence and accuracy of parameter estimates
are not warranted especially when noise is present
or the model structure (orders and delay) is not
correct.
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Figure 1. Two classes of block-oriented
nonlinear systems.

In this work, we apply Voros’s idea on discrete
iterative estimation to identify a continuous
Hammerstein or Wiener model. A time-weighted
integral transform is incorporated into the iterative
estimation algorithms to enhance the convergence
and accuracy. Furthermore, the resulting method is
robust with respect to noise and model structure
mismatch.

2. Nonlinear Systems Description

Here, we consider continuous identification of
two quadratic block-oriented nonlinear systems,
i.e., the Hammerstein model and the Wiener model.
The two models are characterized by the cascade
connection of a linear dynamic block and a
nonlinear static block as depicted in Fig. 1. In the
Hammerstein model, the nonlinear static block
receives the input signal u(#) and sends the
converted signal to the linear dynamic block. In
the Wiener model, the nonlinear static block
receives the signal from the linear dynamic block
and generates the output signal y(f). The signal
between the linear dynamic block and the
nonlinear static block is called the internal
variable x(f). It is assumed that the input and
output variables are measurable whereas the
internal variable is inaccessible to measurement.

Because the internal variable x(¢) is unknown,
the conventional least-squares method for
linear-in-parameter estimation is not applicable.
Obviously, the resulting linear regression equation
must consist of combinations of parameters and
the unknown internal variable. This difficulty can
be overcome by estimating the model parameters
with an assumed estimate of the internal variable
and updating it in an iterative fashion as will be
elaborated later.

A T P

3. Identification of Hammerstein
Models

The dynamic part of the Hammerstein model
relating the internal variable x(f) to the output
variable y(f) can be described by the following
linear system equation:

a,y @)+ a,y )+ yO)
+9(1)=b,x"(e~d)+b, <" D-d) (1)
+ ot b xW(e—d)+byx(t—d)

where a, and b, are model parameters, n and m

denote the system orders, and d is time delay.
Moreover, we assume that the static part relating
the input variable u(¢) to the internal variable x(7)
can be approximated by a polynomial:
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where p denotes the order of the polynomial and
¢, are also model parameters. Without loss of

generality and from the viewpoint of the
input-output relationship, the parameter b, can

be arbitrarily assigned to be 1 and allow ¢, to
account for the gain of the model.

Substituting Eq. (2) into the x(t—d ) term of
Eq. (1) and rearranging the resulting equation
gives rise to

)= —Z": a, 7o)
1.1/’=1 , 3)
+ Z_; bt -d)+ z_; ¢; [ut-a)Y

Equation (3) constitutes a linear regression
equation provided that the variables y(?), u(?), and
x(f) are given. However, there are two difficulties
involved in least-squares parameter estimation
based on this equation. First, time derivatives of
these variables are not available. Second, the
internal variable x(¢) is not measurable. The first
difficulty can be eliminated by applying an
integral transform on the equation, while the
second difficulty can be overcome by performing
the least-squares estimation procedure in an
iterative manner.
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4. Identification of Wiener Models

The Wiener model is described by

6)s a0+ ) +()
bmu("')(f —d)+ bm_lu('"_l)(t —d)+- 4
+ blu(])(t — d)+ bou(t - d)

and
y(t)=é:c,- <o)y )

Equation (4) relates the input variable u(f) to
the internal variable x(f) whereas Eq. (5) relates
the internal variable x(f) to the output variable y(?).
Without loss of generality, we let ¢, =1 and

obtain the following expression:
P .
2(0)=3(0)- 2 e, ) ©)
Jj=2

Substituting Eq. (6) into the x(¢) term in Eq. (4)
yields

#0)=-Ya )
- , (7
+ Zbiu(i)(t - d)+ Zci [x(t)]’
j=0 j=2

Equation (7) constitutes a linear regression
equation for the Wiener model and results in the
same difficulties encountered in least-squares
parameter estimation of the Hammerstein model.

5. Time-Weighted Integral Transform

To deal with the time derivatives in Eq. (3) and
(7), we employ the time-weighted integral
transform proposed by Hwang and Lin [7]. The
ith-order integral transform is to convert a
continuous signal f(¢) over the time interval

[ta,t,,] into a real number:

1A= Fitaoty)= ['wO @) () ®)

a

where the superscript (i) denotes the ith-order
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derivative of the weighting function w(t) with
respect to time. The zeroth-order transform of
£9) can be derived as the following form:

(-1) % 9)

[0, )7 ,)- w0, ) 0, )

Suppose that the following weighting function
is proposed:

wle)= (=2, (e —1,)" (10)

It is apparent that for i <n

Then all initial and final states of the signal in Eq.
(9) can be eliminated. As a result, it reduces to

Ly OO = VT O =) EG) A

Taking the zeroth-order transform on both sides
of the Eq. (3) and applying Eq. (10) gives rise to
the new regression equation for the Hammerstein
model:

Yoltasts) = 84 (t0ts)" 6, (12)
where
eyt ] e
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Similarly, we obtain the regression equation for
the Wiener type from Eq. (7) as

Y()(taﬂtb)=¢w(taﬂtb)rew (13)
where
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A simple approach for least-squares parameter
estimation is to use Eq. (12) or (13) to generate a
large number ( N>>m+n+p ) of linear

regression relations by choosing different time
intervals (or horizons) for integration. We
recommend choosing

t,(k)=d+0.1(k-1)A
t,(K)=t,(k)+A; k=12 N (14)

Each time horizon starts from a different 7, (k)

and has the same length A.
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6. Iterative Estimation Procedure

The remaining problem in Egs. (12) and (13) is
that the internal variable is unknown so that the
conventional least-squares parameter estimation
method is not appropriate. This problem can be
circumvented by the iterative estimation procedure
described as follows. First construct Eq. (12) for
the Hammerstein model or Eq. (13) for the Wiener
model with a guess of the internal variable. A
convenient guess is the measured input variable
for the Hammerstein model and the measured
output variable for the Wiener model. This in
conjunction with Eq. (14) gives rise to the first
estimates of the model parameters. The internal
variable can now be updated using Eq. (2) for the
Hammerstein model and Eq. (6) for the Wiener
model. The preceding step is then repeated to give
a new set of parameter estimates. This iterative
procedure is continued until the parameter
estimates converge.

