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Abstract

A monitoring procedure using the pulse testing to calculate the maximum closed-
loop log modulus (L. w..) is presented in this study. Under an operation of
closed-loop control, an arbitrary pulse in the set-point is introduced to the
system. The closed-loop transients can be numerically translated into frequency
response data by the Fourier integral transforms, and the L. .. can easily be
calculated wusing these data. This technique has also been extended to the
calculation of L¢ max for nxn multivariable systems using n pulse tests. In
addition, the parametric identification for given process models can also be
obtained by a least-squares fit in frequency domain using the same experimental

data.

Simulation results have demonstrated that the proposed technique can

vield a reliable L. .. rather easily as compared to those available methods in the

literature.

1. Introduction

The maximum closed-loop log
modulus, Lens, is considered to be a good
measure of performance or robustness for a
control system (Luyben, 1990). Chiang and Yu
(1993) proposed an on-line frequency domain
monitoring procedure to identify Lcms, using
relay feedback experiments for single-input-
single-output (SISO) systems. In their work,
two to three relay experiments is required in
order to obtain the L.ms, for a SISO system.
Extension of this work to the calculation of
Lena, using relay experiments for SISO and
multivariable systems has been developed by
Chiu and his coworkers (Ju and Chiu, 1996;
Ju and Chiu, 1997; Ju, et al.,, 1997; Ju and
Chiu 1998a). Ju and Chiu (1998b) considered
that these methods are still tedious and
inefficient in practice owing to too many relay
experiments. Thus, they proposed a modified

technique based on the fast Fourier transforms.
Although the method of Ju and Chiu (1998b)
has reduced a lot of relay experiments in
comaprison with their previous studies, it still
needs 3 relay tests for 2x2 systems, 7 relay
tests for 3x3 systems, 15 relay tests for 4x4
systems, etc. Another drawback for this
technique is that one needs to insert relays
into the control loops one-by-one during the
experimental test, and then take them off and
switch back to PID (proportional-integral-
derivative) controllers one-by-one after the test.
Besides, the calculations are cumbersome and
less systematic. The published equations for the
calculation of Lcmx, are limited to 2x2 and 3x3
systems. For a higher system, say 4x4 system,
one needs to derive new equations for
computation.

On the other hand, process identification
with a pulse or step testing using Fourier
transforms via frequency domain analysis is
considered to be a well-established open-loop
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technique in the process industries (ISA, 1968;
Hougen, 1979). Extension of this technique to
the closed-loop identification and PID controller
tuning for SISO systems has been proposed by
several authors (Krishnaswamy, et al., 1987;
Huang, et al.,, 1997a; Huang, et al., 1997b). In
addition, a closed-loop nonparametric
identification in frequency domain using the
step testing via the Fourier transforms for
multivariable systems was presented by Melo
and Friedly (1992). Furthermore, several
authors (Krishnaswamy, et al., 1987; Melo and
Friedly, 1992; Huang, et al., 1997b) have also
demonstrated that such approaches can tolerate
some of process noise and load disturbances
occurred during the closed-loop testing.

The pulse testing is a most practical and
relatively easy method  for  obtaining
experimental dynamic data in many process
applications. Merits of the method include: (i)
it can theoretically generate the entire
frequency representation of the process, (ii) it
is usually more advantageous than a step
testing under the closed-loop control, since the
controlled variable will ultimately return to the
original value, (iii) it is the least disruptive to
plant operation among the process identification
methods, and (iv) it can normally get more
reliable frequency response data than the step
testing (Luyben, 1990, p. 519). The purpose of

this study is to find the L under closed-

C,max
loop control using a pulse testing for SISO or
multivariable systems. Based on the technique
of Melo and Friedly (1992), the Lcw, of a
nxn multivariable system can be systematically
obtained on-line by n pulse tests. Besides, the
parametric identification for a given process
model can also be simultaneously implemented
using the same experimental data.

