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Abstract

A real-coded genetic algorithm (GA) applied into the system identification and control for a class of
nonlinear systems is proposed in this paper. It is well known that GA is a globally optimal technique
borrowing the concepts from biological evolutionary theory. The ordinary form of GA used for solving a
given optimization problem is a binary encoding during operating procedures. For most of real control
applications, however, a real-valued encoding is often used and is easy to be implemented directly in the
computer programming. In this paper, based on using real-coded GA, a complete design procedure for
estimating parameters of nonlinear system and then for designing an off-line PID controller is presented.
Finally, some simulation results by examining a nonlinear process will be demonstrated to show the estimate

and control performances by using the proposed method.

1. Introduction

Genetic algorithms as well as neural networks
and fuzzy systems belong to the category of
artificial intelligence. ~ Based on the type of
modeling the natural evolution, GA can search for
optimal or near-optimal solutions for an
optimization problem over the search domain, and
have superior performance over the traditional
optimal techniques, e.g., the gradient descent
method. This is due to searching for solution from
only one single direction on the search space [1]-
[3]. Alternatively, GA can be regarded as a search
method from multiple directions, because it
inherently possesses crossover and mutation
operations when searching procedures are
performed. This implies that it has the ability to
escape from a local minimum.

In the traditional GA, all the variables of
interest must first be encoded as binary digits
(genes) forming a string (chromosome). Then
three standard genetic operations, i.e., reproduction,
crossover, and mutation are performed to produce
a new generation. Such procedures are repeated
until the pre-specified number of generations is

achieved, or the required accuracy is satisfied. For
most of real control system designs, once a binary-
coded GA is wused, the relative parameters
concerned with the plant and controller should be
first encoded as binary alphabets in order to be
suitably computed in the traditional way. After a
series of genetic manipulations, the final binary
alphabets are then returned as real numbers. This
is an indirect optimization problem searching.

On the other hand, a real-coded GA has been
also introduced to a wide variety of applications in
recent years as stated in [4]-[7]. All genes in a
chromosome are real numbers. It is more suitable
for most of real control applications that genes are
directly real values during genetic operations.
Because the procedures of binary coding for a real
number may suffer for the loss of precision
depended on the number of the bits used.
Expectably, it will be quite complicated and
difficult to implement when the numerical values
are large and have the decimal fraction. Moreover,
the length of chromosomes used in the real-coded
GA becomes much shorter than that in the binary-
coded way. This implies that the computer
programming for such algorithms can be easily
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performed.

The work of system identification is very
important and essential for the control system
engineering. According to a known mathematical
or an estimated model for system, a controller will
then be designed by using a lot of different control
techniques such that the certain output response of
system can be satisfied. In recent years, solving
for identification problems using artificial
intelligence techniques have been successively
proposed, such as using fuzzy logic systems [8]-
[10], neural networks [11]-[14], and neural-fuzzy
systems [15][16]. In these studies, they focused on
the identification problem that the system structure
is assumed to be unknown. Conversely, if the
model structure of system has been known, the
residual problem is how to correctly evaluate the
system parameters or coefficients for this kind of
model structure. The least-squares method is a
basic technique often used for parameters
estimation. In [17], it has been successfully used
to estimate the parameters in the static and
dynamical systems, respectively. But, the least-
squares method is only suitable for the model
structure of system having the property of being
linear in the parameters. Once the form of model
structure is not linear in the parameters, this
approach may be invalid. The same problem also
occurs in using other estimate techniques such as
maximum-likelihood and instrumental variable
methods. These recursive schemes are in essence
local search techniques that search for the optimum
by using gradient method. They often fail in the
search for global optimum if the search space is not
differentiable or linear in the parameters [18]. On
the topic of system identification, some studies
based on using the traditional binary-coded GA
were exploited as shown in [18][19]. In [18], they
applied the binary-coded GA for estimating the
locations of poles and zeros of a transfer function
and then used this estimated model to design a
discrete time pole placement adaptive controller.
Similarly, Jiang and Wang [19] proposed a
searching method for parameters estimation of
nonlinear systems based on using the binary-ceded
GA.

