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Abstract

A model-based autotuning system with two-degree-of-freedom (2-df) control is pre-
sented. This 2-df control system presented provides capabilities of set-point tracking
and load rejection as well in one single system and the two control objectives can be
considered independently for design. A closed-loop system is presented to generate an
excitation input sequence for system identification. The closed-loop system aforemen-
tioned consists of an control algorithm to eliminate unknown but constant disturbances
during identification and guarantee the input to have a zero mean. The identification
method is derived from an intermediate stage of the sub-space identification algorithm.
From which, an impulse response sequence of the process can be computed and a re-
duced order model is then identified. The effectiveness of this proposed 2-df autotuning
system is demonstrated with simulation results.

1. Introduction

Autotuning of PI/PID controllers using relay feed-
back [1] becomes popular nowaday. It includes estima-
tions of ultimate gain and ultimate frequency or even
parameters of transfer function model [3] to apply to
different tuning methods. Regarding the controller de-
sign or tuning in these autotuning systems found in
literature, the resulting system cannot be optimal for
both set-point tracking and disturbance rejection si-
multaneously in one simple feedback system. There-
fore, in the design of a conventional feedback control
system, a compromise has to be made between the set-
point tracking performance and disturbance rejection
performance because these two objectives are conflict-
ing. Unfortunately, the trade-off between them is not
easily made due to the lack of clear and simple crite-
rion. To overcome the difficulty and improve the con-
trol performance, a control system with two-degree-of-
freedom (2-df) can be used. For example, Tian and
Gao [7] proposed a double-controller scheme, where a
controller for set-point following and a controller for
disturbance rejection can be designed independently.
Although their system is theoretically sound, a major
drawback of Tian and Gao’s system is the complexity
of the system in implementation.

tCorresponding author. E-mail:jcjeng@ntu.edu.tw

In this paper, a new model-based 2-df controller
design is presented. The 2-df controllers are similar to
the double-controller of Tian and Gao [7] but simpler
and has very clear link to the identification of dynamic
model and the objectives of the control. In order
to identify the model, an excitation input sequence
similar to the pseudo-random binary signal (PRBS)
is used to activate the process under closed-loop.
The excitation input is generated under a proposed
closed-loop, which monitors the mean of the outputs
to compensate for unknown but constant disturbances
during the identification stage. Using the collected
input and output data, the identification algorithm is
derived from an intermediate result of the sub-space
identification method [8]. From which, a sequence
of impulse response of the open-loop process can
be obtained and a reduced order model in terms
of FOPDT or SOPDT dynamics can be identified.
Based on the identified model, a 2-df control structure
simpler than the double-controller scheme of Tian
and Gao [7] is proposed. The effectiveness of this
proposed autotuning system will be demonstrated
with simulated examples.

2. 2-df control structure

The structure of proposed 2-df control system is as
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Figure 1: The two-degree-of-freedom control system

shown in Fig. 1 where Gp(s), Gc(s) and W (s) desig-
nate the transfer functions of process, controller and
desired set-point response, respectively. Also, Gp(s)
designates the process model and G, (s) = Gg(s) e0s
where ég(s) is the delay-free portion of the model.

In the structure of Fig. 1, the set-point R has two
paths to the feedback loop. One passes through W(s)
and a dead time of the model to become the actual
set-point of the feedback loop. The other path passes
through W (s) /G‘g(s) and then is added to the con-
troller output. Thus, the closed-loop responses for set-
point (R) and load input (L) can be written as:

¥~ WEGEGE” | WEGH)
R 1+ Ge(s)Gyp(s) [1+ Ge(5)Gyp(s)]G(s)

y Gp(s)

L 1+4Gd(s)Gp(s) )

It can be seen from Eq.(2) that the load response of
the closed-loop system is determined only by the con-
troller G, and has been separated from the set-point
response. Therefore, the controller can be designed
independently to achieve optimal performance for dis-
turbance rejection (e.g. minimization of performance
index such as IAE, ISE, ITAE, -- ).

