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Abstract

:Steady-state data reconciliation theories have been well developed and are easy to implement. In the
contrast, dynamic data reconciliation techniques are not so easy to cope with. Here, we propose a
new dynamic data reconciliation method by integration the differential-algebraic equations, which
transforms the differential-algebraic equations into algebraic constraints, combined with filtering the
measurement signals beforehand. It is easy to cope with compared with the other proposed methods.
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1. INTRODUCTION

Through the use of data reconciliation techniques,
the corruption of process variables due to
measurement noise can be reduced and the
reconciliation provides the more correct process data
information which is useful to improve the
understanding of the process and the control
performance etc. The general methodology can be
divided into three main steps: 1. Classification of
process variables and problem decomposition. 2.
Detection, identification, and estimation of gross
errors. 3. Measurement adjustment and estimation of
the unmeasured process variables. Therefore some
issues are associated with a general data
reconciliation problem including process
classification, gross error detection, identification,
and estimation etc. Formally, data reconciliation can
be defined as the estimation of measurement process
data variables to reduce measurement error through
the use of the temporal and functional redundancies.
Mathematically, data reconciliation is the optimal
estimation to a constrained least-squares or
maximum likelihood objective function. Reviews of
these methods and strategies have been proposed and
are introduced in the published books (Mah, 1990;
Madron, 1992; Romagnoli and Sanchez, 2000;
Narasimhan and Jordache, 2000). Dynamic data

reconciliation have been attracted more attentions
due to the facts that in the real processes there are
always variations of the process variables. Theories
of steady-state data reconciliation have been well
developed, whereas theories of dynamic systems are
fairly nascent and still needs to evolve. The
formulation of the dynamic data reconciliation can be
written as the following equations:

As mentioned above, the general data
reconciliation problem must satisfy minimizing an
object function, i.e. Eq. (1), where ;) are estimations,
y are measurements, G is measurement noise standard
deviation.

min @[y, y; o] )

The objective function subjects to Eq. (2), Eq. (3),
and Eq. (4) where g; is the differential equation
constraint, g, is the algebraic equality constraint, and
g; is the inequality constraint.

dy(v) .
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Methods like Kalman filter estimation, nonlinear
programming, integral approach..., etc. are adopted
to cope with the dynamic problems.

The Kalman filter estimation techniques are under

the broad umbrella of dynamic data reconciliation.
Under the processing of Kalman filter techniques, a
discrete dynamic system model is needed. The
drawbacks of the Kalman filter techniques are that it
cannot deal with the inequality constraints and a
precise process model is needed. It will result in bad
performances due to an inaccurate process model. In
dealing with the nonlinear dynamic systems
linearization which leads to inevitable model errors
is needed. Dynamic data reconciliation by the use of
nonlinear programming techniques is another widely
used estimation method. The general formulation of
the nonlinear dynamic data reconciliation problem
comes with prices. The computation burden is the
main drawback of this kind of methods, that’s why
these techniques have not been applied to industrial
processes. An integral approach method has been
proposed (Bagajewicz and Jiang, 1997). By the use
of polynomial approximation of the measurement
signals, it can obtain pretty smooth results compared
with most of the dynamic data reconciliation
methods. But it still is limited to linear system
dynamics and the approximating results may be not
so good if the measurement signals are more
disturbed.
Although it may be improved the performance by
increasing the polynomial order, but determining the
order of the polynomial still needs to try out and with
increasing order there will be a lot parameters and
huge matrices for reconciliation whereas increasing
the order doesn’t assure increasing the performances.
Here, we propose an integral approach combined
with filtering for dynamic systems. By integrating
the differential-algebraic equations, which actually
means material balances during the integrating
interval, we transform the DAE to algebraic
constraints. Then, the dynamic data reconciliation
problem can be solved readily by steady-state data
reconciliation theories. Due to the well de-noising
ability of the wavelet transformation, we treat the
measurement signals by the discrete wavelet
transformation before the data reconciliation is
underway.

2. WAVELET FILTERING

The discrete wavelet transformation (DWT) is
adopted to de-noise the measurement signals before
the reconciliation. The DWT can eliminate the
abnormal data in measurements and utilize the
temporally redundant information of measurements
to reduce the measurement errors. DWT employs
two sets of functions, called scaling functions and
wavelet functions, which are associated with low-
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pass and high-pass filters respectively, perform Eﬁeﬁﬂm

