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Abstract

It is well known that the boundary of a plant template of a system with affinely
dependent parameters and the parameter domain is a box can be obtained by a
finite number sets of one-dimensional parameter sweeping since the boundary of
the plant template is included in the image of the set of edges of the parameter
domain box. In this paper, an efficient algorithm is proposed to reduce the
computational burden for generating the boundary of a plant template of the
system. The development of the algorithm relies on wusing the principal point
notion to establish a sufficient condition for testing if the image of a point on
an edge of the parameter domain box lies in the interior of the plant template.
On the basis of the sufficient condition, the algorithm is developed for identifying,
from an edge of the parameter domain box, the set of parameter points whose
image lies in the interior of the plant template. The computational burden of
the one-dimensional parameter sweeping procedure thus can be obviously reduced
by omitting the identified set of parameter points from the edges. A numerical

example is included to illustrate the efficiency of the algorithm.

1. Introduction

Quantitative feedback theory (QFT) [1]-[3] is
a powerful design technique for robust feedback
control systems with plant uncertainties. In QFT,
all plant uncertainties are represented in terms
of plant templates on a Nichols chart or Nyquist
plot. The term plant template is used to denote
the collection of frequency responses of an uncer-
tain system at a fixed frequency for all possible
uncertainties. The generation of plant templates
plays a key role in applying QFT to design robust
feedback control systems.

For a plant with parametric uncertainties, the
parameter gridding method may be the simplest
way to generate the plant template. However,

this brute-force method has several disadvantages.
First, most of the points obtained using the grid
method are useless interior points of the plant
template. Second, the computational burden is
formidably heavy when the number of uncertain
parameters is large. Third, critical points of the
template may be missed. In recent years, several
efficient algorithms [4]-[13] have been developed
for generating plant templates for transfer func-
tions with special forms of parameter dependen-
cies. For an interval plant, i.e., the coefficients
of the transfer function are defined on intervals
of the real axis, Bartlett et al. [7] showed that
the plant template boundary is covered by the
value sets of 32 one-parameter segment plants.
The plant template of an interval plant generated
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by this characterization contains a lot of interior
points. For an exact computation of the tem-
plate boundary of an interval plant, Brown and
Petersen [8], Karamancioglu and Dzhafarov [12],
and Karamancioglu et al. [14] proposed criteria
for eliminating the generation of interior points of
the template. With the fact that the value sets
of the numerator and denominator of an interval
plant at a fixed frequency are two independent
rectangles, Bailey et al. [5] proposed a phase-angle
sweeping technique for computing the plant tem-
plate boundary. Based on a geometric interpre-
tation of the plant template of an interval plant,
Hwang and Chen [11] applied a modified Cohen-
Sutherland algorithm along with a pivoting pro-
cedure to trace the plant template boundary.

For a linear-polytopic uncertain system, i.e.,
the uncertain parameters in the numerator and
denominator of a transfer function are affinely
dependent and the parameter domain is a box,
Bailey and Hui [4] and Tan and Atherton [15] uti-
lized the geometrical characteristics of the value
set, of a polynomial family with affinely dependent
parameters to develop algorithms for generating
the plant template. Those two algorithm are suit-
able for the case that the uncertain parameters
in the numerator and those in the denominator
are independent. For the case where the coeffi-
cients of the numerator and denominator of a
linear-polytopic uncertain system are correlated
to each other, Chen and Hwang [9] applied a
zero inclusion test algorithm along with a pivoting
procedure to trace out the approximate template
boundaries. Shen et al. [13] improved the algo-
rithm developed by Bailey and Hui [4] to generate
the plant template boundary. Bartlett [6] and Fu
[10] showed that the plant template boundary is
included in the images of the set of edges of the
parameter domain box. With the elegant result
proposed by Bartlett [6] and Fu [10], the plant
template boundary of a linear-polytopic uncertain
system can be exactly obtained by a finite num-
ber sets of one-dimensional parameter sweeping.
However, this approach has the shortcoming that
it produces a lot of interior points of the plant
template. Owing to the combinatoric explosion of
the number of edges of the parameter domain box,
it can lead to heavy computational burden when
the number of uncertain parameters is large. The
purpose of this paper is to present an efficient
algorithm for identifying the set of points on an
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edge of the parameter domain box of a linear-
polytopic uncertain system whose image lies in
the interior of the plant template. By omitting
the identified set of points in the one-dimensional
parameter sweeping procedure, the computational
burden thus can be obviously reduced.