Regarding the set-point response, from Eq.(1) and
with a perfect process model (i.e. G,(s) = Gg(s)e_és),
it becomes:

g _ W(S)GC(S)Gp(b’)e_és n W(S)e—és
R 1+ GC(S)GP(S) 1+ GC(S)Gp(s) (3)
= W(S)e_és

Equation (3) clearly indicates that the set-point re-
sponse is independent of the controller G.(s) and, af-
ter the process dead time, can be assigned as any de-
sired response by specifying W (s). Theoretically, the
desired set-point response, W(s), can be arbitrarily
given. However, in order to make W (s)/ Gg(s) be prac-
tically realizable, the order of W(s) cannot be smaller
than that of ég(s)

With the proposed control structure, the control of
set-point tracking and disturbance rejection can be de-
signed individually, and achieving optimal performance
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for both objectives becomes possible. Furthermore,
with a good process model, the set-point response thus
obtained is similar to that resulted from Smith predic-
tor design [5] so that the process dead time can be
effectively compensated. An inherent drawback of the
Smith predictor is its performance sensitivity to the
process model. As we will show below, the proposed 2-
df control structure is not only very effective, but also
more robust than the Smith predictor.

To demonstrate the effectiveness and robustness
of this 2-df control structure, consider a process
of Gp(s) = e /(s +1). To design the 2-df con-
trol, the desired set-point response is picked as
W(s) =1/(s+1). In addition, the controller G. used
in the feedback loop is a series PID controller tuned
by minimum IAE formula for disturbance rejection [4],
which results in k. = 0.69, 7 = 1.54 and 7p = 0.70.
On the other hand, in the Smith predictor design
using direct synthesis method, this desired set-point
transfer function leads to a PI controller with k. = 1
and 7 = 1. A unit step change in set-point at ¢t = 0
and a unit negative step change in load disturbance at
t = 20 are introduced as excitation signals. Figure 2(a)
shows the responses of these two control schemes with
a perfect process model. As the way they have been
designed, the set-point responses of the two systems
overlap each other. Moreover, the load response of
the 2-df control system is better than that of the
Smith predictor. To simulate the process uncertainty,
assume the steady-state gain of the process deviate
from its nominal value of 1 to 0.7 and all the controller
settings are kept unchanged. Figure 2(b) shows the
resulting responses of these two control schemes. The
2-df control structure has much superior responses
for both set-point tracking and disturbance rejection
than those of the Smith predictor, indicating that
the proposed 2-df control structure is less sensitive to
model error.

3. Identification of process model

To apply the 2-df control structure as shown in
Fig. 1 presented in the previous section, a model of
the process is required. Usually, high-order processes
are represented as reduced order dynamic models
such as first-order-plus-dead-time (FOPDT) and
second-order-plus-dead-time (SOPDT) for simplicity.
In addition, higher-order process models are not
suitable for the proposed 2-df design because, if a
high-order model is used, the W(s) has also to be
high-order so that the set-point response will be very
sluggish. Therefore, a method for the identification
of reduced order process model is presented in this
section. This proposed method identifies the model
through estimation of impulse response sequence of
the process, where the algorithm is derived from an
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Figure 2: Comparisons of control performance (a) per-
fect process model (b) process gain deviating from 1 to
0.7

intermediate result of the sub-space identification
method. The details are described as the following.

3.1 Estimation of impulse response sequence

The identification of a dynamic system is to find a
sequence of h(i) so that the output of the system can
be expressed as a sum of moving averages from the
input as the following.

.
y(k) = > h(k—i)u(i) (4)

i=—00

where y and u denote the system output and input,
respectively. This sequence of h(i), i = 0,1,2,--- is
called as impulse response sequence or weighting se-
quence. For open-loop stable system, this sequence
will decay to zero after some ¢ > p and the system
output can be expressed as:

.
y(k) = " h(k - iu(i) (5)

i=k—p

There are a number of obvious advantages of the im-
pulse response sequence model from the viewpoint of
system identification [2]. For example, the determina-
tion of the impulse response sequence requires less a
prior knowledge than do the parametric models, and
this model can be identified more satisfactorily in the
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presence of noise. The typical method for identify-
ing the impulse response sequence is the least-squares
estimation. First, the input u(t) is used to continu-
ously drive the system and the sampled input sequence
{u(i)}, for 0 <4 < m+ p where m > p, and output se-
quence {y(i)}, for p <i < m+ p, are collected. Then,
using the observed input-output data in Eq.(5), one
can set up a set of m + 1 equations written in the vec-
tor form as:

y =Uh (6)
where
y = ), yp+1), -+, ylp+m)"
h = [h(0), h(1), -, h(p)]”
u(p) up—1) - u(0) (7)
u(p+1) u(p) s (1)
U = . . )
u(p—.i—m) u(p—l-;n—l) u(m)

Thus, the unknown parameter vector h can be esti-
mated by the method of least-squares as:

h = (UTU) Uty (8)

However, before proceeding the estimation, the value
of settling time parameter p must be chosen in advance.
To obtain the accurate result, p should be picked ac-
cording to the condition k(i > p) & 0, which may result
in some complexities of computation. Because, usually,
we may repeat the solution with progressively increas-
ing p values until a satisfactory fit has been achieved.
However, a large p increases the computational diffi-
culties associated with high order matrix inversion in
Eq.(8).

To overcome computational difficulties mentioned
earlier, an alternative algorithms is then presented to
identify the impulse response sequence. The main idea
is that the future output can be represented by the past
input, past output and future input. First, let the time
before and after sampling instant m be referred as past
and future, respectively. Then, given recorded process
inputs and outputs, the Hankel matrices of past input
(UP), past output (YP), future input (UY), and future
output (Yf) can be written as:

AT iy
U? = . ; 9)
u(m—1) u(m) u(m +ln —2)
y(0)  y(1) y(n—1)
—_— y(.l) y('2) y(ﬁ) (10)
ym—1) ym) - ym+n-2)
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u(m) u(m +1) u(m+mn—1)
Ut - ufm+1) u(m+2) u(m +n)
u(2m -1 u(2m) u(2m + n—2)
(11)
y(m)  y(m+1) y(m+n—1)
e y(m+1) y(m+2) y(m+n)
y(2m —1) y(2m) y(2m + n—2)
(12)

where n > m. As a result, the predicted future output
can be represented as:

ur
Y/ =" oY eV | yr (13)
u/

The parameter matrix [@Y" @Y" @Uf] is found to
minimize the prediction error of ||[Y/ — Y/||? and its
least-squares solution is given as the following:

Y @Y oV'|=y/XT(xxXT)! (14)

where
ur
X=1]YP (15)
u’

It is found that ®Y’ thus obtained is a lower block
triangular Toeplitz matrix as the following:

eu’ _— _eUf]
L% 14,5=1,2,-,m
) 0 o --- 0
7 0O 0 - 0 (16)
— Z9 Z1 0 e 0
| Zm—1 Zm—2 -+ 21 O

In fact, by following the N4SID algorithm [8] of
subspace identification, a state space process model
(A,B,C) can be obtained. It is interesting to find
that each z; in Eq.(16) equals CA*~'B from N4SID.
Notice that the impulse response sequence satisfies
h(i) = CA*1B, i = 1, 2, ---, for linear dynamic
system. In other words, the sequence of {z;} forms the
initial part of impulse response sequence of the system.
As a result, the impulse response sequence in Eq.(5) is
then taken as the first column of @Uf, that is:

{h(i)} =65,

With the initial portion of the impulse response se-
quence from Eq.(17), a reduced order transfer function

i=0,1,2 -, m—1 (17)
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model in terms of FOPDT or SOPDT of the following
can be found.