2. Lema for SISO systems

The Lewx of a SISO system can easily be
obtained by a closed-loop pulse testing. As
shown in the block diagram of Fig. 1, if it is
a SISO system, the process transfer function,
G,,(s), is assume to be unknown, and the
feedback controller, G (s), is governed by the
PID mode. Under a closed-loop operation
without disturbance, i.e., d(s)=0, an arbitrary
pulse in the set point, r(s), is introduced to the
system. The closed-loop dynamics, G, (s), can

be obtained from the process response y(s) as

AT 567 P £

_))_ Gel5)G,(s)

o r(s) 1+ G.(5)G,(s)

)]

dis)

x(s) s) us) +L s)
: v Gels) - Gyls) o

Fig. 1. The system considered.

Applying the definition of the Laplace
transform to Eq. (1), and replacing s by iw
produces the Fourier integral transforms as

G i0)G, ) [ Aear
Yo (lw)_l + G (i0)G,(io) fr(t)e"‘"’dt
= Re[G(,,‘ (la))] + iIm[G(,,‘ (la))] ()

where Re[+] and Im[+] denote the real and
imaginary parts of frequency response data,
respectively. Digital evaluation of Eq. (2) from
experimental pulse testing via Fourier integral
transforms (FIT) has been developed by several
authors (Clements and Schnelle, 1963; Messa,
et al, 1969; Hougen, 1979). Listings of
computer programs for data analysis are
available in ISA (1968) or Luyben (1990). A
parabolic approximation for the numerical FIT
proposed by Messa et al. (1969), which
achieves an accurate computation with fewer
terms and permits multiple sampling intervals,
is adopted in this study. On the other hand,
the closed-loop log modulus, L., 1is just
converted from the closed-loop magnitude ratio,
|GCL (’wl -as

L.()=20- log|GCL (za)l 3)
The maximum closed-loop log modulus (Lems,)
can therefore be found by searching for the
resonant peak in L @) over the entire
frequency (@) range. In addition, frequency
response data for the process GP(S) can also

be obtained from Eq. (2) if the transfer
function or the frequency response data of the

controller G.(s) is known, ie.,
G, (io)
G, (iw)=——2 _ “
I G(' (l(l)) (l - G('I, (l(l)))
iG] = E| FI
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3. Lems for multivariable systems

Consider a nxn multivariable system

operating under PID control as shown in Fig. 1.

Assume that the disturbance d equals zero,
one can have

y=G, u )
u=G,-(r-y) (©)

where ) is the controlled variable vector, ¥

is the set-point variable vector, 3 is the

manipulated variable vector, GP is the

process transfer function matrix, and (G c is

the controller transfer function matrix, i.e.,

] 7, ] -
v, r, 7
2
X = S K = 5 u=
_yn i _rn i _un i
_GPII GPIZ . . . GPIn |
GP2| GP22 * * * GPZn
G, = :
_GPnI GPnZ GP"V! _
G, 0 0]
0 G,
G.=
o . . .. G,

Combining Egqs. (5) and (6) and solving for

Y, one has

y=l1+6G,-G)'G, G| r ™)
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Using the technique developed by Melo and
Friedly (1992), if a pulse testing in the set

point 7 () is  introduced, and the
corresponding responses for each controlled
variable, ie., ), ¥V, (D, ..., ¥V, (0, are
obtained. One can use a vector Zl(t) to
represent these responses. Then, this procedure
is repeated for 7/, (t) and so on up to 7, (1).

Thus, n response vectors as following are
obtained:

ENG]
v, (0)

(7, ()]
¥ (1)

N () £ B

5,0
[y, ()
., (t)

y (),

Let K(t) represent the matrix for all set-point

changes and ) be the matrix for the

¥t
corresponding responses after these experiments,
ie.,

rt) o . . . 0]
0 r2(t) .

E| &

=5
ety
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50=ly0 5,0)

_J’n(t) y12(t) .
J’21(t)

10

() )

Equation (7) can therefore be rewritten in the
matrix form as

v=lt+6,-6.)'6, G| r ®)
or ; can be d_erivg as_ o
) ©

-1
G Ge=yr "1~
The above equation can be converted into
frequency domain as

G,(iw)G(iw) =

<
<

y@wy£4@wy[£_£@wy£4@wﬂ4 (10)

Similar to Eq. (2), j(jw) and r(iw) can be

obtained from the time-domain experimental
data via the Fourier integral transforms after n
pulse tests. The closed-loop log modulus L.(@ )
for each frequency can therefore be calculated
as (Luyben, 1990, p. 603)