digital ~ filters. A time-scale  (frequency)
representation of a signal is obtained using digital
filtering techniques combined with up-sampling and
down-sampling (sub-sampling) operations. By the
Fourier transformation analysis of the wavelet
function digital filter, it has a band-pass like
spectrum as shown in Fig.1. Due to the design of the
wavelet functions, the highest amplitude of the filter
is equal to 3. Signal frequencies in the range of
amplitude equal to 5 all pass and those in the range
less than 3 pass partly through the filter. It is
customarily setting frequency at the 0.707 of the
highest amplitude as cut-off frequency, i.e. f.y, of the
high-pass filter. Different band-pass range comes
from the sub-sampling operations and it can filter at
the different frequencies desired. In Fig. 1, the cut-
off frequencies of the high-pass filter at different
levels of the wavelet transformation are represented
by fewi, fiwz, fows»..., etc, fy means the sampling
frequency. The exact value of f,, must be determined
by sampling frequency f; and the relations of each £,
and f; are listed in Table 1. In the other words, we
adopt DWT filtering the measurement signals at
different frequency levels to de-noise the
measurement signals. Then we need to determine
which level of wavelet decomposition shall we adopt.
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Fig. 1. Band-pass spectrum of wavelet function.

Table 1 Cut-off frequencies of different wavelet
decomposition

level
Wavelet Cut-off frequency
decomposition level (few)
1 0.25%f;
2 0.125%;
3 0.0625%f;
n 0.25%£%(0.5)"!

We determine the level of wavelet decomposition
by the use of the dynamic characteristics of the
dynamic system. It is known that the process itself is
like a filter and high frequency signals can be more
or less vanished. The main of the filter behaviour
comes from the dynamic characteristic time constant,
7. From the bode plot we can know how a signal of
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different frequencies can effect the process.
According to the bode plot of a system with time
constant equal to t shown in Fig. 2, the corner
frequency is equal to 1/t if it is an FOPDT dynamic
system. Then we set the cut-off frequency equal to ¢
times of the corner frequency. The value of ¢ can be
determined according to the existed frequencies in
the dynamic system. The cut-off frequency, f., can be
calculated by Eq. (5). The signals in the processes
are mostly low frequent, then we can regard the
frequencies exceeding the cut-off frequency as high
frequency noises in the measurement signals. After
obtaining the cut-off frequency, we can determine
which level of wavelet decomposition must be
reached and filter the measurement signals before the
reconciliation. We will illustrate the filtering
examples in the last part in this paper.
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Fig. 2. Bode plot of a system with time constant 7.

3. INTEGRAL-APPROACH RECONCILIATION

The dynamics of a material balance in a process
plant can be rep-resented by the following
differential-algebraic equations (DAE):

dh

T =Af 6
i (6)
Ct=0 7

In Eq. (6) and Eq. (7), h is the collection of variables
associated with the derivative term, f is the collection
of variables of the non-derivative term and A, C are
constant matrices from the algebraic part of the DAE
associated with the dynamic characteristic.
Integrating Eq. (6) and Eq. (7) between some time t;
and t,, we can get the following algebraic Eq. (8) and

Eq. (9).

t

n dh th
| —dt=A | fdt (8)
'[0 dt to

C | fdt= 9)

dt, Zz—jtnfdt , and we can
rearrange the integrations and get the following
matrix form in Eq. (10).

A -1 Z2
=0 (10)
C 0]| 7
We will see that the result is an algebraic constraint

and the following reconciliation procedure is to deal
with the integrating by Simpson’s rule.

The Simpson’s n+1 (n is even) points rule is shown
in Eq. (11).

I}; f(t)dt=§(f0 AL 26, ALy Ay ) - % (I
Define new variable H and F which represent the
collections of all measurements of all instruments
during the integrating time interval t, to t,. Assuming
there are k variables (k instruments) in h and m
variables (m instruments) in f. H and F is shown in
Eq. (12).

by 1 fi,
; ; 12)
hy tn fi tn
H=| F=| i
h f
k,to m,t0
_h kty _fm,tn

Then, the integration of Eq. (8) and Eq. (9) can be
represented as
Eq. (13) and Eq. (14).

2,=Q*F (13)
_o,rn (14)

Q and Q, are matrices shown as Eq. (15) and Eq. (16)
and s is the sampling time interval.

—
Q_5142~~41~. (15)
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Finally, we can obtain the algebraic constraint
represented by H and F.
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Let’s recall the general formulation of the steady-
state data reconciliation problem. There is usually a
model to describe the measurement variables and
usually the distribution of ¢ is normal distribution
with a process specific standard deviation. The
measurement model is shown in Eq. (18).

y=x+g (18)

y are measurement variables and x are true value of
measurement variables.

And there must be constraints to construct the
reconciliation problem. Assuming the constraint
matrix is A. It will satisfy Eq. (19).