R kp e—Gs
FOPDT  G,(s) =
7s+1
(18)
R kp 6—03
SOPDT  Gy(s) =

(7’18 + 1)(7’28 + 1)

For FOPDT model, the impulse response sequence, af-
ter transient response, will decay with a constant ratio,
designated as ¢. Thus, we have:

h(l) —Ts/T
— == s 19
S (19)
where T is the sampling interval. For SOPDT model,
the impulse response sequence satisfies the following
relation after transient response.

h(i) = ¢1 h(i —1) + ¢2 h(i —2) (20)
where
T T
(]51 = e 71 +e T2
(21)
Ts Ts
¢2 = —e T1e T2

Consequently, the value of ¢ or ¢y, ¢ can be computed
from Eq.(19) or Eq.(20) using the initial portion of the
impulse response sequence in Eq.(17). Furthermore,
the time constant(s) of the model can be calculated by
Eq.(19) or Eq.(21) and the remaining portion of the im-
pulse response sequence is estimated using Eq.(19) or
Eq.(20). Calculation of the impulse response sequence
in this way can efficiently reduce the dimension of the
matrix in Eq.(14). After the entire impulse response
sequence is obtained, the steady-state process gain is
the summation of each weighting value as:

k, = Z h(i) (22)

Also, the dead time for FOPDT model can be com-

puted by:
9:/ (1—y;€—(t)>dt—r (23)
0 p

or, for SOPDT model,

e:/ooo(1—y;€—f))dt—n—fz (24)

where y;(t) is the unit step response of the process and
its sampled data is computed from:

ys(i) = Z h(j) (25)
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Figure 3: The closed-loop scheme for identification

3.2 Generation of excitation inputs for closed-
loop identification

To use this proposed least-squares method for com-
puting the impulse response sequence, the result is ac-
curate only when the input signal, u(¢), is uncorrelated.
It is straightforward that one can introduce a white
random noise to activate the process under open-loop
for the identification. However, process activation un-
der closed-loop is usually desirable to prevent process
output drifting away from its normal operation range
due to unknown disturbances. Therefore, a closed-loop
scheme to generate excitation input signal is presented
as shown in Fig. 3 for this identification. Although the
scheme shown in Fig. 3 is the conventional feedback
system, it can be directly applied to the 2-df structure
shown in Fig. 1.

In Fig. 3, a pseudo-random binary signal (PRBS)
is added to the controller output u.. The magnitude
of this PRBS introduced should be large enough
so that its sign will not changed by the controller
output. Then, the resulting signal is passed through
a relay element before it enters the process. As a
result, the process input, u, is still similar to a PRBS
with magnitude +a where a is the height of relay.
With this structure, random input to the process
can be generated under closed-loop operation and
the identification method aforementioned can then
applied.

3.3 Adaptation to unknown disturbance

During the identification stage, unknown distur-
bance could cause significant error in the identification
result. This error will in turn degrade the closed-loop
performance. ThereforAdaptation to unknown distur-
bance a complete autotuning system should include the
mechanism to eliminate the identification error caused
by unknown disturbance. To eliminate the effect of
unknown but constant disturbance, a bias value, up,
is introduced to the process input when the unknown
disturbance is detected. In other words, the relay
is shifted vertically by this bias value. A feedback
method to automatically update the bias value is pre-
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Eq. (26)
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Figure 4: The adaptive scheme for identification under
unknown disturbance

sented as the following.

Denote the integral of the process output over a pe-
riod P as S, ie. S = ftHP y(t)dt. Because the process
is activated by a PRBS, the average value of S, desig-
nated as S, over several successive periods should ap-
proach zero if there is no unknown disturbance. Based
on this hypothesis, the Student ¢ statistic is then ap-
plied for testing the S. Once the value of t statistic
falls outside the prescribed significance level, ¢, (e.g.
a = 5%), the above hypothesis is rejected and it is
recognized that some unknown disturbance has hap-
pened to the system. In case of k, >0, S > 0 (S < 0)
implies that a positive (negative) disturbance has hap-
pened and, hence, a negative (positive) bias has to be
introduced. The adverse results can be concluded for
the case of k, < 0. According to the analysis, the in-
troduced bias value has to be updated to eliminate the
effect of disturbance by the following rule:

up =it — sign(k,)vyS (26)

where v > 0 is the convergence rate. This adaptive
mechanism is shown graphically in Fig. 4. Such
adaptation of u; can make the process output oscillate
around its steady-state value automatically under un-
known but constant disturbance so that the proposed
autotuning can be proceeded successfully.

