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Abstract

Robust H

o0

control for a class of linear time-delay systems is considered.

Improved

delay-dependent H , control criteria are proposed to minimize the H , -norm bound via LMI optimization

approach. Based on the result of this paper, model transformation and bounded techniques on cross product

terms are not used in finding the delay-dependent results.
approach is used to design the robust H  state feedback control.

illustrate the effectiveness of the main results.

1. Tutroduction

It is well known that the existence of the delay in a
dynamic system may cause instability or bad system
performances in open and closed-loop systems [5]. In
many practical systems, time delay is often encountered in
various systems, such as chemical engineering systems,
distributed networks, inferred grinding model, manual
control, microwave oscillator, neural network, population
dynamic model, ship stabilization, and systems with lossless
transmission lines. Furthermore the system model always
contains some uncertain elements; these uncertainties may
be due to additive unknown noise, environmental influence,
poor plant knowledge [7]. Hence the robust control is
developed to stabilize the uncertain time-delay systems; see
for example, [2-5, 8, 10-11].

In the recent year, the H_ control problem for

time-delay systems has been an active topic in control
system theory [2-4, 10-11]. The H_, control was

proposed to reduce the effect of the disturbance input on the
regulated output to within a prescribed level.
Riccati-equation-based approach was proposed in [2, 4, 11]
for H_ control, but this approach is not easy to find the

minimal A _-norm bound () and the suitable controller.
In [3], the LMI approach had been used to design the H,
In [10], the
delay-dependent H_ control criteria were proposed by

control for a given H_-norm bound (y).

using the Park inequality [9]. The bounded inequality
technique [9] will caused some conservatism and the LMI
optimization results in [10] will cause the high state
feedback gains; see the Example of [10]. In the past, some
model transformations are wused to obtain the
delay-dependent  stability criteria, but the model
transformation techniques will also cause conservatism for
the stability analysis. In this paper, the H, control is
developed without using model transformation and bounded
inequality technique on related cross product terms. LMI
optimization approach and numerical searching algorithm
will be used to find the minimization of H_-norm bound.

Some numerical examples are given to illustrate the use of

Linear matrix inequality (LMI) optimization
Some numerical examples are given to

the results.

Notation. For a matrix 4, we denote the standard
Euclidean norm by ||A||, the transpose by A’ , rank by
rank(A4) , minimal eigenvalue by A__ (A), maximal
eigenvalue by A_ (A), and symmetric positive (nagative)

definite by 4>0 (A<0). [ means identity matrix.
A< B means that matrix B — 4 is symmetric positive
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semi-definite.

|| f (tm means the Euclidean vector norm at time
t L, [O,oo) stands for space of square integrable functions
on [O,oo) .

functions from [-4,0] to R".

C, means that the set of all continuous

2. Problem formulation and main results
Consider the following time-delay system:

x(t) = Alx(t)+ Azx(t - h)+ Blu(t)+ Bzw(t) , (1a)
x(t)=p(t), te[-n0], (1b)
z(t) = Cx(t)+ Du(t) , (1c)

where xeR", X, is the state at time ¢ defined by
x,(0)=x(t+0), VOe[-h0] , ueR" is the
weR' is the disturbance input, ze R’ is the regulated
output, 4 eR"™, A4,e R"", B eR"™, B, eR",
CeR", and DeR"" are constant matrices, £ >0 is
the time delay, ¢ <€ C, is the initial valued function.

input,

Definition 1. [11]
Consider the system (1) with u(r)=—Kx(t) and the

following conditions are satisfied:

(1) With w(t)=0, the closed-loop system (1) with
u(t) = —Kx(t) is asymptotically stable.

(ii) With zero initial condition (i.e. ¢ =0), the signals
w(t) and z(¢) are bounded by
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for a constant y > 0. In this condition, the system (1) is
said to be stabilizable with disturbance attenuation y, and
the control law

u(t) = —Kx(t) is said to be an H_ control for system (1).
The parameter ) is said to be the H_ -norm bound for the
H state feedback control.

Systems (1) with u(r) = —Kx(¢) can be rewritten as

Hll RAZ +Q1 -0,
A21Pl + Q]T _Qz _Pz + Qz + Qzl
QO = h- Q]T h- er
BIP -0, 0,
_h'P3(A1_B|K) h’P3A2
has a solution y>0 , matrices P eR" >0 ,

PeR"" >0, PRLeR" >0, Q eR"™,
0, e R"", where
Hu =(A1 _BIK)TF)I +P1(Al _BIK)+ Pz _Ql _QIT
+(c - DK)' (C - DK).
Then the system (1) is stabilizable by H

Q2 em}lx}l , and

control
u(t) = —Kx(t) with disturbance attenuation y = ﬁ .
Proof.