Ax=0 (119)
Then, the data reconciliation problem is to

estimate x which satisfy the constraints and
maximize the likelihood estimation problem or

minimize the following objective function in Eq. (20).

min ()" 37! (%) (20)

Y. is covariance matrix of the measurement
variables.

The solution of the maximum likelihood
estimation problem can be obtained using the method
of Lagrange multipliers and is shown in Eq. (21).

wy-2AaTaz ATy lay @1

With Eq. (21), we can get the reconciled values of
the measurements at each time interval if we have
known the measurement signals y, constraint in Eq.
(17)and ¥,

In the theory, we use a batch-like wavelet filtering
and a moving- window integral data reconciliation in
each batch collection. The length of the batch
measurement numbers must be long enough to adopt
the valuable temporal redundancies. The length of
the integrating doesn’t need so long to obtain good
erformance.

Throughout this procedure, it can adopt the
temporal and spatial redundancies of the
measurement signals. As the moving-windows goes
on, we will get repeated reconciled variables at any
time instant. We average the repeated reconciled
variables as the final reconciled variables at every
time instant. The average procedure can be illustrated
as follows:

A T P

The length of the moving window is equal to the
length of integration points. Assuming there are n+1
integration sampling points (from t, to t,) and b
sampling points in a batch of wavelet filtering
(b>n+1).

We save the variables after each reconciliation as
the moving window moves on. It will execute b-n
reconciliation procedures in each batch. Reconciled
values will be repeated after the repeated
reconciliation procedures. Finally, we must average
the repeated reconciled values. The averaging must
be executed in two different ways according to F and
H. For F, the averaging can be done by Eq. (22). The
repeated reconciled values are stored like the first
matrix from the left in Eq. (22). After multiplying a
column vector of all elements equal to 1 it changes to
a column vector equal to summation of all repeated
reconciled variables at each time instant. Finally,
multiplying the third matrix from the left gets the
average values of the repeated reconciled variables.
For H, the average is performed in Eq. (23) whereas
the repeated reconciled values occur at the first and
final points.
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3. GROSS-ERROR DETECTION
Gross errors are briefly classified in three

categories: 1. true outliers, 2. process leaks, 3. biased
instrumentation. Outliers have been defined as
measurement values depart from the expected
distribution interval of the values. And it is usually
adopted the normal distributions for the measurement
values. Leaks, which are referred to some
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unexpected leaks in process equipments, lead to a
unbalanced mass conservation in the process. Biased
instrumentation is typically a constant value added to
the measurement values due to miscalibration or a
constant drift in the measurement values.

Here, we adopt the gross-error strategy proposed
by Bagajewicz and Jiang in 1997. Consider the
measurement adjustments for instrument i at time j
shown in Eq. (24).

Wl_] =Z1_] -Zl_]
zij is the measurement for instrument i at time j, ;. is

)

the corresponding reconciled value. Wj should
follow a normal distribution with zero mean.

E (wi. ) 0 25)

The sample deviation for Wj can be calculated by

Eq. (26)
S= L3 W..-W ’ 26
- ;jéo( ) (26)

W; is the mean of all Wy. Thus, the following

variable, Ry, follows a t-student distribution.

W,
W™
Ry

_S/\/n+1

Variable j will be suspected of containing a gross
error if the following Eq. (28) holds.

@7

Rt ) 28)

n is usually selected as 0.05 (95% confidence level).

The critical value of t.(n2) atn equal to 0.05 is 2.01.

4. Example

Here, we illustrate a four-tank system show in Fig.
as an example.

There are two main flows f5 ,f5 split into two
branches apiece. The four branches, f}, f;, f;, f;, flow
into four tanks respectively. Each tank has flow out
of it. The flow out of tank 3 is fed into tank 1 and the
one out of tank 4 is fed into tank 2.

X | | %
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Fig. 3. A four tanks system

The DAE of this example is showed in Eq. (29).
Parameters of the process are listed in Table 2.

dh
1_ [
A ? =2, 2gh1 +ay 2gh3 +f1

dh
2 _ [
A2 F =a, Zgh2 tay Zgh4 +f2
(29)

dhs

dh,

By linearization at nominal values we can obtain
the approximated time constant values of each tank.
The results are showed in Table 2. According to the
known time constants and setting ¢ equal to 10, we
can obtain the cut-off frequencies by Eq. (5), and the
results are listed in Table 3.