2. Main results

Consider the transfer function family
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(1)

where N;(s) and Dy(s), I = 0,...,m are poly-
nomials in s and q = (qg1,.-.,qm)’, where the
superscript T denotes the transpose of a vector,
is an m-dimensional real vector taking values from
the m-dimensional box

B={q:ql€[ql_,ql‘"],lzl,...,m} (2)

The m-dimensional box B has 2™ vertices and
m2™~ 1 edges. Let the m-digit binary number
representation of integer ¢ € {0,1,...,2™ — 1} be

i =0120 + 092 40322 o + i 2™ (3)
where ¢y =0 or 1 for I =1,...,m. Then, a vertex

and an edge of the m-dimensional box B can be
respectively represented as

and

Eire:={q:9q=AV;+ (1 -V, A €[0,1],
Ce{l,...,m,}i0 #keyqe € lag  q) ]
iy = k; for all | € L} (5)
where

Lo={1,...,m}\ {¢} (6)

In the QFT terminology, the set of the mapped
values G(jw;q) for a fixed frequency w and all
qe<B,ie,
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G(jw;B) = {G(jw;q) :q € B}, j = V-1 (7)

is referred to as a plant template. To guarantee
that the plant template G(jw;B) is bounded, we
assume that D(jw;q) # 0 for all q € B. In
applying QFT to design robust control systems,
only the boundarys of the plant templates at dif-
ferent frequencies are required. The boundary of
the plant template G(jw; B) can be characterized
by the following theorem

Theorem 1 [6],[10]: Let w be a fixed frequency
and suppose that the denominator of G(jw;q)
does not vanish for all q € B, ie., D(jw;q) #
0,q € B. Then,

0G(jw; B) C G(jw; E(B)) (®)

where 0 and E(B) denote the boundary and the
set of the edges of B, respectively.

From theorem 1, the boundary of the plant
template G(jw; B) can be found from the images
of the m2™~! edges of the box B under the trans-
fer function mapping G(jw;q). However, this ap-
proach to generating the plant template boundary
OG(jw; B) often wastes time in calculating some
interior points of the plant template G(jw;B)
since the image of a point on an edge of the box
B may lie in the interior of the plant template.
Therefore, in order to reduce the computational
burden for generating the plant template bound-
ary 0G(jw; B), it is desired to develop an efficient
method to identify the set of points lying on
the edges of the box B whose image does not
contribute to the boundary of the plant template
G(jw;B). To this end, the principal point notion
introduced by Kogan and Leizarowitz [16] and
Polyak and Kogan [17] is used. A point q € B
is a principal point associated with a mapping
h : B — C, where C denotes the complex plane,
if there exists a nonzero complex number g such
that

0, ¢ <@ <qf

ho(@)y ) = v
{244} 8 >0, g, =g (9)
§0> Qv:qu_

where Im{-} denotes the complex part of the
indicated quantity and h,(q) = 0h(q)/dq,,v =
1,...,m. The role of principal points plays in the
characterization of the boundary of the value set
h(B) is stated in the following theorem [16], [17]:
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Theorem 2: If n € 0h(B), then every q € B such
that n = h(q) is a principal point.

Theorem 2 indicates that the boundary of a
value set is included in the set of images of
the principal points associated with the mapping
function. Therefore, the boundary of the plant
template G(jw; B) is included in the set of images
of the principal points lying on the edges of the
box B since theorem 1 indicates that the bound-
ary of the plant template G(jw;B) is covered in
the images of the edges of B. In other words, the
points on the edges which are not principal points
can be omitted in the plant template generation
procedure. According to the definition of principal
point and theorem 1 and theorem 2, we have
the following sufficient condition for testing if the
image of a point on an edge of the domain box
lies in the interior of the plant template.