Define the Lyapunov function as

V(x, ) =x' (t)Rx(t)+ Jq x' (S)P2)C(S)dS

1=h

* J.U; .[/'7 "(x, )P(x, s, (4)

where P=P"' >0, i=12,
n(x,)=5(t) = (4, - B,K )x(e)+ A,x(e — 1)+ B,w(r) .

system (2), we have

.[(,,, 7(x, )ds = Jih (s)ds = x(t) - x(t - 1).

The time derivative of V' (x,) in (4), along the trajectories

By the

of (2) is given by
V(x,)= " (O)Px(e)+x" (0)Pi(e) + 2" () Px(e)
—x" (1= h)Px(e—h)+h-n' (x, )P (x,)
[ P, s
=[(4, - B K )x(t)+ A,x(t — 1)+ B,w(t)] Px(r)
"( )P4, - B K)x(e)+ A,x(t = )+ B,wlr)]
X! (6)Px{e) = x" (¢ = )P x{e ~ 1)

+h-[(4, - BK () + A,x(t—h)+ Bowl)] P,

P T e &
i(t)= (4, - B,K)x(t)+ A,x(t - h)+ B, (1),
2(t)=(C - DK )x(¢). 2)
For a given controller gain K € R™", the H_-norm
bound can be solved from the following result.
Theorem 1. Consider the system (1) with u(r)=—Kx(r).

Suppose the followmg optimization problem:
7 (3a)

yPPPQQ

subject to the followmg LMI:

h-Q, PBB,-0/ h-(4-BK)P
h-o, O h- AP,
-h-P, h-Q] 0 <0,(3b)
h-Q, -y h‘BZ"P;
0 h-PB, —h-P, ]

(4, = B,K)x(e)+ 4,x(t = 1)+ B,w(t)]
N JL,”T (x, )P (x, )ds

25" (o, [ [ nlx, )ds_x(t)”(t_h)}
+2xT(t—h)Q2[ [ e s = x(0) + x( _h)}
2w’ (t)Qg[ [ (e s = x(e) - h)} :

where Q,, O,, and Q,,

are some matrices. Define a
function by
"(0)eAr)-7-

Tl =7, )+ 2 W (Owle) (52)
where 7 =y’. Note that z( ) (C DK ) ( ) we have
J(x(e)wlt) = V(x, )+ x" ((XC - DK)'(C - DK x(r)
7w (ehwle)
() T 20

1 | x(e—n) x(t—h)
=— s, (5b)
Bl () nx,)
w(r) w(r)
where
I, R4+0 -0, hQ RB-Q
| AR+O -0, ~B+0,+0] 10, o
' h-Qf h-Q, -h-P hQ
B/R-0, o h-Q, -yl
h-(4,- BK) P,
he A, (-2)'[h-P(4-BK) h-P4, 0 h~P‘Bl]'
h-B/P,
By the Schur complement of [1] with matrix Q, in (3b),
we have
Q, <0. (5¢)

From (5b) and (5c¢) with w(t)= 0, there exists a constant
a >0 such that
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Hence the closed system (1) with u(f)=-Kx(t) and
w(t) =0 1is asymptotically stable [5]. Integrating the
function in (5a) from 0 to o and by (5b)-(5c), we have

V(x)=V@)+ el =7 -l <0.
With zero initial condition (¢ = 0 ), we have

v(g)=0, V(x,)=0,

and

I <7 . ¥ weL[o.0)w=o.
By the Definition 1, the system (1) is stabilizable by H

control u(t)= —Kx(t) with  disturbance

7=7.

In the following, we will solve the controller gain K
from the following LMI result.
Corollary 1.

Suppose the following optimization problem:

attenuation

riik00.07 (6a)
subject to the follwing LMI:
1, n, hsQ B,-0 T, 1,
n, m, hQ 0 kB4 0
h-Q WOl —hB h-Ql 00|,
B, -0, 0, h-Q, -yl  h-Bf 0
o, h-4P 0 h-B, —h-P 0
n’, 0 0 0 o 1]
(6b)
has a solution 7y >0 , F] eER™ >0 , 132 eR"™ >0 ,

[e e ‘J:l)mx" , QI e ‘J:l)nxn , Qz e ‘J:l)nxn , and Q} = mlxn , Where
ﬁll = FIAIT +A|F| _Blle_[%TBlT +FA)2 _QI _QAIT >