Table 2 Tank parameters

Symbol State/Parameters  Value Dimension
. [20.4; 20.4;

hy Nominal levels 11.5:11.5] cm

a Area of the drain  [3;3;2;2] com’

A; Areas of the tanks 1000 cm’

f flow into the tank 0.3:0.3; cm’/sec

! 0.3;0.3]
4 . [68; 68; 76.5;

T; Time constants 76.5] sec

g Gravitation constant981 cm/sec’

o; Standard deviation 0.015 em’/sec
of flow
Standard deviation

On 0.6 cm
of level

Assuming we measure all flows and levels, then
the DAE becomes a linear system problem shown in
Eq. (30). The standard deviations of the measurement
variables are listed in Table 2.
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A dh, .
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3 4t 33
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Table 3 Cut-off frequencies from the time constants

Dynamics Time Cut-off
constant frequency(Hz)

Tank 1 68 0.0234

Tank 2 68 0.0234

Tank 3 76.5 0.0208

Tank 4 76.5 0.0208

Table 4 Cut-off frequencies of different wavelete
decomposition level of sampling time equal

to 2 second
Wavelet Cut-off frequency
decomposition level  (f.) (Hz)
1 0.125
2 0.0625
3 0.03125
4 0.015625
5 0.0078125

Since the cut-off frequencies are known, we must
filter the measurement signals frequencies higher
than the values listed in Table 3. From Table 4, we
can know that the level of the wavelet filtering must
be chosen to 4-th level in order to filter frequencies
exceeding 0.0208 Hz or 0.0234 Hz.

4.1 Example 1

Assuming there are not any gross-errors, and all
the flows and levels are measured. The batch time
interval of the wavelet filtering is chosen to 105
points and the moving window time interval is
chosen to 21 points. We compare this method with
the other reconciliation methods, Kalman filter
estimation and an integral approach proposed by
Bagajewicz and Jiang in 1997. The minimum square
errors of these methods listed in Table 5 are
calculated in order to compare the reconciliation
results.
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Table 5 Minimum square errors of three methods

M.S.E. of Proposed  Kalman Integral

measurement filter approach
fi 0.00234  0.00474  0.00222
o) 0.00273 0.00842  0.00180
5 0.00505 0.01199  0.00217
fy 0.00625 0.01211  0.00326
f5 0.00198  0.00859  0.00320
fs 0.00154  0.01229  0.00229
Q 0.00127  0.00113  0.00094
Q@ 0.00149  0.00142  0.00175
a4 0.00107  0.00042  0.00196
qQa 0.00054  0.00036  0.00178
h 0.912 5.231 1.824

h, 1.159 6.517 2.632

h; 1.685 2.482 2.811

hy 0.660 2.146 1.293
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From Table 5, we can see the minimum square
errors of the measurement signals. Most of our
reconciliation results of the measurement signals are
superior to the others. The order of the polynomial is
chosen to 8 in the integral approach method proposed
by Bagajewicz and Jiang. The operation of the
Kalman filter estimation is under the condition
without model error and algorithms are introduced
briefly in the Appendix.
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Fig. 4. Reconciled results of tank levels

4.2 Example 2

In example 2, we illustrate the gross error
detection under the condition of measurement bias
and process leak. Assuming there is a constant bias
of 3 times value of the standard deviation in f; at
time equal to 140. Using the strategy mentioned in
section 3, the gross error is detected successfully
shown in Table 6. We can notice that if there is a
gross error in one of the measurements, the gross
error will be smeared into the other associated
measurements by the reconciliation procedure. If
there is a bias in f;, we can find that both f5 and q
exceed the detection criteria 2.01. But we can point
out that the gross error comes from the measurement
which has the biggest M.S.E. value. From Table 6,
we can point out that f} is with gross error. The same
results are found in the gross error detection of
process leak. Giving a process leak in tank 3, f;, f3, f;,
1> qs Will exceed the detection criteria whereas tank
3 is the most suspicious.

Table 6 Gross error detection with measurement bias
in i

Measurement Ry Measurement Ry

fi 1007 q 0.847
f, 1.033 g 1.791
f, 1.546 qu 0.332
f, 1708  h, 0.220
fy 2832 h 0.006
£ 0.038  hs 0.236
Q 2912 h, 0.262

. I - L s g iﬂﬁlﬁ?‘
Table 7 Gross error detection with process leak in

tank 3

Measurement Ry Measurement Ry

f 1.149 Q@ 0.701
f, 2.023 qs 3.606
f; 3.442 Qs 0.468
fy 0.500 h; 0.138
fs 1.199 h, 0.222
fs 2.772 h; 0.108
qi 2.6968 h, 0.121

5. CONCLUSIONS

This article has presented an integral approach to
cope with dynamic data reconciliation. Before the
reconciliation, a filtering procedure based on DWT is
involved to de-noise the measurement signals. The
integration is expanded by Simpson’s rule and the
repeated reconciled values are averaged. Through the
wavelet filtering by larger sampling points in a batch
during the procedure we utilize temporal
redundancies of the measurement signals and by the
moving window integral reconciliation in a batch we
utilize functional redundancies of the system. The
results are comparable to Bagajewicz and Jiang’s
integral approach and are superior to the Kalman
filter estimation. The gross error detection works
according to the detection theory proposed by
Bagajewicz and Jiang in 1997.
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