Another topic discussed in this paper is focused
on the off-line PID controller design using real-
coded GA. It is well known that the use of PID
control has a long history in control engineering
and is acceptable for most of real applications due
to its simplicity in architecture. The key for
designing a PID controller is on how to determine
three PID control gains, i.e., proportional gain K,
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integral gain K, and derivative gain K ,. For a

single-input-single-output  (SISO) system, the
tuning methods proposed by Cohen-Coon (C-C)
and Ziegler-Nichols (Z-N) were frequently used.
Recently, some studies combining neural networks
or fuzzy logic systems with PID control systems
have been also introduced due to their powerful
learning and adaptive capacity [11][20]-[22].
Three control gains are determined or adjusted by
the uses of neural networks or fuzzy logic systems
according to certain adaptation mechanism.
Moreover, Some studies that applied traditional
binary-ceded GA into the off-line PID controller
design for linear systems as shown in [23][24]
were proposed. In order to meet the binary way, it
is necessary to encode three real-number gains as
the form of binary alphabet.  After genetic
operations, the resulted binary coding is then
decoded as real values required on the actual PID
control systems. Moreover, since the kind of
control strategy belong to off-line PID controller
design, the mathematical model of plant should be
known or be estimated in advance. However, in
[23][24] they did not discuss in details how the
illustrative system model was obtained. In this
paper, based on using a real-coded GA, an overall
design procedure for parameters estimation and
successively for PID controller design for a class
of nonlinear systems will be suggested. In this
way, all unknown system parameters are first
evaluated and according to this model the off-line
PID control design strategy is proposed to obtain
the proper three control gains. Both unknown
system parameters and three undetermined PID
control gains are in the form of real number during
genetic operations.

2. Real-coded genetic algorithm

Before introducing three genetic operations,
some notations normally used for GA will be first
introduced. Let ©@=[0,,0,,---,0, ] where @ is a

set of possible solution to the optimization problem
and called a chromosome from the evolutionary
point of view and 0, . for iem and

m= {1, 2., m}, in a chromosome is called a gene.
A search space 2, for @ is defined by
Q,=oew"|0,, <0,<6,,.,

Orrin <05 <O, Oy <0,y <0, }-(1)
All genes ¢, for j e m, in the chromosome will be

I min

2 max >

evolved inside this constrained space (2, during
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the genetic operations. Once a generated
chromosome by genetic operations goes beyond

0, , then the original chromosome will be retained.

Let N represent the number of chromosomes in the
population, i.e., the size of population, and
parameters p , p., and p = are referred to as

probabilities of reproduction, crossover, and
mutation, respectively.

2.1 Reproduction

There are two well known selection
mechanisms, i.e., roulette wheel and tournament
selections used for reproduction operation. The
roulette wheel selection can be visualized by
imagining a wheel where each chromosome
occupies an area that is related to its value of
objective function. When a spinning wheel stops,
a fixed marker determines which chromosome will
be selected to reproduce into the mating pool [5].
This kind of selection mechanism needs more
numerical computations.  In this study, the
tournament selection is quite simple and suitable
for checking whether a chromosome can reproduce
or not according to its corresponding objective
function. For the tournament selection, p,xN

chromosomes with minimum values of objective
function are more added into the population, and
correspondingly  p x N  chromosomes  with

maximum values of objective function are
discarded from the population. This implies that
the resulting population has the same size with the
original. After the selection, all chromosomes are
completely put in the mating pool. The next step is
to generate new offspring by applying the
following crossover and mutation operations on
chromosomes in the mating pool.

2.2 Crossover

The N chromosomes in the mating pool are
randomly divided into N/2 pairs where serve as

parents and will be crossed each other. Suppose
that @ and @, are parents of a given pair, c is a

random number chosen from [0, ]]. If ¢> p, , then
the following crossover operations for e, and o,
are performed

if Obj(@l )< Obj(@z )

6, « 6, +r( -0,),

O, « 0, +r(O,-6,).

else
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O, <0, +r(O,-6,),

O, < 0, +r(O,-06,). )
where 04j(@,) and obj(@,) stand for values of
objective function obtained from @ and @, ,
respectively, and re[0,1] is a random number

deciding the crossover grade of these two. It is
easily observed from Figs. 1 and 2 that after the
use of the crossover operation both o, and O, are

moved toward the direction where the value of
objective function is smaller. If c<p,, no

crossover operation is performed.
2.3 Mutation

The mutation operation follows the crossover
and provides a possible mutation on some chosen
chromosomes @ . Only the randomly selected

p,, x N chromosomes in the current population

are mutated. The formula of mutation operation
for the chosen @ is given by

O—O+s5xD, 3)
where s is a positive constant and @ < R™ is the
random noise vector to produce a perturbation on
e.