IT, = AZF]+QI —Q;,sz =-P+0, +Q2’Ivﬂ

M, =h- (B4’ —K'B!), T, =FC" —K'D" . (60)
Then the system (1) stabilizable by H,
ulr) = —Kx(r) —kﬁl"x(t) disturbance
7=

Proof.

is control

with attenuation

In order to find the controller gain K from LMI, we

choose P =P,

1 3

Pre- and post-multiplying the matrix Q,

in (3b) by diag|l, B B I B|>0, where B =P",

we can define

A

P,=PP,

2 1 21317 FlQlE’ QZzﬁlQZﬁl’
0, = st_’l , K= KP,
By Schur complement of [1], the condition (6b) could be

obtained from (3b).

In the next, we will consider the following uncertain
time-delay system:

1(e)= A, (e)x(e)+ A4, ()x(z = h)+ B, (e)ult) + B, (e)wle),

(7a)
x(0)=(0), 1 [-n0], (70)
z(t) = Cx(t)+ Du(t) , (7¢)

where  A()=4, +A4() . A()=4,+24,()
Bl(t):Bl +ABl(t)’ Bz(t)sz +ABz(t)’ AAl(t) ) AAz(t) )
AB, (t), and AB, (t), are some perturbed matrices.

(A1) The perturbed matrices AAl(t), AAz(t),
AB, (t), and AB, (t) satisfy

[A4()) A4() 2B(0) AB,(0)]

=M-F()-[N, N, N, N,
where M e R"™, N, eR"", N,eR"", N,eR"", and

N,eR“" are some given constant matrices and
F(t) € R satisfies
F'(t)F()<1.

For a given controller gain K € R"", the H_-norm
bound could be solved from the following result.
Theorem 2.

Consider the system (7) and (A1) with u(t) = —Kx(t).
Suppose the following optimization problem:

min y
7.5,/'..1’2/:.0‘.03.0‘7 i

subject to the following LMI:

(8a)

En 212 h'Ql 214 h'(Al_BIK)TPs P]M
lez Z;22 h'Qz er'l'g'NerA hAzle 0
0! .0" —h-P 0!
h-Q R T o O 1<0.sb)
= O,+&-N'N, h-Q, -7-I+¢&-NIN, h-B!P, 0

h-P(4, - BK) h-P,A, 0 h-P,B, ~h-P, h-P.M

. M'P 0 0 0 h-M"P, ~e-1 |

has a solution 77>O ’ >0 ° IJIEER"X">O ’ 212=P1A2+Q1_Q;‘+3'(N1_N3K)IVN2>

PeR" >0, PeR"" >0, Q eR"™, O,eR", and
0, e R"", where

= (Al _BIK)TPI +P|(A| _BIK)+P2 -0, _er

+(C-DK) (C-DK)+e-(N, - N,K)' (N, - N,K),

2.,=PB, -0 +¢-(N, -N,K) N,,

2,=-P+Q,+0, +¢-N,N,.

Then the system (7) with (Al) is stabilizable by H
ul(r) = —Kx(t) attenuation

control with  disturbance

El f"j%!r %F'I&%k?lk)fg



7=7.

Proof.
Redefine the function 7(x,) in the proof of Theorem 1

~
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b
n}(]x, )=[4,0) B,OKR()+ A,(0nle ~ 1)+ B, ()wle).-

By the same technique of Theorem 1 with (3b), we have

I, R4,(0)+0, -0 k-0, PB()-0] h-(4()-B)K)P
AP +0/ -0, -P+0,+0] k-0, o/ h- AL (0)P,
h-Qf h-Q; —h-P, h-Qf 0
B, ()P -0, 0, hQ, -7l h-B!(1)P,
_h'Pz(Al(t)_Bl(t)K) h'PﬂAz(t) 0 h‘PﬂBz(t) _h'Pz i
m, PA4,+0,-0Q] h-QO PB,-0Q h-(4-BK)P,
A4LB+0/ -0, -P+0,+0, h-Q, o, h- 4, P,
= h-Q! h-Q! —h-P,  h-Qf 0 +TF()A + AR ()0,
BzTPl_Qz Q3 th _77'] thsz
h-P(4, -BK) h-PA, 0 h-P,B, ~h-P,

where T1, =[4,(t)- B,()K] P+ P[4,(r)- B,(t)K]
+P, -0, -0 +(C-DK) (C-DK),
r=[mM'P 00 0 h-M'P],
A=[N,-N,K N, 0 N, 0].
Since TF()A + AF' ()" <& -IT" +&-AN , £>0,

and by Schur complement with (8b), we can complete this
proof.