4. Illustrative examples
4.1 Example 1. FOPDT process

To show the procedures of proposed identification
method, consider the same FOPDT process described
in section 2. By the scheme of Fig. 3, a PRBS with
large magnitude is introduced to excited the system
and the relay height is set as 1 so that the process in-
put u is similar to a PRBS with magnitude +1. Mean-
while, the process input and output are collected with
sampling interval Ty = 0.5. The parameters for esti-
mating the impulse response sequence are chosen as
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Figure 5: Process output in example 1

m = 8 and n = 61, which means that the data from
t = 0 to t = 37 are used for identification. The ini-
tial portion of impulse response sequence estimated is
h =1]00000 0.3935 0.2387 0.1447], which implies
that the process belongs to FOPDT dynamics with
¢ = 0.6065 (or 7 = —Ts/In¢=1). Then, the entire
impulse response sequence is calculated and the model
is identified as G (s) = e~292% /(s + 1), which is almost
identical to the real process.

Assume, at t = 40, a step disturbance of magnitude
0.5 happened to the system. According to the scheme
shown in Fig. 4, this disturbance is detected from the
t statistic of S and then the bias u; has to be updated
using Eq.(26). Choosing v = 0.15, the value of wy
is converged after two iterations and its final value is
—0.504. The whole process output in this experiment
is as shown in Fig. 5. Then, the data collected af-
ter ¢ = 120 are used for identification again and the
resulting model is G(s) = 1.002e~2:9255/(1.004s + 1).
This result indicates that the proposed identification
method performs well even under the presence of un-
known disturbance.

4.2 Example 2. Third-order process

Consider a third-order process of the following:

6—1.53
(s2+10s+1)(25s+1)

Gp(s) =

For system identification, the same experiment as that
in example 1 is conducted. In addition, the parameters
for estimation of impulse response sequence are chosen
asm = 18 and n = 140. As a result, the initial
portion of impulse response sequence estimated is
h =1[00000.0044 0.0137 0.0209 0.0260 0.0295 0.0317
0.03300.0336 0.0337 0.0334 0.0328 0.0320 0.0310 0.0300].
It is found that this process can be represented by a
SOPDT model with ¢; = 1.727 and ¢ = —0.738, or
71 = 9.88 and 75 = 1.98. Then, the whole impulse
response sequence is calculated and the model is identi-
fied as Gp(s) = 0.998 e~ 1575 /[(9.88s + 1)(1.98s + 1)].

AT 567 P £

—— Proposed autotuning
----- Conventional autotuning

0.6
04f

o2 [f

20 30 40 50 60

Time

Figure 6: Closed-loop responses in example 2

Based on this identified model, the 2-df control
structure is applied accordingly. The desired set-point
response is picked as W (s) = 1/(s? + 1.6s + 1) which
is slightly underdamped to speed the response. For
disturbance rejection, an ideal PID controller is used in
the feedback loop and is tuned according to minimum
ITAE formula [6], which gives k. = 8.18, 7 = 4.38 and
7p = 1.70. Figure 6 shows the closed-loop responses
of this 2-df control system and also the conventional
PID autotuning system of Astrém and Higglund [1]
for comparison. It can be seen that both performances
for set-point tracking and disturbance rejection of the
proposed autotuning system are satisfactory.

5. Conclusions

A model-based autotuning system with 2-df control
has been proposed in this paper. For system identi-
fication, a closed-loop scheme is devised to generate
an excitation input similar to a PRBS to estimate the
impulse response sequence of the process and then
its low-order model is identified accordingly. This
identification can be done under closed-loop operation
as well as under the presence of unknown but constant
disturbances. Based on the identified model, a 2-df
control structure is presented to separate the controller
design for disturbance rejection from that for set-point
tracking in a closed-loop system. The inevitable
compromise between these two performances in the
conventional feedback system is no longer necessary.
With this structure, the disturbance rejection perfor-
mance can be optimized by designing the controller in
the feedback loop, and the set-point response can be
independently specified where the advantage of dead
time compensation can also be taken. The simulation
results have shown that this proposed autotuning
system is efficient and self-contained.
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