The procedures that have once run reproduction,
crossover, and mutation operations are called a
generation. The algorithm stops if the desired
value of objective function is satisfied or the pre-
specified number of generations is achieved.
Notice again that if a generated chromosome
during genetic operations is outside the search
space (2, then the original chromosome will be

retained. The overall design steps based on using
real-coded GA can be summarized as follows.

. First, create a population with the size of N
chromosomes, in which all genes are
generated from 2, in (1).

II. Evaluate the corresponding value of objective
function for each chromosome in the
population.

I11. If the pre-specified number of generations G is
reached or the value of objective function
produced by a chromosome in the population is
less than a desired value of g, then stop.

IV.Perform operations of reproduction, crossover
in (2), and mutation in (3). Notice that if the
resulted chromosome under operations is
outside the (2, then the original is retained.

V. Go back to Step II.
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3. Nonlinear system identification

A class of nonlinear systems described as the
form of the discrete dynamic equations are
considered in this study as follows

x(k+1)= (K, x(k), ulk). £). x(0)=x,

(k) = hlk, x(k), u(k), P,). “
where y e R is the input, x € R” are the system
states, y e R is the output, p and P, represent

sets of unknown system parameters that probably
contain the time delay, f(-)and /() are nonlinear

functions. Suppose that the estimated nonlinear
systems that will fit the plant of (4) are modeled as

ik +1)= flk, #(k) ulk), B).
(k)= lk, #(k), ulk), 2,) )

where x and j , respectively, are the estimated

system states and output, driven by the actual input
u as (4), () and p() are the estimates of f(.)

and 4(-), P, and P, are the estimates of p, and p,,

respectively, found by the use of real-coded GA.
For simplification, let @ = [9“ 0y, gm] where m

is referred to as the total number of unknown
system parameters be a rearranging vector that
collects all parameters in P, and P,. In order to

precisely obtain @, the following assumptions are
requested for nonlinear systems.

1. The output of system must be measurable and
finite in each sampling step.

2. Every parameter of system must be in
connection with the output, i.e., @ could be

evaluated from the measurement of the output.

Before proceeding with the genetic operations,
a performance index or an objective function
should be first defined because this will
significantly influence on how the evolutionary
type on @ is performed. In general, the GA only
needs to evaluate the objective function to guide its
search. There is no requirement for derivatives
that are often used in solving for the traditional
optimization problems. In this study, the total
summation of square error (SSE) is taken as an
objective function, which is given by

SSE = ﬁ[yoc)-y(k)]z =§e2<k>, ©

where M is the given sampling number and e is
the error between y and j . The residual
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problem is to correctly find out the values of @
based on using real-coded GA in such a way
that the value of SSE in (6) is minimized as
possibly. Fig. 3 shows the block diagram for
parameters estimation using real-coded GA.

4. PID controller design

After a process of obtaining the actual system
parameters by using real-coded GA, it follows that
a genetic approach to designing an off-line PID
controller will be suitably proposed.

The continuous form of a PID controller, with
input e and output u, is given as

1 d
ult)=K |elt)+— lelr)dr+T, —elt)|. @)
()=, o)+ [elekie 7, £0)
where K, is the proportional gain, 7, is the
integral time constant, and T, is the derivative

time constant. We can also rewrite (7) as
1

ult)= K elt)+ K, [ele)dr + K, %e(t), @®)
0

where K, =K ) /T, and K . =K pTd , respectively,
stand for the integral gain and the derivative gain.
For convenience, let O = [49] ,0,,0, ]T

:[K[),K,,Kd]T represent the vector of PID

controller gains called a chromosome and three
gains K,,> K, and K, in @ are genes that

represent a set of potential solution to GA-based a
PID controller tuning problem. We emphasize
again that a chromosome @ in this study is direct
real-valued coding and evolved to produce next
generation with better performance by applying
evolutionary operators.