Two issues arise, i.e. convergence and accuracy
of the iterative algorithms. For the iterative
algorithms being useful, the parameter estimates
need to converge to the accurate values. The
advantage of our algorithms is that the
convergence and accuracy can be greatly
improved by using a large value of the estimation
horizon A. A plausible reason is that if Ais
sufficiently large, at each iteration the algorithms
utilize a sufficient amount of information over the
time horizon A about the system, thereby ensuring
convergence and accuracy.

7. Simulation Examples

Three examples are employed to evaluate the
proposed iterative algorithms. The A values of the
three examples are chosen to be 15, 20, and 5. The
model orders and delays are assumed given (not
necessarily correct). The order of the polynomial
for each example is arbitrarily set to 3. The input
signal for identification is a white random signal
varied at time instants k7 ( T7=1 and
k=0,1,2,--). The magnitude of the input signal
should be large enough to excite the nonlinear
static property of the system. To test the
robustness of the algorithms, measurement noise
is added to the output variable for the first two
examples with the noise-to-signal ratio (NSR)
defined as the standard deviation of the noise
divided by the standard deviation of the output
signal. The third example is under noise-free
conditions.
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Figure 2. Comparison of the coefficients of the
polynomial estimated in the iterative procedures
of example 1.

Example 1

2y0(0)+ 59 1)+ 4" 0)+ 2(0) =
- (e-2)+x(-2)
x(0) = ule)+ 15l ~3[ul)]

This example is a Hammerstein system. The
NSR is 10%. Our algorithms with n = 3, m = 1,
and d = 2 vyield fast convergence and high
accuracy as depicted in Fig. 2. This plot shows
that our algorithms converge quickly to rather
accurate values of the model parameters in five
iterations. The final parameter estimates of the

Hammerstein model are a; = 2.0564, a, =
5.0415, a; = 4.0188, b =-09878 , ¢, =
1.0028, ¢, =1.5197, and c¢;=-2.9357. For a

comparison, we employ the iterative approach to
identify a discrete version of the Hammerstein
model. For this purpose, the same input-output
data are sampled at 7 =0.25 and the exact
orders and delay are assumed to perform the
least-squares parameter estimates. For discrete
identification, the  ordinary  least-squares
algorithms at each iteration require merely data at
individual time instants. Consequently, the
algorithms converge to inaccurate parameter
estimates due to the presence of measurement
noise as indicated in Fig. 2.

We further investigate the robustness of the
proposed algorithms with respect to model
structure mismatch, i.e. incorrect orders or delay.
Assuming a reduced order of n = 2, our algorithms
still lead to very good model predictions as
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Figure 3. Comparison of the actual response of
example 1 with the model predictions obtained
by the proposed algorithms with reduced order.

revealed in Fig. 3. Note that an input signal used
for model validation is different from the test
input.

Example 2

3xD(e)+ 4xV(t) + x(r) = 0.5u(t - 1.5)

y(t) = x(t)— 0.5[)6(1‘)]2 + 2[x(t) ¥

This example is a Wiener system. The NSR is
5%. Our algorithms withn =2, m=1,and d = 1.5
yield fast convergence and high accuracy as
depicted in Fig. 4. This plot shows that our
algorithms converge quickly to rather accurate
values of the model parameters in ten iterations.
The final parameter estimates of the Wiener model
are a, =2.9649, a,=39991, b, = -0.0039,

by =04998 , ¢, =—0.4727, and ¢, =2.1814 .

On the contrary, the discrete identification without
using the integral transform results in slow
convergence and poor parameter estimates as
indicated in Fig. 4.

Figure 5 verifies the robustness of the proposed
algorithms against incorrect delay. With the wrong
setting of d = 0, the algorithms still give
satisfactory model predictions.

Example 3 is a nonlinear CSTR system
discussed by Henson and Seborg [8] and Lee and
Huang [4]. This system is neither Hammerstein
type nor Wiener type. However, the proposed
algorithms can arrive at a second-order
Hammerstein ~ model  with a, =0.0724
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Figure 4. Comparison of the coefficients of the
polynomial estimated in the iterative
procedures of example 2.
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Figure 5. Comparison of the actual response of
example 2 with the model predictions obtained
by the proposed algorithms with incorrect
delay.

a, =0.2958 , b, =0.0028 , ¢, =5.8589x107

and ¢, =-7.7572x10% . The validity of the

identified model is demonstrated by the close
agreement between the actual response and the
model predictions as seen in Fig. 6. On the other
hand, the linear model shows a poor fit to the
actual response.

8. Conclusions

It has been demonstrated that the proposed
iterative algorithms work well for a variety of
process dynamics and test conditions. The
algorithms possess satisfactory convergence and
accuracy by selecting sufficiently large estimation
horizon A. The use of the integral transform also
intensifies the robustness with respect to
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Figure 6. Comparison of the actual response with
model predictions for example 3.

measurement noise and model structure mismatch.
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