L.(0)=20-1
(@) 8L w(io)

an

where

W(io)=-1+ det[/ + &(ta))&(za))] (12)

Accordingly, the maximum closed-loop log

can therefore be found. In

addition, if the transfer function or its
frequency response of each controller is known,
i.e., the matrix G(,(z'a)) is known, the frequency

modulus L. .

response data G,,(ia)) for each process can be

derived from Eq. (10) as

IR AP &

Gyliw)=

si) £ ) 1- yw) 1 '0)] G o)

(13)

4. Parametric identification

For a SISO system, Eq.(4) has shown that
the frequency response data of the process can
be obtained by the pulse testing, i.e.,

Gp(ia)): Re[GP(ia))] + iIm[GP(ia))] (14)

is known. If these data are required to be
fitted into a given parametric model G(s),

where the superscript “ A “ indicates prediction or
estimation of the process model, the frequency
response of the model can be derived as

G,(iw)=Re|G, (iw)| + ilm|G, (0)  (15)

The  parametric  identification  can  be
implemented by the minimization of a squared

absolute error @ in the frequency domain as

max A 2
Min ® = Min ) |G, (iw)-G ,(iw)
=0 (16)

Also, from the definition of the complex
number, the absolute value of the difference
term in Eq. (16) can be expressed as squared
vector distance between data and model in the
frequency domain, i.e.,

G,(i©)-G,(i®)| = J(ARe) +(AIm)’

17)
where R
ARe = Re[Gp(iw)] - Rele(ia’)J (18)
Alm = lm[Gp(iw)] - lmlép(iw)] (19)

Thus, model parameters of él,(s) can therefore

be obtained by a least-squares fit in the

frequency domain as

Min ®=Min 3 { Re[G, (o)) RelG, ()] | (20)

=0

+{ G, (o)) mf6, )] §
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For a nxn multivariable system, there are nxn
sets of frequency response data Gpij(ia)) in
G,(iw), and the ¢ (i) can be obtained by Eq.

(13). Similar to the SISO system, the
parameters for a given process model Gy (s)

can be obtained by using a minimization
technique in Eq. (20). Obviously, in order to
obtain all the parameters of a given

multivariable model ép(s), one needs to run
Eq. (20) using each_pair of Gpii(ia)) and
én/ (iw) one-by-one for nxn times.

The numerical calculation for the upper
frequency o of Eq.(20) should theoretically
be approximated to the infinite. However, due
to the numerical errors in FIT and the limited
harmonic frequency content of the input-forcing
function, the computed frequency response data
will normally begin to oscillate at the higher
values of frequency (Luyben, 1990, p. 514).
To obtain meaningful results, frequency
response data should be calculated only up to
the frequency where it begins to oscillate. An
estimate of the upper limit of frequency (o _ )

max-
recommended by Clements and Schnelle (1963)
was employed in this study. Clements and
Schnelle (1963) defined a normalized frequency

content S(w),, and described a comparative plot
of S(w), vs oT, for a number of pulse shapes,

where T, is the width of the input pulse.
Clements and Schnelle (1963) also stated that
when S(o0), drops to a value in the
neighborhood of 0.3 or 0.2, the computed
frequency response would usually be unreliable.
In the following simulation studies of this
paper, a rectangular pulse and S(w), < 0.3 are
adopted. = Thus, according to Clements and
Schnelle (1963), the upper frequency for the
numerical integration in Eq. (20) can be
calculated as o =5.0/T,

5. Examples

Example 1. Consider a SISO system, which
was studied by Ju and Chiu (1998b), as
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e—2 s

Grls) = (s+ 1)(s2 +0.5s + 1)

+ 1.34sj (22)