Theorem 3: The image of a point q on the edge
E; 1.¢ of the box B associated with the mapping
h(q) = G(jw;q) lies in the interior of the plant
template G(jw; B) if the following two conditions
hold:

(i) he(q) #0

(ii) The following two values

Im{w} for each v € Ip(7) \ {¢}

he(q)
(10a)
- Im{%lz((—g))} for each 1 € I, (i) \ {£}
(10b)

do not have the same sign, where
Ip(i)={l:4y=0foralll e {l,...,m}}
(11a)
LiO)={l:4=1forallle{l,...,m}}
(11b)

By fairly straightforward derivation, it is found
that

hy(q
Im{ﬁ%} =cipq+coy n€eL (12)

where

¢ty —Tm { Nn(jw)th(ij) - é)wuw)Dn(jw) }
(13a)
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A
Cop = Im {ﬁ%} (13b)
and

Ai(q) = Ni(jw)Do(jw) —

> @ [Ni(jw) Dy (jw) — Ny (jw) Dy(jw)] ,
=7,
le{l,....,m} (14)

It is noted that for fixed ¢;, I = 1,..., £ — 1,4+
1,...,m, the function in (12) is a first order
polynomial in gy. Therefore, we have the following
theorem:

No(jw)Di(jw) +

Theorem 4: The maximum number of sign
change of the following function is one:

hy(q)
fen(ge) := Im{ ¥ ;
! hl(q) ql=’U1"L,l=1,..‘,£—1,£+1,“.,m

weR, nel (15)
where R denotes the set of real numbers.

Theorem 4 reveals that for each n € L, once
the solution to the equation f;,(g;) denoted by
Qe,n, and the sign of the value of fo,(g,) with
Ge # Qo is obtained, the sign of f, at any gy
can be determined without having to compute the
value of fr.,(ge).

On the basis of theorem 3 and theorem 4, an
efficient algorithm is developed for identifying the
set of points on the edge E; ;¢ of the parameter
domain box B whose image lies in the interior of
the plant template G(jw; B). In the algorithm, the
set of points identified by the algorithm is denoted
by E; k.. The function sgn{z} works as

1, ifx>0
sgniz} = { ~1, ifz<0 (16)
The algorithm reads as follows:
Algorithm 1
Step 1. Set A:=( and L := {1,...,m} \ {{}.

Step 2. Compute Ay(
to step 17.

V). If Ag(V

;) vanishes, go

Step 3. Find the solution gz, to fr,(q) = 0
for each n € L. If ¢1,, = 0 and cp,, # 0, set
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Qo = q} +e€e>0.If 1y = coy = 0, set
L:=L\{n}.

Step 4. Denote by z¢, & = 2,...,n — 1 with
To < -+ < Zn_1 the numbers obtained in step
3 that lie in the open interval (g, ,q)). Set
zy:=gq, and z, = qZ'.

Step 5. Set
Lo:={l:qy ¢ (g, ,qf] foralll € L} (17a)

L,={l:qu=u, forallleL},p=1,...,n
(17b)

Step 6. For each n € L, set

. sgn{fon(z*)},  if n € Io(4)
" _{Sgn{ Jen@®)y, itnen() P

where 2* = (21 + 22)/2.

Step 7. If 0, # oy, for some [,k € Ly, set A :=
[q[,qz'] and go to step 17.

Step 8. Set
0¢ := 0oy, for some n € Ly (19a)
p:=0 (19b)
L:=L\Lg (19¢)

Step 9. Set p:=p+ 1.

Step 10. If 0,) # 0¢ for some n € L, set A:= AU
(Tps Tpt1)-

Step 11. Set L := L\ L,.

Step 12. If 0,, # oy for some n € L, set A:= AU
zp.

Step 13. If o, # 0o for somen € L, set A := AU
[p+1, %] and go to step 17.

Step 14. Set 0, := —o0y, for each n € Ly 1.
Step 15. If p <n —1 go to step 9.

Step 16. If 0, # oo for some n € L\ L,, set
A:=AUx,.

Step 17. Set Z; ¢ := {q : ¢ = v foralll €
L,q € A}.

Step 18. Stop.