In the following, we will solve the controller gain K
from the following LMI result.
Corollary 2.
Suppose the following optimization problem:
min ¥
7.6.5.5,,K,0,,0,.04

subject to the follwing LMI:

(9a)

I, n, k40O B, -0 I, 1, PN/ -K'N!
1T, n, h0 O h-PA, 0 PN,
h-Qf h-0' -h-P  h-O 0 0 0
Bzr _Qz Qs h'Qz _77'1 h'BzT 0 N:v <O’(9b)
I, h-4,B 0 h-B, —h-B+g-h*-MM" 0 0
', 0 0 0 -1 0
NPE-NK NP, 0 N, 0 ~e-1 |

has a solution 7 >0, £>0, PR >0, P,eR" >0,

K c m,”x” , Ql = muxu , Q2 e mnxu , and Q3 = ‘.R/X” , Where
M, =PA + AR -BK-K'B/ +P,~0, -0 +e-MM"

Then the system (7) with (Al) is stabilizable by H

control u(t)=—Kx(t)=—I%1_’,"x(t) with  disturbance
attenuation
Proof.

By the proof of Corollary 1 and the fact

TF(EA + AF" (1)1 <&-TT" +&" AN, £>0, we can

prove the results in the similar way of Theorem 2

In the following, we can obtain a stability criterion
from Theorem 2 with u(t) = Mt) =B, (t) =B,()=0 of
system (7a).

Corollary 3:  The system (7a) with (Al) and
u(t)=wl(t)= B ()= B,(r)=0 is asymptotically stable, if
there exist a scalar PeR™>0,
Pz e m/lx/l > O s Pz e ‘R‘”X” > O s Q] e m”x” s Q2 e m”x/l ) and
0, € R"", such that the following LMI holds

& >0 , matrices

PR Y
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m, PA +0,-0 +&-N'N, h-Q h-A'P, PM
A2TP1+Q1T_Q2+8'N2TN1 _P2+Q2+Q2T+8'N2TN2 th hAzTP3 0
h-Q h-Q! —h-P, 0 0 <0,(10)
h-PA, h-PA, 0 ~h-P, h-PM
I M'P, 0 0 hM'P —gl|
x [4, 6]:

where 1_Ill = AllvPl +P1Al +Pz _Ql _QlT +3'N1TN1 .

Now we provide a procedure to design a suitable H

state feedback control.
Step 1: For the system (1) (resp. (7)), find the H,

control from Corollary 1 (resp. Corollary 2).

Step 2: Based on the above H_ control, we can use
the less conservative criteria in Theorem 1 (resp. Theorem 2)
to find the more useful result.

Step 3: If the obtained results in Step 1 and Step 2 are
not satisfied the requirment for system performance. Then
the genetic algorithm will be used for Theorem 1 (resp.
Theorem 2) to find the control gain K, such that the
minimization of y can be achieved for every K; see for
example [7].

3. Numerical examples
Example 1. Consider the system (1) with the parameters
[10]:

o ol ol
e o)

By the design procedure of H_ control with

Theorem 1 and Corollary 1, we show this comparison in
Table 1.

The control gains K and the disturbance attenuations
( H_-norm bounds) y for the results of this paper are

smaller than the results in [10]. Larger state feedback gain
K will cause the saturation in the amplifier applications.
Smaller H_-norm bound y will show the better effect on

disturbance attenuation.

Example 2.
Consider the system (7) with the parameters [4]:

00 -1 -1 0
Al= . A2= . Bl= .
01 0 -09 1
1 02 0
B,=| |, c=[o 1], p=0, M= ,
1 0 02
1
N =N, = 0

By using the Corollary 2, we show the comparison in
Table 2.

0
|- No=N =0,

Example 3.
Consider  the system (7a) with  (Al),
u(t) = w(t) =B, (t) =B, (t) =0, and the following parameters

-2 0 -1 0
A]: s AZ: s
0 -09 -1 -1

02 0 1 0
M = , N =N, = :
0 02 01

The upper bounds of the time delay for the stability in
[4] and [6] are h=0.4437 and h=1.77 , respectively.
By the Corollary 3 of this paper, the obtained upper bound
for the time delay is /4 =2.397 .

4. Conclusion
In this paper, the problem for the robust H_ control

of time-delay systems is considered. LMI optimization
approach has been developed to construct the H_ state

feedback control. Some numerical examples have been
given to demonstrate the potentials of our results.
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