@D

1
G.(s)=038 1
o) ( 130

JUs

Under the closed-loop system, a rectangular
pulse (pulse height = 1.0 and pulse width =
0.5) was introduced into the set point, and the
process transient y(¢) with sampling time 0.05
was obtained. Figure 2 shows diagrams of the
transient response y(t). Then, these data were
converted into frequency domain using Eq. (2),
and the parabolic FIT of Messa et al. (1969).
The closed-loop log modulus 1. (@), as
shown in Fig. 3, can easily be calculated by
Eq.(3), and the L. is therefore found. The

resulting 7, -~ 3.323 dB is almost identical to

response

0 20 40 60 80

Fig 2. Pulse test response for Example 1

the actual value of 3.319 dB. Also, in
comparison with 3.354 dB obtained by Ju and
Chiu (1998b), it appears that the proposed
method can yield a more reliable Lcm without
inserting any relay into the system. In addition,
parametric  identification = can  also  be
implemented using the same experimental data.
The frequency response data G, (ia)), as

shown in Fig. 4, can be obtained by using Eq.
(4). It could be found from Fig. 4 that the
Nyquist plot obtained from Eq. (4) is almost
the same as the real process. If the process
model is assumed to be the same form as Eq.
(21) and the Powell (1964) algorithm is
applied to find a minimization value of @ in
Eq. (20), the estimated model becomes

G.(5)= 1.00e >
P (1.00s +1)(1.005> +0.50s +1)

(23)
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It looks that the model parameters are almost
the same as that of the original process.

Lo(@8)

Fig. 3. Closed-loop log modulus versus frequency
for Example 1.

,_\\
N

real

Fig. 4. Comparison of Nyquist plots of the real

process and the proposed method for Example 1.

Example 2. A multivariable system, which
was studied by Ogunnaike et al. (1983) and
adopted by Ju and Chiu (1998b), is used to

test the proposed technique,
where
0.66e > —0.61e7 —0.0049¢°
6.7s+1 8.64s +1 9.06s +1
111e™* —236e™ —0.0le™"*
&(g) = e
== 3255 +1 Ss+1 7.09s +1
—34.68¢7°F  462¢7°%  087(11.61s+1)e™
8.155+1 1095 +1 (3.89s5+1)(18.85+1)
24
1.509[1 + —] 0 0
35.26s
1
i(“) = 0 - 0.295[1 + 38_7“.] 0
0 0

2‘629(] + ;]
14.211s
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Under the closed-loop system, three rectangular
pulses (pulse height = 1.0 and pulse width =
0.5) were introduced to each set point
respectively, and each process transients with
sampling time 0.05 was obtained in Fig. 5.
These data were converted into frequency
domain using Eq. (10), and the L.(@) as

shown in Fig. 6 was calculated by Eqgs. (11)
and (12). The resulting L. - obtained via the

proposed method using 3 pulse tests is 4.325
dB, which is close to the actual value of
4346 dB. In comparison with 4.435 dB
obtained by Ju and Chiu (1998b) using 7 relay
tests, the proposed method seems to be more
versatile than theirs.

Then, the frequency response data ¢ (i0)

were obtained by Eq. (13). Figure 7 shows the
result of these frequency response data G,,(ia))

by Nyquist plots. It can be found from Fig. 7
that each of the Nyquist plots obtained by Eq.
(13) is quit close to the real process. In
addition, the parametric identification via the
Powell (1964) algorithm to find the
minimization in Eq. (20) could be implemented
using the same data in frequency domain. If
process models are assumed to be the same
forms as the original transfer functions, i.e., Eq.
(24), the fitting results are

0.624¢ " ~0.609¢ ~0.0049¢
6.683s +1 86165 +1 90325 +1
G ()= 1051 —2360e "™ —0010e "™
=r 3245+1 49975 +1 70745 +1
—32.780e ™ 46116 0.869(11.5985+1)e
8.126s +1 108745 +1 (3.8925 +1)(18.7465 +1)

(26)
It looks that the above model parameters are
quite close to that of the original process Eq.
(24).

6. Conclusions

A straightforward on-line method to find the
maximum closed-loop log modulus Len  for
SISO or multivariable systems is proposed in
this study. The L of a nxn multivariable
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system can be systematically obtained on-line
by n pulse tests in each of set points under
closed-loop operation without adding any relay.
The parametric identification can also be
implemented using the same set of
experimental data. Besides, the calculations
required are easily programmed, since several
subprograms  for Fourier transforms and
optimization are available. Compared with the
latest methods in the literature, the proposed
method seems to be simpler and more versatile
not only in the experiment but also in the
numerical computation.
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