I Y
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3. An illustrative example -0.002 —
Example 1: Consider the transfer function fam- 4
ily given by Fu [10]
0.004 —
3
3) + Z quk(S) b
G(s;q) = N(s;q4) k=1 (20
;q) = D(siq) 3 ) E -0.006 —
3) + Z quk(S) |
k=1
0.008 —
where (g1,q2,¢3)" € B = {q: ¢; € [-3,3],i =
1,2,3} and T
0¢0] T I T I T I T I T I
No(s)=s®+4s+20 (21a) 20026 -0.022  -0018  -0.014 001  -0.006
Re
Ni(s) =0.4s +1 (21b) Figurel. Plant template G(65;B) gen-
Ny(s) =0.2s (21c) erated from the images of the edges of
Ns(s) = (21d) the box B, denoted by M, and the
image of the set Z; k¢ corresponding
Do(s) =" + 955" +275* + 2255 (22) to each edge E; ¢ of the box B (dash
Di(s) = 0.5 +25% — s (22b) lines) for the system in example 1.
Dy(s) = —0.55 + 2 (22¢)
Ds3(s)=0.55 + s (22d) According to (18), we have

To illustrate the proposed algorithm we consider

the construction of the plant template G(67;B). op=1 (27a)
For the edge Eq 39, we have oz3=1 (27D)
Following step 7 to step 16 of algorithm 1, we have
£=2 (23a)
L—{1,3} (23b) A= (22, ] (28)
The solutions to fa,(g2) =0, n=1,3 are Therefore, the image of the set
42,1 =2.745 (24a) Eise ={q:q1 =vi1 =qf,
q23 = 33.645 (24b) g3 =v1,3 = q??’ q2 € A} (29)
Since 2,1 € (¢35 , 45 ) and q2.3 ¢ [q5 , g5 |, we set lies in the interior of the plant template G(67; B).

The set =Z; 32 thus can be omitted in the one-
dimensional parameter sweeping plant template
generation procedure. The set A corresponding to
each edge of the box B is listed in table 1. Figure 1
shows the plant template G(67; B) generated from

=4y )
)
(25¢)

Lo = {3} (26a) the images of the edges of the box B, denoted by
(26b)
)
)

T2 =(2,1

M, ke, i.e., M; k0 = G(65; E; 1.¢), and the image
of the set =; 1,¢ corresponding to each edge E; 1 ¢
of the box B. It can be seen from figure 1 that
all images of the sets identified from the edges
by algorithm 1 lie in the interior of the plant
template. To show the efficiency of algorithm 1
the following indicator is defined
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Z length of A
all edges

Z length of edge
all edges

¢:= (30)

The value of ¢ indicates how much computational
effort can be reduced by algorithm 1. At w =
6, the value of ¢ is 0.573. That is, algorithm
1 reduces up to 57.3% the computational effort
for generating the plant template G(65;B). The
values of ¢ at different frequencies are listed in
table 2. Table 2 reveals that algorithm 1 saves
at least 50% computational effort for generating
the plant templates. It does reduce a lot of the
computational burden.

Table 1. The set A corresponding to
each edge of B for the construction of
G(67;B) in example 1.

Edge A Edge A
Eo,1,1 -3,3 Es6,.0 U
Es3.1 -3,3 Es5 72 -3,3
Eys5.1 0 Eo,4,3 -3,3
E¢,7.1 [—3,3] Ei53 [
Eo2,2 [—3,1.977) Es6,3 0
Ei32 (2.745, 3] Es73 [—3,3]

Table 2. The values of ¢ at different
frequencies associated with the transfer
function family in example 1.

w 10) w 10} w ¢

0.5 | 0500 | 3.0 0.667 | 5.5 | 0.570
1.0 | 0.500 | 3.5 | 0.667 | 6.0 | 0.573
1.5 | 0.500 | 4.0 | 0.647 | 6.5 | 0.572
20| 0502 | 45| 0591 | 7.0 | 0.571
25| 0500 [ 5.0 [ 0.585 | 7.5 | 0.570

4. Conclusions

In this paper, an effective algorithm has been
presented for reducing the computational bur-
den in the generation of QFT plant template
for systems with affine linear uncertainties. The
algorithm is based on a new sufficient condition
established by the principal point notion for the
image of a point on an edge of the parameter
domain box to lie in the interior of the plant
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template. By eliminating, from the set of edges of
the parameter domain box, the set of the points
identified by the proposed algorithm, the compu-
tational burden for generating the plant templates
of systems with affine linear uncertainties can be
greatly reduced. It facilitates applying the QFT
technique to systems having affinely dependent
uncertainties.
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