The off-line tuning strategy combined the read-
coded GA with the PID control system is simply
depicted in Fig. 4, where y is the desired output,

y is the plant output, and u is the control input
generated by the PID controller as defined in (8).
In order to match the type of PID control system,
the objective function of SSE in (6) should be
rewritten as

sE= 300 =S ©

Similarly to that of parameters estimation, our
control aim is to design three PID controller gains
using the search technique of real-code GA such
that the value of SSE in (9) is minimized.
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5. Simulation results

Consider an unstable nonlinear system whose
dynamic equations of discrete form are in the
following [19]

X (k ‘H): a@x (k)xz(k)’ X (0)= 1,

X, (k +1)= a,x] (k) +ulk), x,(0)=1,

and

y(k)=a3x2(k)—a4x]2(k)- (10)
In this example, the actual values of unknown

system parameters in (10) are assumed to be

O =|a,,a,,a,,a,]=[0.503,1.809]. Note that

it should be more careful and need a trial-and-error

work when the search space @, is constructed for

parameters estimation and for PID controller
design, because the nonlinear system of (10) is
inherently unstable. Otherwise, the infinite system

output may occur during the computational process.

Parameters estimation
In parameters estimation part, the used genetic

parameters are given by

Gin=0 5 Ouw=2, 0

1min 2min 2max =
93m/n =0, 03max =2, 04m/n =0, o =2,

4 max
M=8,N=20, p, =02, p,=03, p, =0.2,

s=0.1, G=200,
Each element in the noise vector @ in (3) is also a
random number from [-0.1,0.1]. The comparing

:038

k)

results between real-coded and binary-coded GAs
are demonstrated in Tab.1, and the corresponding

convergence curves are also shown in Figs. 5 and 6.

For such an unstable nonlinear system, it is
obvious from simulation results that the more
accurate estimate than one by using the binary-
coded GA [19] can be achieved.

PID controller design

According to the above estimating results, it
follows that the procedure of designing an off-line
PID controller will be performed. The control
objective is to wish that the plant output y is
regulated to the desired output y =2. In this
simulation, the search space (2, for genetic

operations is seriously constructed by

2 min 2 max
&in =00, 6, =02,
and the used parameters are chosen as follows
M=50, N=10, p, =02, p, =05, p, =0.1,
s=0.1, G=3000.

Lmin Lmax
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Each element in the noise vector @ in (3) is also a
random number chosen from [-0.01,0.01]. After

genetic operations, the three PID control gains are,
respectively, K, =0.8413 , K, =0.9932 , and

K, =0.0095 under G =3000 generations. This

implies that it needs a great number of
evolutionary generations such that better PID
controller can be obtained for such a nonlinear
system. Finally, the output response is shown in
Fig. 7.

6. Conclusions

The application of a real-coded genetic
algorithm to the system parameters identification
and to the PID controller tuning, respectively, have
been proposed for a class of nonlinear system in
this paper. The system model considered in this
study need not be linear in the parameters,
although it is always necessary to request the
property of being linear for most of traditional
estimate methods. Each of unknown system
parameters that will be estimated is regarded as a
gene and collect them to construct a chromosome
in the form of real number throughout. With the
use of real-coded GA, they are then evolved by
reproduction, crossover, and mutation operations,
respectively, to generate a new excellent offspring
until the pre-specified number of generations is
reached. Based on the precisely estimated model
and also the use of genetic approach, it is quite
suitable to determine the PID controller in the off-
line style. Similarly, three control gains are
directly regarded as genes and form a chromosome.
Real-value computations are all used throughout
three genetic operations. Finally, an unstable
nonlinear process system is illustrated to
demonstrate the excellent performance by using
our proposed method compared with other method
for system parameters estimation.
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a, a, a, a,
actual parameters 0.5 0.3 1.8 0.9
real-coded method 0.4987 0.2993 1.8001 0.9001

binary-coded method 0.4916 0.3014 1.8432 0.9267

Tab. 1. Comparison results of parameters estimation between the real-coded method and the traditional
binary-coded method proposed by [19].
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